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Summary: Speaker verification (SV) suffers from unsatisfactory performance in far-field scenarios due to environmental noise and
the adverse impact of room reverberation. This work presents a benchmark of multichannel speech enhancement for far-field
speaker verification. One approach is a deep neural network-based, and the other is a combination of deep neural network and
signal processing. We integrated a DNN architecture with signal processing techniques to carry out various experiments. Our
approach is compared to the existing state-of-the-art approaches. We examine the importance of enrollment in pre-processing,
which has been largely overlooked in previous studies. Experimental evaluation shows that pre-processing can improve the SV
performance as long as the enrollment files are processed similarly to the test data and that test and enrollment occur within similar
SNR ranges. Considerable improvement is obtained on the generated and all the noise conditions of the VOiCES dataset.

Keywords: Multichannel speech enhancement, far-field speaker verification, deep neural network

1. Introduction

Speaker verification (SV) authenticates a person's identity
based on his/her voice characteristics. Despite significant
improvements in deep learning-based SV in close-talk or
controlled scenarios, SV still suffers from unsatisfactory
performance in far-field/ distant scenarios. Speech signals
propagating over long distances are subject to fading,
absorption, and reflection by various objects, which
changes the pressure level at different frequencies and
degrades speech quality. In real cases, these acoustic
perturbations make far-field SV a challenging task. Several
challenges have been organized over the past few years to
address this problem, such as VOiCES from a distance
challenge [12], Interspeech far-field speaker verification
challenge [13], etc. The current state-of-the-art
x-vector-based [8] approaches improved the SV
performance significantly. But, these SV systems still
suffer from severe performance degradation in
noisy-reverberant scenarios that are typical of hands-free
applications.

Speech enhancement can be used to improve the
perceptual quality of speech by estimating clean speech
signals for signals impacted by acoustic noise and
reverberation. Besides denoising autoencoder [14], [15],
neural beamforming [16], and dereverberation [17] have
been extensively used as front-end processing of speech
recognition [16, 18, 19]. But, only a few studies have
examined the effectiveness of integrating beamforming and
dereverberation with multichannel signals for SV in a
noisy-reverberant environment [11, 20]. Mosner et al.
employed mask-based beamforming combined with WPE
to minimize the reverberation effect, but they studied only

the reverberation effect, whereas reverberation and noise
occur simultaneously in real scenarios [11]. Yang et al.
jointly optimized neural networks that supported minimum
variance distortionless response (MVDR) beamforming
with WPE using a deep speaker embedding model [21].
Taherain et al. used an MVDR beamformer with Rank-1
approximation to search for the optimal beamformer from
the variants of ideal ratio mask-based MVDR and
generalized eigenvalue (GEV) beamformers [11]. Although
often used in a multichannel context, most of these studies
use single-channel data as an input to DNN, use matched
train/test data, and report poor performance on real data.
Moreover, prior works mainly used mask-based
beamformers (MVDR or GEV) in the frequency domain,
which typically degrades in causal and online scenarios [1]
as frequency domain methods lack the reasonable size of
frequency resolution and input signal length required for
perceivable system latency.

This paper studies the benchmark speech enhancement as
a multichannel pre-processing to SV in adverse acoustic
conditions where noise and room reverberation distorts the
target speech signal. We consider either filtering based on a
deep neural network (DNN) or combining DNN and signal
processing approaches. The DNN-based approach
implements FaSnet [1], a state-of-the-art neural
beamforming technique for speech enhancement. The
second approach is an integration of FaSnet with Rank 1
multi-channel Wiener filter [2] and a de-reverberation
algorithm [3]. We compared our pre-processing approach
to the popular state-of-the-art pre-processing approaches
from [11]. Furthermore, this work studies the impact of
both approaches in different noisy and reverberated
acoustic scenarios using various signal-to-noise (SNR)
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ratios for a multi-channel input signal. We also study the
impact of data mismatch, robustness in low SNR scenarios,
and generalization to unseen real recorded data.
Additionally, we investigate the influence of quality (in
terms of source to distortion and source to interference
ratio) of the enhanced signals, which could be helpful in
fine-tuning the front end of an SV system.

