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Abstract—Speaker verification (SV) suffers from unsatisfac-
tory performance in far-field scenarios due to environmental
noise and the adverse impact of room reverberation. This pa-
per investigates utilizing a multichannel pre-processing pipeline
including a time-domain neural beamformer (FaSNet), multi-
channel Wiener filter (MWF), and weighted prediction error
(WPE). This approach is compared to the existing state-of-the-
art approaches. We examine the importance of enrollment in
pre-processing which has been largely overlooked in previous
studies. Experimental evaluation shows that pre-processing can
improve the SV performance as long as the enrollment files are
processed similarly to the test data and that test and enrollment
occur within similar SNR ranges. The integration of FaSNet,
MWF, and WPE achieved improved performance compared to
the existing state-of-the-art pre-processing approaches. We also
show that our approach generalizes to unseen real recorded data
while being trained on simulated data.

Index Terms—multichannel speech enhancement, far-field
speaker verification

I. INTRODUCTION

Speaker verification (SV) is the process of analysing the
authenticity of a speaker on the basis of his/her voice char-
acteristics. SV is becoming an integral part to avail services
in many sectors like banking, online payment systems, etc.
However, the real-world is a noisy one and the efficacy
of SV system under far-field setting is still a challenging
task. This is mainly due to distortion of the original speech
signal as effects of the long range fading, room reverberation
and complex environmental noises. To address this problem,
several challenges has been organised over the past few years
such as, VOiCES from a distance challenge [1], Interspeech
far-field speaker verification challenge [2], etc. The current
state-of-the-art x-vector [3] based approaches improved the SV
performance significantly. But, these SV systems still suffer
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from severe performance degradation in noisy-reverberant
scenarios that are typical of hands-free applications.

Speech enhancement can improve the overall quality of a
degraded speech signal. Besides denoising autoencoder [4],
[5], neural beamforming [6] and dereverberation [7] has been
extensively used as front-end processing of speech recognition
[6], [12], [28]. But, only few studies have examined the effec-
tiveness of integrating beamforming and dereverberation with
multichannel signal for SV in noisy-reverberant environment
[8], [9]. Mosner et al. employed mask-based beamforming
combined with WPE to minimize the reverberation effect but
they studied only reverberation effect whereas reverberation
and noise occurs simultaneously in real scenarios [8]. Yang
et al. jointly optimized neural network supported minimum
variance distortionless response (MVDR) beamforming with
WPE using deep speaker embedding model [10]. Taherain et
al. used MVDR beamformer with Rank-1 approximation to
search for the optimal beamformer from the variants of ideal
ratio mask based MVDR and generalized eigenvalue (GEV)
beamformers [9]. Although often used in a multichannel
context, most of these studies use single-channel data as an
input to DNN, use matched train/test data, and reported poor
performance on real data. Moreover, prior works mainly used
mask-based beamformers (MVDR or GEV) in frequency do-
main which typically degrades in causal and online scenarios
[13] as frequency domain methods lacks the reasonable size
of frequency resolution and input signal length required for
perceivable system latency.

This paper investigates multichannel pre-processing for SV
in adverse acoustic condition where noise and room rever-
beration distorts the target speech signal. We integrate a time-
domain neural beamformer, Rank-1 MWF and WPE as a mul-
tichannel pre-processing to SV. We employ FaSNet to compute
the time-frequency (T-F) masks which inherently considers
phase information as well. Further, we examine the importance
of enrollment in pre-processing as different enrollment/test
mismatches can have different impact on SV performance. Our
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Fig. 1: Proposed multichannel speech enhancement pipeline.
y is the noisy input from the K channels. MS ,Mn are the
computed masks for speech and noise. Rss, Rnn are speech
and noise covariance matrices, ŝ is the enhanced speech and
d(ŝ) is the dereverb enhanced speech .

proposed system employs Rank-1 MWF which is robust to low
SNR scenarios and provides noise reduction extensively. We
also investigate the influence of quality (in terms of source
to distortion and source to interference ratio) of the enhanced
signals which could be helpful in fine-tuning the front-end of
a SV system.

