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A position-dependent acoustic model relevant for some active noise control applications

Introduction

Most control strategies used in active noise control (ANC) applications are based on an acoustic model. Dierent approaches to derive such model are available, each of them having its own strengths and weaknesses.

Black-box identication methods are probably the most commonly used. They are involved in mono-and multipoint noise attenuation applications, see [START_REF] Rafaely | H 2 /H ∞ ; active control of sound in a headrest: design and implementation[END_REF][START_REF] Carmona | Active Noise Control of a Duct Using Robust Control Theory[END_REF][START_REF] Cheer | Active Control of the Acoustic Environment in an Automobile Cabin[END_REF][START_REF] Schirmacher | Active Noise Control for the 4.0 TFSI with Cylinder on Demand Technologyin Audi's S-Series[END_REF][START_REF] Landau | Robust and adaptive feedback noise attenuation in ducts[END_REF][START_REF] Song | Active vibration control for structuralacoustic coupling system of a 3-d vehicle cabin model[END_REF], and in virtual microphones designs, see [START_REF] Diaz | A local active noise control system based on a virtualmicrophone technique for railway sleeping vehicle applications[END_REF][START_REF] Petersen | A kalman lter approach to virtual sensing for active noise control[END_REF][START_REF] Moreau | A review of virtual sensing algorithms for active noise control[END_REF][START_REF] Das | A computationally ecient frequency-domain ltered-x lms algorithm for virtual microphone[END_REF]. They generally involve nite dimensional models that are ecient numerically (acceptable model order) with strong prediction performances. One should note, however, that these models are only valid at particular positions in the cavity. The position of the microphone(s) is not an explicit parameter of these models. Consequently, black-box acoustic models do not allow noise attenuation or estimation continuously in a whole volume of a cavity, but only at specic positions.

An alternative to black-box identication is the gray-box approach based on the wave equation. The resulting models involve physical parameters, see [START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identication and validation[END_REF][START_REF] Xu | Parameter identication of sound absorption model of porous materials based on modied particle swarm optimization algorithm[END_REF], and describe acoustic behavior inside the cavity, not only at particular positions. Analytical models obtained from the wave equation are innite dimensional and generally need to be approximated with nite-dimensional models for use in ANC applications. They can only be derived for systems with simple geometries and boundary conditions. If the analytical approach fails, one can still solve the wave equation numerically using, for instance, nite dierences or nite elements methods. However, the resulting models usually involve numerous parameters. For all these reasons, models derived from analytical and numerical solutions of the wave equation are of limited use in ANC applications, [START_REF] Fang | Modelling, system identication, and control of acoustic-structure dynamics in 3-D enclosures[END_REF][START_REF] Li | Active vibration and noise control of vibro-acoustic system by using pid controller[END_REF][START_REF] Boultifat | A parametrized reduced order model of 1D acoustic propagation system for robust spatial multi-point active noise attenuation[END_REF]. The particularity of the methodology proposed in this paper, when compared to previous works, lies in the fact that it takes advantage of both black and gray-box approaches to provide a cavity acoustic model that is suitable for ANC applications, [START_REF] Sanderson | Cae interior cavity model validation using acoustic modal analysis[END_REF][START_REF] Zhang | Low-noise structure optimization of a heavy commercial vehicle cab based on approximation model[END_REF][START_REF] Liu | Prediction of the acoustic eect of an interior trim porous material inside a rigid-walled car air cavity model[END_REF]. That is a nite-dimensional, low-order and parameterized model. The later is dened as a gray box that combines a one-dimensional analytical model of acoustic propagation, which handles the physical parameterization and a black-box model that copes with actuator and sensor dynamics as well as modeling errors. The parameters of the proposed model are optimized in order to reproduce the frequency behavior of the real system (LS2N active noise control platform) in a frequency range, with good prediction performances. In addition to these features, the proposed acoustic model also relies on a physical parameterization (speed of sound, impedances and microphone position) and, in this sens, it is dierent from the models proposed in other works as for instance in [START_REF] Liu | Prediction of the acoustic eect of an interior trim porous material inside a rigid-walled car air cavity model[END_REF]. In this paper, a SEA (Statistical Energy Analysis) model is proposed where the structural and acoustic coupling system is divided into several subsystems, and the power balance equations are used to describe the entire system. Note that such a strategy will not lead to a position dependent model, unlike the approach proposed in the current paper, which is less suitable for addressing issues related to noise attenuation (control) and noise estimation in the entire volume of a cavity.