2. Use Case

The main purpose of this work is to solve the various
challenges faced by a mobile security robot in the context
of an SV. The performance of SV reduces drastically due
to ambient noise leading to low SNR, internal robot noises
leading to reverberation further degrading the SNR, and
overlapping background speech. The main focus is on
developing a multichannel speech enhancement as a
pre-processing to the SV in the context of mobile security
robot to identify a person on industrial premises during the
inactivity period.

3. Problem Formulation

3.1. Signal Model

Considering the mixture of dry speech and noise as
recorded by K microphones can be formulated with the
short-time Fourier transform STFT as y(T-F) = s(T-F) +
h(T-F) + n(T-F), where y(T-F), s(T-F), h(T-F) and n(T-F)
represent the STFT vectors of the noisy speech, dry speech,
reverberated speech, and noise.

4. Multichannel Speech Enhancement

This section explains the integrated multichannel speech
enhancement approach we developed for far-filed SV.

4.1. FaSNet

FaSnet (filter-and-sum network) is a filter-based
beamforming approach suitable for real-time low-latency
applications [1]. FaSnet incorporates a two-staged
architecture. A beamforming filter for a chosen reference
channel is computed in the first stage. The reference
channel is randomly selected. The second stage uses the
output filter from the first stage to estimate the
beamforming filters for the rest of the channels. The input
for both stages includes the target channel as well as the
output of the normalized cross-correlation between
channels as an inter-channel feature. Both stages use the
temporal convolutional networks (TCN), enabling the
lower latency processing of the FaSnet model. The training
objective of the FaSnet model is to select a signal-level
loss criterion based on the actual task needed to be solved.

We give noisy multichannel signals as input to FaSnet to
separate noise and speech. We used FaSnet to obtain a first
estimate of the speech signal s(T-F) and the noise signal
n(T-F). These estimates are then used to compute the T-F
masks:

(1)             𝑀
𝑠 

(𝑇 − 𝐹) = |𝑆(𝑇−𝐹)|
|𝑆(𝑇−𝐹) + 𝑚𝑎𝑥 (|𝑛(𝑇−𝐹)|, ε)

(2)             𝑀
𝑛 

(𝑇 − 𝐹) = |𝑛(𝑇−𝐹)|
|𝑆(𝑇−𝐹) + 𝑚𝑎𝑥 (|𝑛(𝑇−𝐹)|, ε)

where, 𝜀 is 1 x 10-16.

4.2.  Rank-1 MWF

MWF is designed to minimize the mean squared error
(MSE) criterion between the record mixture and the target
speech.

(3)𝐽(𝑤) = 𝐸{ |𝑠
1 

−   𝑤𝐻 𝑦|2}     

where is the clean speech signal from the first channel,   𝑠
1 

is the expectation operator, and .H denotes the Hermitian𝐸
transpose. The filter that minimizes the MSE criterion𝑤
[equation number] is the MWF that can be expressed as
below;

(4)   𝑊
 
 
𝑀𝑊𝐹

(𝑓) =  𝑅
𝑠𝑠  

(𝑓) +  𝑅
𝑛𝑛  

  (𝑓) −1 𝑅
𝑠𝑠 

(𝑓) 𝑢
1
  

Where , are spatial correlation matrix for the𝑅
𝑠𝑠  

 𝑅
𝑛𝑛   

(𝑓) 
speech and noise, respectively and = [1,..., 0]T.𝑢

1
 

It is possible to introduce a trade-off parameter whichµ
controls the tradeoff between the interference reduction
and the desired signal distortion [23]. We then obtained the
speech distortion weighted (SDW) MWF that can be
expressed as;