II. PROBLEM FORMULATION

A. Signal Model

Considering the mixture of dry speech and noise as recorded
by K microphones can be formulated with the short-time
Fourier transform (STFT) as y(T − F ) = s(T − F ) + h(T −
F ) + n(T − F ), where y(T − F ), s(T − F ) h(T − F ) and
n(T −F ) represent the STFT vectors of the noisy speech, dry
speech, reverberated speech and noise.

III. MULTICHANNEL SPEECH ENHANCEMENT

A. FaSNet

FaSNet is a time-domain neural beamforming algorithm to
separate noise and speech [13]. We use FaSNet to compute
the T-F masks:

Ms(T − F ) =
|s(T − F )|

|s(T − F )|+max(|n(T − F ), ε)
(1)

Mn(T − F ) =
|n(T − F )|

|s(T − F )|+max(|n(T − F )|, ε)
(2)

Where, ε is 1× 10−16.

B. Rank-1 MWF

MWF is designed to minimize mean squared error (MSE)
criterion between the record mixture and the target speech.

J(w) = E
{∣∣s1 − wHy

∣∣2} (3)

where s1 is the clean speech signal from the first channel,
E
{
.
}

is the expectation operator and ·H denotes the Hermitian
transpose. The filter w that minimizes the MSE criterion (3)
is the MWF that can be expressed as below:

ŵMWF(f) = (Rss(f) +Rnn(f))
−1Rss(f)u1 (4)

Where, Rss(f), Rnn(f) are spatial correlation matrix for
the speech and noise, respectively and u1 = [1, . . . , 0]T .

It is possible to introduce a trade-off parameter µ which
controls the tradeoff between the interference reduction and
the desired signal distortion [14]. We then obtained the speech
distortion weighted (SDW) MWF that can be expressed as:

ŵSDW−MWF(f) = (Rss(f) + µRnn(f))
−1Rss(f)u1 (5)

If the desired signal comes from a single source, the speech
correlation matrix Rss is theoretically of Rank-1. Forcing
this matrix to its Rank-1 approximation leads to the so-called
Rank-1 version of the filters described above. In the remainder
of the paper, we use Rank-1 approximation of the SDW-MWF.

The computation of MWF requires estimation of the speech
and noise correlation matrices. The estimated T-F masks of
speech and noise are used to compute the spatial correlation
matrices Rss(f) and Rnn(f) that are needed to derive the
MWF. The correlation matrices are obtained as:

Rss(f) =
1

T

T−1∑
t=0

š(T − F )š(T − F )H (6)

Note that the noise correlation matrix can be obtained
similarly as in Eq. (6).

C. WPE

WPE is used for alleviating degradation performance in
speech recognition mostly in the case of a far-field scenario.
The de-reverberated signal is obtained by subtracting the
filtered signal from the observed signal denoted by;

d ˆ(s) = ŝ(t)− ΣN
k=1ŵ(k)h(t− k) (7)

Where, ŝ(t) is reverberated signal at time t and d ˆ(s) is de-
reverberated signal using WPE algorithm. ŵ denotes the kth

tap of the N -taps. WPE filter is W = [W1, . . . ,WN ]T .

IV. DATASET

A. Synthetic dataset

We generated a synthetic dataset namely, RoboVoices sim-
ulating real room environments with additive noise and rever-
beration from dry speech segments. Designing such a dataset
is necessary as the training of speech enhancement approaches
requires ground-truth knowledge about the target speech and
to some extent about the degradation. This kind of information
is not available in the available corpora for far-field SV.



1) Speech data: We use the dry speech data from the clean
subset of Librispeech [15] corpus which is approximately 1000
hours of English speech data collected as part of the Librivox
project. We have selected around 10000 files randomly from
the dry training subset of Librispeech and truncated them to
10 seconds duration for the training set, contributing to 25
hours of speech data.