This model could also be used to optimize microphones positions depending on estimation and control objectives or, alternatively, to estimate online the microphones positions in case they slightly change during operation. These ANC applications can be seen as perspectives of the present paper, which only focuses on the acoustic modelling stage.

The paper is organized as follows: Section 2 presents the ANC platform used for model validation. Section 3 then outlines the proposed methodology, while Section 4 deals with the validation of the methodology and its comparison with the system-identication-based approach. Results and contributions are summarized in the conclusion.

Experimental setup: LS2N Box

As mentioned in the introduction, the proposed methodology is applied and validated on an ANC experimental platform. This demonstrator is presented in Figure 1. It consists of a rectangular cavity made of plywood, except for the top, which is composed of acrylic glass. The thickness of the plywood is 2.10 -2 m and the one of the acrylic glass is 10 -2 m. It is instrumented with three speakers and up to ve microphones. Sensors and actuators are connected to the data acquisition card/board through their respective ampliers. The acquisition card is driven from Simulink through the real-time windows target In this paper, only one microphone and one speaker are used (as shown in Figure 2) for measuring useful system frequency responses. As depicted in Figure 2, ξ designates the position along the longest axis of the LS2N Box. Figure 3 illustrates three typical frequency responses (denoted G exp ) of this system (measured in the same y-z plane). The signicant number of modes below 1000 Hz makes the demonstrator a relevant test bench for ANC applications. The superposition of the three responses in low frequency indicates that the acoustic eld can be considered one-dimensional in low frequency (below 600 Hz). This result was expected because the rst cross section modes in y-and z-direction cut on at 680 Hz and 566 Hz, respectively. 

Model synthesis

The proposed modeling approach is presented in three steps. The model structure is rst outlined. Next, the parameters of the proposed model are optimized to t the experimental response of the system. Finally, the resulting innite-dimensional model, G ∞ app , is approximated by a nitedimensional model, G N app , which is the proposed acoustic model for ANC.

3.1 Structure of the mixed model of innite order:

G ∞ app
The objective of the G ∞ app model presented in this section is to reproduce the above-mentioned experimental response. This experimental response is composed of the acoustic response of the system, along with the sensor and actuator dynamics. As Figure 3 demonstrates, the acoustic behavior is mainly one dimensional. This is particularly the case, to a certain extent, with the passenger compartment of a mobile device such as car, trains, airplanes. . . Thus, the proposed structure for G ∞ app is as follows:

G ∞ app (s, ξ) = G ∞ 1D (s, ξ) G extra (s). (1) 
In this expression, G ∞ 1D (s, ξ) is a one dimensional acoustic model, while G extra (s) is a transfer function (independent of the position) introduced to handle the speaker and microphone dynamics and the potential modeling errors caused by the strong hypothesis made during the construction of G ∞ 1D . Both parts of the model are further explained below.

Acoustic part:

G ∞ 1D .
The analytical model G ∞ 1D is based on the following one-dimensional wave equation:

∂ 2 p ∂t 2 (t, ξ) = c 2 ∂ 2 p ∂ξ 2 (t, ξ) - 1 Z l ∂ p ∂t (t, ξ) (ξ ∈ (0, L), t > 0), (2) 
with the following boundary conditions (at ξ = 0 and ξ = L), see [START_REF] Yang | Design of active noise control using feedback control techniques for an acoustic duct system[END_REF][START_REF] Yang | Theoretical modeling issue in active noise control for a onedimensional acoustic duct system[END_REF][START_REF] Hull | Experimental verication of the nonself-adjoint state space duct model[END_REF][START_REF] Nefske | Noise and Vibration Control Engineering: Principles and Applications[END_REF]:

∂ p ∂ξ (t, 0) = 1 Z 0 ∂ p ∂t (t, 0), (t > 0), (3a) 
∂ p ∂ξ (t, L) = - 1 Z 1 ∂ p ∂t (t, L) + u(t), (t > 0). (3b) 
In these expressions, p is the pressure; ξ is the position along the main axis of the cavity; c is the speed of sound; Z 0 is the impedance at position ξ = 0; Z l is the impedance for every ξ ∈ (0, L); Z 1 is the impedance at position ξ = L; and u(t) is the signal applied by the speaker, which is positioned at ξ = L. The numerical value L equals 1.175 m. Remark 1. In the rest of this paper, we assume that the acoustic impedances Z 0 , Z 1 and Z l are constant and independent of the frequency of excitation. We also recall that acoustic impedances are usually complex numbers. Their imaginary parts reect the exibility of the boundary, while their real part reect the damping, see e.g. [21, 6.6]. This assumption leads to the fact that the these impedances are real. In addition, since acrylic glass is more reective than wood, it is also expected that Z l is larger than Z 0 and Z 1 . All these facts will be conrmed in Table 1, where we give values of these parameters, see also Remark 4.

The resulting analytical transfer function G ∞

1D from u to p is derived by applying the Laplace transform in time to (2) and (3) (initial conditions are assumed to be zero). This approach leads to the following equations where p and ū denote the Laplace transforms of p and u, respectively, and where s is the Laplace variable:

s 2 + s Z l p(s, ξ) = c 2 ∂ p ∂ξ 2 (s, ξ) (ξ ∈ (0, L)), (4) 
∂ p(s, 0) ∂ξ = s Z 0 p(s, 0), (5a) 
∂ p(s, L) ∂ξ = - s Z 1 p(s, L) + ū(s). (5b) 
The general solution of ( 4) is of the form:

p(s, ξ) = A(s) sinh (κ(s)ξ) + B(s) cosh (κ(s)ξ) . (6) 
In this expression, κ(s) is dened as follows:

κ(s) = 1 c s 2 + s Z l . (7) 
While the coecients A(s) and B(s) are obtained when applying boundary constraints (5a) and (5b):

A(s) = ū(s) D(s) , B(s) = Z 0 κ(s) s ū(s) D(s) , with D(s) = κ(s) + Z 0 κ(s) Z 1 cosh (κ(s)L) + s Z 1 + Z 0 κ 2 (s) s sinh(κ(s)L).
It nally leads to the following transfer function:

G ∞ 1D (s, ξ) = p(s, ξ) ū(s) = sinh (κ(s)ξ) + Z 0 κ(s) s cosh (κ(s)ξ) D(s) . (8) 
This transfer function reproduces only the acoustic behavior. It is parameterized with three impedances (Z 0 , Z 1 and Z l ), the speed of sound c, and the length of the cavity L (whose values are taken from Table 1).

Remark 2. One can easily conrm that the relation [START_REF] Diaz | A local active noise control system based on a virtualmicrophone technique for railway sleeping vehicle applications[END_REF] is independent of the choice of the complex root determination made in [START_REF] Das | A computationally ecient frequency-domain ltered-x lms algorithm for virtual microphone[END_REF]. Indeed, let us set (s 2 +s/Z l )/c 2 = ρe iθ , with ρ ∈ R + and θ ∈ R. It is well-known that ρe iθ = exp(ln(ρe iθ )/2), but, the ln function is not dened on the whole complex plane. However, whatever the choice of determination is, we have ln e iθ ∈ {i(θ

+ 2kπ) | k ∈ Z}.
Hence, we have,

ρe iθ ∈ {- √ ρe iθ/2 ,
√ ρe iθ/2 }. Injecting these two possibilities in [START_REF] Diaz | A local active noise control system based on a virtualmicrophone technique for railway sleeping vehicle applications[END_REF], leads to the same expression, i.e., G ∞ 1D in independent of the root determination used to dene κ.

Extra part: G extra .