(5)  𝑊
 
 
𝑆𝐷𝑊−𝑀𝑊𝐹

(𝑓) =  𝑅
𝑠𝑠  

(𝑓) +  µ 𝑅
𝑛𝑛  

(𝑓) −1 𝑅
𝑠𝑠 

(𝑓) 𝑢
1

If the desired signal comes from a single source, the speech
correlation matrix is theoretically of Rank-1. Forcing𝑅

𝑠𝑠  
this matrix to its Rank-1 approximation leads to the
so-called Rank-1 version of the filters described above. In
the remainder of the paper, we use the Rank-1
approximation of the SDW-MWF.
The computation of MWF requires the estimation of the

speech and noise correlation matrices. The estimated T-F
masks of speech and noise are used to compute the spatial
correlation matrices and that are needed to𝑅

𝑠𝑠  
(𝑓) 𝑅

𝑛𝑛  
 (𝑓)

derive the MWF. The correlation matrices are obtained as;

(6)            𝑅
𝑠𝑠  

(𝑓) = 1
𝑇  

𝑡=0

𝑇−1

∑ 𝑠(𝑇 − 𝐹)  𝑠 (𝑇 − 𝐹)𝐻   

Note that the noise correlation matrix can be obtained
similarly as in Eq.[6].

4.3. Weighted Prediction Error (WPE)

WPE is used for alleviating degradation performance in
speech recognition, mostly in the case of a far-field
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scenario. The de-reverberated signal is obtained by
subtracting the filtered signal from the observed signal
denoted by;

           𝑑(𝑠) = 𝑠(𝑡) −  
𝑘=1

𝑁

∑ 𝑤(𝑘)  ℎ(𝑇 − 𝑘)   

Where, is reverberated signal at time t and ) is𝑠 𝑑(𝑠
de-reverberated signal using WPE algorithm. 𝑠
denotes the th tap of the N-taps. WPE filter is = [𝑘 𝑊

,..., ]T.𝑊
1  

𝑊
𝑁  

5. Datasets

5.1 Synthetic Dataset

We generated a synthetic dataset, namely, RoboVoices
simulating real room environments with additive noise and
reverberation from dry speech segments. Designing such a
dataset is necessary as training speech enhancement
approaches require ground-truth knowledge about the
target speech and, to some extent, the degradation. This
information is not available in the available corpora for
far-field SV.

5.1.1. Speech Data

We use the dry speech data from the clean subset of the
Librispeech [4] corpus, which is approximately 1000 hours
of English speech data collected as part of the Librivox
project. We randomly selected around 10000 files from the
dry training subset of Librispeech and truncated them to 10
seconds duration for the training set, contributing to 25
hours of speech data.

For the evaluation of the SV system, we use the Fabiole
speech corpus [5]. Fabiole is a French speech corpus
consisting of around 6882 audio files from 130 native
French speakers. The minimum duration of the speech file
is 1 second, and the maximum is 46 seconds. The speech
data of the corpus is collected from different French radio
and television shows. For creating each evaluation set, we
have used 1200 speech files from Fabiole representing 2
hrs of evaluation material.

5.1.2. Noise Data

We have collected realistic office noise from the Freesound
platform [6]. The selected noise categories include door,
keyboard, office, phone, background noise in the room,
printer, fan, door knock, babble, environmental noise, etc.
We split the dataset into a training set of 3725 clips and an
evaluation set of 1000 clips.

We also evaluate our system's performance using MUSAN
noise from the OpenSRL dataset [9]. We convolved the dry
speech from Librispeech and noise from Musan with
simulated RIR for training. The evaluation protocol is the
same as RoboVoices except for the noise samples. The
noise categories include dial tones, raindrops, etc.