For evaluation of the SV system, we use the Fabiole speech
corpus [18]. Fabiole is a French speech corpus consisting of
around 6882 audio files from 130 native French speakers.
The minimum duration of speech file is 1 seconds and the
maximum is 46 seconds. The speech data of the corpus is
collected from different French radio and television shows.
For creating each evaluation set, we have used 1200 speech
files from Fabiole representing 2 hrs of evaluation material.

2) Noise data: We have collected realistic office noise from
the Freesound platform1 [16]. The selected noise categories
include door, keyboard, office, phone, background noise in
the room, printer, fan, door knock, babble, and environmental
noise, etc. We split the dataset into a training set comprised
of 3725 clips and an evaluation set comprised of 1000 clips.

We also evaluate our system’s performance using MUSAN
noise from the OpenSRL dataset 2 [21]. We convolved the
dry speech from Librispeech and noise from Musan with
simulated RIR for training. The evaluation protocol is same
as RoboVoices except the noise samples. The noise categories
include dial tones, raindrops, etc.

3) Room Impulse Response: To simulate room effects, we
have generated a RIR corpus of 10000 rooms for training
and 3600 for evaluation with pyroomacoustics toolbox [17].
For training, the room length was chosen between [3 − 8]
m, width was chosen between [3 − 5] m, and the height
was chosen between [2 − 3] m. The absorption coefficient
was drawn randomly such that the room’s RT60 was between
[200−600] ms. The minimum distance of a source and the wall
is 1.5 m and 1 m between the wall and the microphones. The
RIR for the evaluation set were generated with the same room
dimension as in the training set but the absorption coefficient
was selected to obtain an RT60 of 400 ms.

The final RoboVoices corpus for training and evaluation is
created by first convolving the dry speech and noise with the
simulated RIRs. We then added the convolved dry speech and
convolved noise to obtain the noisy signal. We randomly select
the noise samples from Freesound and the dry speech from
Librispeech for the training set. The SNR is drawn randomly
with a uniform distribution between [0 − 10] dB. For the
evaluation set, the generation process is similar except that
we draw the SNR values in [5, 10, 20]dB and the process is
applied to each speech segment from the Fabiole dataset. In
total, we have generated 10000 mixture for training and 3600
mixture for evaluation.

1https://freesound.org/
2https://www.openslr.org/index.html

TABLE I: Results on Freesound noise and Musan noise using
different pre-processing methods. FaS is FaSNet in the table.

Noise type Freesound Musan
Pre-processing/SNR SDR SIR EER SDR SIR EER

dry speech — — 14.9 — — 14.9
Reverb-speech — — 20.6 — — 20.6

Noisy 2.6 15.1 28.2 2.4 14.8 25.7
BLSTM GEV-BAN 5.4 20.6 27.1 4.3 20.2 23.8

BLSTM Rank-1 5.4 20.7 26.8 5.1 20.7 23.1
BLSTM MVDR Rank-1 5.8 20.1 27.0 4.9 20.5 23.7

FaS 5.3 20.5 38.7 4.7 18.3 32.6
FaS GEV-BAN 5.8 21,9 26.8 5.6 21.2 22.2

FaS Rank-1 MWF 6.1 21.0 24.9 5.9 21.5 21.9
FaS Rank-1 MWF WPE 7.0 21.0 23.3 6.1 21.5 20.5

B. VOiCES

Additionally, we evaluate our approach on the VOiCES
challenge 2019 dataset [1]. Among 11 microphone positions in
the Eval set, we select 3 representative positions: 2, 4, and 9.
We select the signal from these three microphones confirming
all three are in mid-distance from the speaker and are close to
build a ”virtual” microphone antenna.

V. EXPERIMENTATION

A. Experimental Set-up

The speech and noise signals are sampled at 16 kHz. We
provide multichannel speech signal as input to FaSNet with
4 ms window size and context size of 16 ms. We trained
the FaSNet model with SDR loss and SI-SNR (scale-invariant
source-to-noise ratio) loss [19]. We employed the dual-path
RNN (DPRNN) with an encoder dimension of 50, a chunk size
of 50, and a hopping window of 35 dimension. To compute
the target masks, we use the source-separated outputs from
the FaSNet model. The FaSNet implementation is used from
Asteroid toolbox [20] and replaced the TCN blocks with
DPRNN in contrast to the original FaSNet architecture, where
TCN is used to predict the beamformed filters.