As mentioned previously the extra part of the model G extra represents the speaker and microphone dynamics and the potential model errors. In this paper, its order is set to 10 (i.e., slightly higher than typical speaker and microphone models, both of which are order 3 and only valid in low frequency, see [START_REF] Zimmer | An improved acoustic model for active noise control in a duct[END_REF]). This order can be adjusted if necessary (e.g., according to the frequency range considered).

Model parameters optimization

Once the structure of the model is dened, all the model's parameters (Z 0 , Z 1 , Z l , c, L, and the numerator and denominator coecients of G extra ) are optimized to t the experimental frequency response of the system G exp . The optimized criterion J is given by:

J = G exp (•, ξ r ) -G ∞ app (•, ξ r ) 2,[ω-,ω+] G exp (•, ξ r ) -E ω+ ω-(G exp (•, ξ r )) 2,[ω-,ω+] . (9) 
In this expression, ω -and ω + are respectively the lower and upper pulsations of the considered frequency range. In addition, the average E ω+ ω-and the norm • 2,[ω-,ω+] are respectively dened by

E ω+ ω-(f ) = ω+ ω- f (jω) dω and f 2 2,[ω-,ω+] = ω+ ω- |f (jω)| 2 dω. (10) 
Remark 3. Only discretized expressions of the average E ω+ ω-and the norm • 2,[ω-,ω+] given by [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF] will be used in the sequel.

The optimization of G ∞ app is carried out using the experimental frequency response G exp (presented in Figure 3 [blue line, y = 0.125 and z = 0.15]) obtained at a single reference position ξ r = 0.8 m and over the frequency range ω ∈ [ω -, ω + ] = [100, 1000] Hz. The frequency step, used for the discretization (see Remark 3), is 0.3 Hz.

Several gradient-based and meta-heuristic optimization methods were tested unsuccessfully. This is due either to an unsatisfactory performance or a high number of decision variables. The well-known Particle Swarm Optimization (PSO) meta-heuristic (see [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF][START_REF] Xu | Parameter identication of sound absorption model of porous materials based on modied particle swarm optimization algorithm[END_REF]) seems, however, to yield satisfactory results. The values of the parameters of G ∞ app after PSO optimization are given in Table 1. In addition, as mentioned in Remark 1, the impedances are complex numbers. We did the optimization with complex impedances, and get a tiny imaginary part (of order 10 -1 ). We hence decide to neglect it. This is in accordance with the fact that the boundaries of the cavity are rigid. In addition, as expected in Remark 1, we observe that Z l > max{Z 0 , Z 1 }, and latter, we will consider that Z l = ∞, that is to say that the acrylic glass boundary is perfectly reective (see e.g. [30, III.B]).

Remark 5. The unit of Z l , Z 0 and Z 1 does not correspond to that of an impedance. In fact, Z l (and similarly Z 0 and Z 1 ) is of the form Z l = Z l /ρ, where ρ is the air density, and Z l is an impedance whose unit is kg.m -2 .s -1 .

Reduced-order model: G N app

The optimization of the model parameters was conducted on innite-dimensional model G ∞ app . It is now necessary to approximate this model by a nite-dimensional model denoted

G N app . The innite- dimensional component of G ∞ app is G ∞ 1D (G extra is already nite dimensional). Thus, approximating G ∞ app is equivalent to reducing G ∞ 1D to the nite-dimensional model denoted G N 1D . Model G N
app is consequently dened as follows:

G N app (s, ξ) = G N 1D (s, ξ) G extra (s). (11) 
Beforehand, an additional hypothesis is introduced regarding impedance Z l . Its value, very high in Table 1, may be set to innity without causing signicant deterioration of the model frequency response. With this assumption, κ(s) becomes κ(s) = s/c and G ∞ 1D can be rewritten as follows:

G ∞ 1D (s, ξ) = 1 s Z 0 Z 1 Z 0 + Z 1 c Z 0 sinh sξ c + cosh sξ c c 2 + Z 0 Z 1 c(Z 0 + Z 1 ) sinh sL c + cosh sL c . ( 12 
)
The approach used to approximate this model is based on Cauchy residues. First, the innite partial-fraction expansion (see [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF]) of s × G ∞ 1D is derived. This innite sum is then truncated to obtain a nite dimensional model. The truncation order is chosen to ensure an acceptable level of f it between the frequency response of s × G ∞ 1D and its nite dimensional approximation s × G N 1D .