5.1.3. Room Impulse Response

To simulate room effects, we have generated an RIR
corpus of 10000 rooms for training and 3600 for evaluation
with the pyroomacoustics toolbox [7]. For training, the
room length was chosen between 3-8 m, the width was
chosen between 3-5 m, and the height was chosen between
2-3 m. The absorption coefficient was drawn randomly
such that the room's RT-60 was between [200-600] ms. The
minimum distance between a source and the wall is 1.5 m,
and 1 m between the wall and the microphones. The RIR
for the evaluation set was generated with the same room
dimension as in the training set, but the absorption
coefficient was selected to obtain an RT-60 of 400 ms.

The final RoboVoices corpus for training and evaluation is
created by first convolving the dry speech and noise with
the simulated RIRs. We then added the convolved dry
speech and convolved noise to obtain the noisy signal. We
randomly select the noise samples from Freesound and the
dry speech from Librispeech for the training set. The SNR
is drawn randomly with a uniform distribution between
0-10 dB. For the evaluation set, the generation process is
similar, except that we draw the SNR values in 5, 10, and
20 dB, and the process is applied to each speech segment
from the Fabiole dataset. In total, we have generated 10000
mixtures for training and 3600 mixture for evaluation.

5.2. VOiCES

We evaluate our approach to the VOiCES challenge 2019
dataset [12]. Among 11 microphone positions in the Eval
set, we select three representative positions: 2, 4, and 9. We
select the signal from these three microphones confirming
all three are in mid-distance from the speaker and are close
to building a "virtual" microphone antenna.

6. Experimentation

6.1. Experimental Set-up

The speech and noise signals are sampled at 16 kHz. We
provide multichannel speech signal as input to FaSNet with
a 4 ms window size and context size of 16 ms. We trained
the FaSNet model with SDR loss and SI-SNR
(scale-invariant source-to-noise ratio) loss [24]. We
employed the dual-path RNN (DPRNN) with an encoder
dimension of 50, a chunk size of 50, and a hopping
window of 35 dimensions. We use the source-separated
outputs from the FaSNet model to compute the target
masks. The FaSNet implementation is used from the
Asteroid toolbox [25] and replaced the TCN blocks with
DPRNN in contrast to the original FaSNet architecture,
where TCN is used to predict the beamformed filters.

The SDW-MWF operates on the T-F representation of the
signal. STFT is computed with a window length of 512
samples, a hop size of 256 samples, and a Hann window. A
single SDW-MWF is estimated for each speech clip.
According to previous experiments, we set the μ parameter
of the SDW-MWF to 0.1 to limit the amount of distortion
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introduced by the filter. We use WPE with the following
parameters: 10 filter taps, a delay of 3 frames, 5 iterations
of WPE, and an alpha of 0.9999.

6.1.2. Speaker Verification

Our SV is an x-vector-based system. The network is
trained with data augmentation using different portions of
Musan corpus (music, babble, noise, reverberation) [9]
with 1 million augmented files from Voxceleb [26] and all
the original files from Voxceleb 1 and 2 [10]. We use the
Fabiole corpus for tests and enrollment. For enrollment,
3441 files are used, and the remaining files are used for the
test. As input to the x-vector network, we extract
Mel-frequency cepstral coefficients normalized by Cepstral
Mean-Variance Normalization.We removed the non-speech
frames with a voice activity detector. The Probabilistic
Linear Discriminant Analysis (PLDA) classifier used for
scoring is trained on 200k x-vectors extracted from
Voxceleb. Before training the PLDA, x-vectors are
centered, and their dimensionality is reduced to 128 with
linear discriminant analysis. The PLDA scoring system is
retrained on the enrollment set. Kaldi1 is used to process all
the steps of SV.

6.2. Evaluation

The SV system is evaluated using an equal error rate
(EER). The bootstrap algorithm presents all metrics with a
95% confidence interval [27]. We compute EER on dry
speech and reverberated speech (as a reference point), the
input mixture, and the signals estimated with different
speech enhancement algorithms.

7. Results and Analysis

Table-1: EER (%) on RoboVoices using different
pre-processing methods. The confidence interval is 0.1.