The SDW-MWF operate on T-F representation of the signal.
STFT is computed with a window length of 512 samples,
a hop size of 256 samples and a Hann window. A single
SDW-MWF is estimated for each speech clips. According to
previous experiments we set µ parameter of the SDW-MWF
to 0.1 to limit the amount of distortion introduced by the filter.
We use WPE with the following parameters: 10 filter taps, a
delay of 3 frames, 5 iterations of WPE and alpha 0.9999.

B. Speaker Verification

Our SV is an x-vector [3] based system. The network is
trained with data augmentation using different portions of
Musan corpus (music, babble, noise, reverberation) [21] with
1 million augmented files from Voxceleb [22] and all the
original files from Voxceleb 1 and 2 [23]. We use Fabiole
corpus for tests and enrollment. For enrollment, 3441 files
are used and the remaining files are used for the test. As
input to the x-vector network, we extract Mel-frequency
cepstral coefficients normalized by Cepstral Mean-Variance
Normalization. The non-speech frames are removed with a

https://freesound.org/
https://www.openslr.org/index.html


TABLE II: % EER on matched pre-processing conditions on the RoboVoices dataset. We processed both enrollment and test
data using the same range of SNR. The average confidence interval is 0.1.

Enrollment conditions
Test data Dry speech Reverb. speech Noisy BLSTM MVDR Rank-1 FaS Rank-1 MWF WPE

Dry speech 14.9 15.4 16.7 16.1 15.7
Reverb-speech 20.6 19.8 20.5 20.4 20.1

Noisy 28.2 24.9 23.8 24,9 24,3
BLSTM MVDR Rank-1 27.0 24.2 23.4 21.3 22.5
FaS Rank-1 MWF WPE 23.3 22.8 21.5 22.4 19.2

TABLE III: %EER on RoboVoices using different pre-
processing methods.

Noise type RoboVoices
Pre-proces./SNR 5 10 20

Noisy 34.4 28.0 22.2
BLSTM GEV-BAN 32.5 26.8 21.9

BLSTM MVDR Rank-1 32.3 26.6 22.1
FaS Rank-1 MWF WPE 27.1 23.2 19.7

voice activity detector. The Probabilistic Linear Discriminant
Analysis (PLDA) classifier used for scoring is trained on 200k
x-vectors extracted from Voxceleb. Before training the PLDA,
x-vectors are centered and their dimensionality reduced to 128
with linear discriminant analysis. The PLDA scoring system is
retrained on the enrollment set. Kaldi [27] 3 is used to process
all the steps of SV.

C. Evaluation

Speech enhancement results were evaluated in terms of
source-to-distortion (SDR) ratio for estimating distortion on
the target signal and the source to interference (SIR) ratio
for estimating the relative importance of the estimated target
speech compared to uncorrelated interference [24] 4. The
SV system is evaluated using an equal error rate (EER). All
metrics are presented with a 95 % confidence interval using
the bootstrap algorithm [25]. We compute EER on dry speech
and reverberated speech (as a reference point), on the input
mixture, and on the signals estimated with different speech
enhancement algorithms.

VI. RESULTS AND ANALYSIS

Table I presents the results of different state-of-the-art
pre-processing techniques on Freesound and Musan noise
datasets. We implement the BLSTM-based approaches from
[9] and consider them as the baseline. The performance is
averaged over SNR conditions. The enrollment is always done
using dry speech here. We can see from the table that both
reverberation and noise degrades the SV performance. SDR
seems to be closely co-related with EER but not in the case
of SIR. Comparing the average improvements of FaS Rank-1
MWF WPE to Rank-1 approximated MVDR, we observe an
absolute EER reduction of 5% on both Fressound and Musan
noise datasets. In terms of EER, FaSNet is outperformed

3https://github.com/kaldi-asr/kaldi
4SDR and SIR are computed with the mir eval toolbox https://github.com/

craffel/mir eval

TABLE IV: %EER on different noise conditions of the VOiCES
Eval dataset. Confidence interval is 0.2. Reverb is reverber-
ated.