Innite partial-fraction expansion of

s × G ∞ 1D .
Deriving the innite partial-fraction expansion of s × G ∞ 1D (s, ξ) requires the explicit expression of its poles p k :

p k = p 0 + j cπk L (k ∈ Z), with (13a) 
p 0 = c 2L ln c 2 + Z 0 Z 1 -c (Z 0 + Z 1 ) c 2 + Z 0 Z 1 + c (Z 0 + Z 1 ) . ( 13b 
)
The above expressions are valid for Z 0 > c and Z 1 > c, conditions which are satised here (see Table 1). Furthermore, all the poles of s × G ∞ 1D are simple, p k is the complex conjugate of p -k , and in particular, p 0 is real.

Using trigonometric relations, s × G ∞ 1D (s, ξ) can be expressed as

s × G ∞ 1D (s, ξ) = C   A(ξ) sinh ξ(s -p 0 ) c sinh L(s -p 0 ) c + B(ξ) cosh ξ(s -p 0 ) c sinh L(s -p 0 ) c    , (14) 
with

C = Z 0 Z 1 Z 0 + Z 1 1 c 2 + Z 0 Z 1 c(Z 0 + Z 1 ) cosh p 0 L c + sinh p 0 L c , A(ξ) = c Z 0 cosh ξp 0 c + sinh ξp 0 c and 
B(ξ) = c Z 0 sinh ξp 0 c + cosh ξp 0 c .
Based on the above expression and on the innite partial-fraction expansion given in [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF] (see also [6, Section 4.3 and Exercise 4.24]), the transfer function s × G ∞ 1D given by ( 12) is rewritten as follows, for every ξ ∈ [0, L):

s × G ∞ 1D (s, ξ) = a 0 (ξ) s -p 0 + +∞ k=1 a k (ξ) s -p k + a -k (ξ) s -p -k , (15) 
where the coecients a k (ξ) are the residues of

s × G ∞ 1D in p k , a k (ξ) = res(s × G ∞ 1D , p k ) = lim s→p k (s -p k )s × G ∞ 1D (s, ξ) = f (p k , ξ) g (p k ) ,
where f and g are respectively the numerator and denominator of s × G ∞ 1D (recall that all the poles of s × G ∞ 1D are simple). It is easy to check that a -k (ξ) is the complex conjugate of a k (ξ) and, in particular, that a 0 (ξ) is a real number. Consequently, s × G ∞ 1D , given by ( 15), can be expressed as

s × G ∞ 1D (s, ξ) = a 0 (ξ) s -p 0 + 2 ∞ k=1 s (a k (ξ)) -(p k a -k (ξ)) s 2 -2 (p k )s + |p k | 2 , (16) 
where (•) is the real part of a complex number. Remark 6. An analytical validation of expression ( 16) is provided in Appendix A, which explains in particular why the relation is not valid for ξ = L.

Reduced-order transfer function

s × G N 1D .
The transfer function s × G N 1D (s, ξ) of reduced order is designed to approximate the behavior of the system (12) on a predened range of frequencies. To construct this transfer function, expression [START_REF] Liu | Prediction of the acoustic eect of an interior trim porous material inside a rigid-walled car air cavity model[END_REF] is truncated up to a large enough order N 1. The following reduced-order transfer function is considered:

s × G N 1D (s, ξ) = a 0 (ξ) s -p 0 + 2 N k=1 s (a k (ξ)) -(p k a -k (ξ)) s 2 -2 (p k )s + |p k | 2 . ( 17 
)
The integer N is large enough so that the transfer function of reduced order matches the system [START_REF] Hull | Experimental verication of the nonself-adjoint state space duct model[END_REF] in a predened frequency range and for every ξ ∈ [0, Ξ] (with Ξ ∈ (0, L) given a priori).

Numerical validation of the nite order model.