Pre-processing/SNR 5 10 20

Unprocessed 34.4 28.0 22.2

FaSnet [1] 45.7 39.0 31.5

BLSTM MVDR Rank1 [11] 32.3 26.6 22.1

BLSTM GEV-BAN [11] 32.5 26.8 21.9

FaSnet Rank1 MWF WPE 27.1 23.2 19.7

Table-1 shows the results of our experiments using
different pre-processing approaches on the RoboVoices
dataset on various SNR conditions. We implement the
BLSTM-based approaches from [11] and consider them as
the baseline. FaSnet degrades the SV performance as
FaSnet introduces artifacts that distort the signal quality.
We observed that integrating FaSnet with signal processing
methods consistently improves against the baseline

1 https://github.com/kaldi-asr/kaldi

systems BLSTM MVDR Rank-1 and BLSTM GEV-BAN.
Error reduction in multi-channel SV is greater, especially
in low SNR, with a 7% reduction at 5 dB showing
robustness to low SNR conditions for an unprocessed
noisy-reverberated signal. Thus, supporting the argument
that Rank-1 MWF is robust to low SNR scenarios.

Table-2: EER (%) on different noise conditions of the VOiCES
Eval dataset. The confidence interval is 0.2.

Clean Babble TV Music

Unprocessed 4.4 9.2 7.9 8.4

FaSnet 4.4 7.8 7.4 7.9

MVDR  Rank1 4.3 7.3 6.5 6.9

FaSnet Rank1 MWF
WPE

4.0 6.3 6.0 6.4

Table-2 presents the results obtained on the publicly
available VOiCES Eval dataset [12] for various distractor
noise conditions. We selected the microphone which was
closest to the speaker as a reference microphone. As
expected, the condition with no noise distractor (Clean in
Table 2) resulted in the best performance across the
approaches. The baseline BLSTM-based approaches
perform poorly compared to the FaSnet-based approaches
in all the noise conditions. With an EER of 9.2% without
any pre-processing, Babble seems to be the most
challenging condition due to overlapping speech
interference as well as its similarity to the desired clean
speech. The proposed system improved the performance of
Babble with an EER of 6.3 %. Furthermore, FaSnet Rank-1
MWF WPE achieves the best performance across the noise
conditions, demonstrating our approach's efficacy even
though the model was trained on synthetic data generated
for generic, possibly mismatched, and spatial scenarios. We
have also experimented with enrollment in match
pre-processing conditions showing its impact in SV.

Table-3 reports the performance on the RoboVoices
dataset for different pre-processing conditions and
depending on the enrollment condition. Performing the
enrollment and test with matched acoustic conditions
alleviates the effect of reverberation. but this is hardly the
case for additive noise. Pre-processing consistently
improves the SV performance, but the effectiveness is
more evident when the enrollment is done in matched
pre-processing conditions (diagonal). FaS Rank-1 MWF
WPE obtained the best EER performance for a noisy and
reverberated input over the baseline approach.
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Table-3: EER (%) on matched pre-processing conditions on the RoboVoices dataset. We processed both enrollment and test data
using the same range of SNR. The average confidence interval is 0.1.

8. Conclusion

This work presents the benchmark speech enhancement
pre-processing approach to multi-channel speaker
verification in a far-field noisy-reverberated
environment. We experimented with both DNN and a
combination of DNN with signal processing methods as
a front end to the state-of-the-art x-vector speaker
verification system. Experimental evaluations on
synthetic and VOiCES datasets show that combining
DNN with signal processing methods significantly
improves speaker verification performance. Moreover,
the combined DNN and signal processing approach
show more robustness to low SNR scenarios.
Additionally, experimentation with enrollment shows
that performing the test and enrollment with matched
acoustic conditions alleviates the effect of reverberation.
Our approach demonstrated the best performance across
the noise conditions on the VOiCES dataset even
though the model was trained on synthetic data. This
shows that our approach generalizes to unseen real
recorded data.
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