Noise conditions
SV pre-processing Clean Babble TV Music

None 4.4 9.2 7.9 8.4
BLSTM Rank-1 4.4 8.1 7.1 7.3

BLSTM MVDR Rank-1 4.3 7.3 6.5 6.9
FaS 4.4 7.8 7.4 7.9

FaS Rank-1 MWF 4.5 7.1 6.8 7.1
FaS Rank-1 MWF WPE 4.0 6.3 6.0 6.4

significantly by Rank-1-based beamforming approaches. This
could be due to artifacts introduced by FaSNet as indicated
by lower SDR values. The integration of FaSNet, Rank-1
MWF, and WPE bring substantial improvement over all other
techniques irrespective of the noise types present in both
datasets. RoboVoices has non-stationary noises which explain
the high EER compared to Musan. FaS Rank-1 MWF WPE
surpasses all the BLSTM-based baseline approaches on both
datasets. We will be using only the best baseline approach i.e
BLSTM MVDR Rank-1 and our proposed FaS Rank-1 WPE
in the forthcoming experiments.

Table II reports the performance on the RoboVoices dataset
for different pre-processing conditions and depending on the
enrollment condition. Performing the enrollment and test with
matched acoustic conditions alleviates the effect of rever-
beration but this is hardly the case for additive noise. Pre-
processing consistently improves the SV performance but the
effectiveness is more evident when the enrollment is done
in matched pre-processing conditions (diagonal). FaS Rank-
1 MWF WPE obtained the best EER performance for a noisy
and reverberated input over the baseline approach.

Table III shows the performance of different pre-processing
approaches depending on SNR conditions on the RoboVoices
dataset. Comparing the consistent improvement of FaS Rank-
1 MWF WPE with BLSTM GEV-BAN and Rank-1 approx-
imated BLSTM MVDR, we observe an absolute reduction
of EER across the SNR conditions for a noisy input signal.
With 7% EER reduction at 5 dB, FaS Rank-1 MWF WPE
shows robustness to low SNR conditions. Thus, supporting the
argument that Rank-1 MWF is robust to low SNR scenarios.

Table IV presents the results obtained for various distractor
noise conditions on the VOiCES Eval dataset. We select the
microphone which was closest to the speaker as a reference
microphone. As expected, the condition with no noise distrac-
tor (Clean in Table IV) resulted in the best performance across

https://github.com/craffel/mir_eval
https://github.com/craffel/mir_eval


all the approaches. The baseline BLSTM-based approaches
performs poorly compared to FaSNet-based approaches in all
the noise conditions. With an EER of 9.2% without any pre-
processing, Babble seems to be the most challenging condition
due to overlapping speech interference as well as its similarity
to the desired clean speech. However using FaS Rank-1 MWF
WPE, EER of Babble reduces to 6.3%. Furthermore, FaS
Rank-1 MWF WPE achieves the best performance across the
noise conditions demonstrating the efficacy of our approach
even though the model was trained on synthetic data gener-
ated for generic, possibly mismatched, and spatial scenarios.
Notably, it shows that our approach generalizes to unseen noise
such as Babble for which the performance was improved using
FaS Rank-1 MWF WPE as a pre-processing pipeline.

VII. CONCLUSION

This paper demonstrates the efficacy of integrating a neural
beamformer, Rank-1 MWF and WPE as a pre-processing
for speaker verification in multichannel distant/far-field audio
under noisy-reverberant conditions. The proposed approach
outperformed the existing state-of-the-art approaches in terms
of EER. Experimentation with enrollment shows that perform-
ing the test and enrollment with matched acoustic conditions
alleviates the effect of reverberation. Additionally, our ap-
proach shows more robustness to low SNR conditions. The
integration of FaS Rank-1 MWF WPE as a pre-processing
demonstrated the best performance across the noise conditions
on the VOiCES challenge dataset even though the model
was trained on synthetic data. This shows that our approach
generalizes to unseen real recorded data.
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