The value of N is set to N = 20. Model G N 1D is consequently of order 2 (N + 1) = 42. 

f it = 100   1 - G ref -G 2,[ω-,ω+] G ref -E ω+ ω-(G ref ) 2,[ω-,ω+]   + . ( 18 
)
The notations in [START_REF] Loiseau | A robust feedback control design for broadband noise attenuation in a car cabin[END_REF] are the same as in [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF], and f + is the positive part of f . A f it value of 100 would mean a perfect match between the given model and the reference (in terms of frequency response). The f it indicator is indeed the R 2 -indicator, see [START_REF] Chicco | The coecient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation[END_REF] and references therein. Let us also mentioned that this indicator has also been used previously, for instance in [START_REF] Loiseau | Investigating achievable performances for robust broadband active noise control in an enclosure[END_REF][START_REF] Loiseau | A robust feedback control design for broadband noise attenuation in a car cabin[END_REF]. Figure 5 presents the f it indicator (dened by [START_REF] Loiseau | A robust feedback control design for broadband noise attenuation in a car cabin[END_REF] with

G ref = G ∞ 1D , G = G N 1D
, ω -= 10 2 Hz and ω + = 10 3 Hz, the frequency step used for the discretization, see Remark 3, is of 5.10 -2 Hz) obtained with respect to the position ξ. As in [START_REF] Boultifat | A parametrized reduced order model of 1D acoustic propagation system for robust spatial multi-point active noise attenuation[END_REF], a very close match between the nite-and innite-dimensional models is obtained. The degradation visible in Figure 5 for ξ values close to L is due, as expected, to the fact that equation ( 17) is not valid for ξ = L (see Remark 6). 

Experimental validation

To evaluate the performance of the proposed model, in this section, we compare it to the system identication approach. Thus, the black-box model is presented rst and then compared to the proposed approach.

Black-box model: G bb

This section deals with obtaining a black-box model able to reproduce the experimental response presented in Figure 3 (blue line) through identication. Dierent identication algorithms can be used for ANC applications. As detailed in [START_REF] Loiseau | Robust active noise control in a car cabin: Evaluation of achievable performances with a feedback control scheme[END_REF], ANC designers mainly use time approaches. In this paper, the identication should allow to match the frequency response of the reference model. The selected method is consequently based on a frequency approach and makes use of the subspace N4SID algorithm, see [START_REF] Van Overschee | Continuous-time frequency domain subspace system identication[END_REF]. This algorithm is non-iterative. It only requires the a priori model order and gives a full state space realization as a result. This algorithm has proven its eciency for previous ANC applications involving the LS2N Box, see [START_REF] Loiseau | Investigating achievable performances for robust broadband active noise control in an enclosure[END_REF][START_REF] Loiseau | Robust active noise control in a car cabin: Evaluation of achievable performances with a feedback control scheme[END_REF]. A possible alternative to the subspace method is using a prediction-error method that optimizes e.g. a model in a companion form. Although the number of decision variables is reduced, using the canonical companion statespace form, it is still high, and results of the prediction error method are not always satisfying. This problem is due to poor conditioning of the canonical form for high-order models, and the increased risk of getting local optima. The latter risk may be avoided by initializing the prediction error method with the result of the subspace method. However, the result, when acceptable, is not signicantly improved, indicating that the subspace method result is near optimal. The identication is conducted at the single reference position ξ = 0.8 m previously used to optimize the parameters of G ∞ app . The order of the identied model is 52, and its frequency validity range is [100-1000] Hz.

Parameterized gray-box and black-box models compared

Both the G N app and G bb models were identied using the experimental frequency response obtained at position ξ = 0.8 m. The comparison between the two models and the experimental data at this position is given in Figure 6a. Each model was also compared to the experimental data obtained at dierent positions: ξ = 0.9 m in Figure 6b and ξ = 0.4 m in Figure 6c. Given that G N app is parameterized with the position while G bb is not, only the former is able to predict the acoustic pressure at points relatively far from the microphone used for the identication stage. At each position ξ where experimental data were measured, a f it value was calculated for each model. The resulting evolution of the f it indicator according to the position ξ is given in Figure 7. This f it is the one given in [START_REF] Loiseau | A robust feedback control design for broadband noise attenuation in a car cabin[END_REF] with

G ref = G exp and G = G N app or G = G bb , [ω -, ω + ] = [100, 1000]
Hz. The frequency step, used for the discretization, is 5.10 -2 Hz.

At the reference position ξ = 0.8 m, G bb performs better than G N app . However, it is worse than G N app at positions ξ = 0.9 m and ξ = 0.4 m. These results are illustrated in Figure 7, which highlights that the identied model G bb performs better than G N app around the reference position, but rapidly (from 5.10 -2 m) weakens when moving away from this position. The f it values obtained with G N app also decrease when moving away from the reference position but remain acceptable, as seen in Figure 6c, which compares the experimental frequency response with the proposed model response at the position where the worst t value was obtained. This expected result can be summarized as follows: The identied model G bb is more accurate than the proposed model G N app at a precise position (especially for more complex geometries and boundary conditions), but fails to accurately reproduce the acoustic behavior in the cavity on a large spatial range because the position dependence is not mastered.

One may also note the anti-resonances of the model G N app , which are not present in the experimental response of the system. This dierence does not seem signicant in broadband applications because it only aects the frequencies where the gain of the system is relatively low. Optimized impedances that are purely real (see Remarks 1 and 4) can also relate to the anti-resonance frequency mismatch as noted in the experimental validation. In future works we will try to improve this part by adding new optimization parameters. After having compared the performances of the models, one may also be interested in comparison between the characteristics of the two models. This comparison is provided in Table 2. Although they are of similar order, the number of decision variables is completely dierent for G N app and G bb . Whereas G bb has a full state-space representation of order fty-two and all its parameters are manipulated by the subspace algorithm, G N app has only ve physical parameters (three impedances, the speed of sound, and the length of the cavity) plus nineteen parameters from the numerator and denominator of G extra to be optimized. Thus, the proposed model is parsimonious in terms of decision variables. Furthermore, G extra being a low-order transfer function, it does not introduce conditioning problems. Finally, whereas G N app masters the position dependence, G bb does not. Let us mention that increasing the number of decision variables in the black-box model, might not help to have a better t outside the reference position. Indeed, for this task, one shall do more measurements and perform an identication at all measurement points. While for the proposed model, the t can be increased by increasing N , this, up to some limit, which relies on how the one-dimensional wave equation well represent the wave equation set in the acoustic cavity. For complex geometries, obtaining G N app is not so easy, and relies on the computation of the eigenvalues of the Laplace operator. In the present paper, the elongated geometry of the LS2N cavity allows us to reduce our self to the one-dimensional wave equation, and G N 1D can be explicitly computed. Finally, let us also mention that obtaining G N app requires more analytical work than obtaining G bb .

Conclusion

The main contribution of this paper is that it proposes a nite-dimensional, low-order, and parameterized acoustic model of a cavity suitable for ANC applications. The resulting gray-box model allows one to accurately reproduce the dynamics at any position in the considered cavity. It is based on a basic one-dimensional acoustic propagation model and on a low-order transfer function that handles the actuator and sensor dynamics and the remaining model errors (mainly due to the one-dimensional assumption). The prediction performance of the proposed model was compared to a classical black-box model. The analysis highlighted that the proposed gray-box model can predict the acoustic behavior in a great range of positions, while the black-box model cannot.

The reason is that the gray-box model is parameterized by the position inside the cavity, while the black-box model is not. Finally, the strength of the proposed model resides in its numerical eciency and its analytic dependency on the position inside the cavity. It is suitable either to estimate the pressure signal with a single or restricted number of microphones at any position in the cavity or to design a controller aimed at attenuating the noise level in a whole subarea of the cavity. We can also deal with the problem of modeling obstacles within the study system, to be closer to practical cases. As mentioned at the end of Section 4, obtaining G N app for complex geometries might be a challenge. However, we think that for geometries close enough to cuboids, the methodology used in this paper could still be applied, provided that the one-dimensional wave equation is replaced by the three-dimensional one set in a cuboid.

Given z ∈ C \ jπZ, for n ∈ N large enough (n shall be such that z ∈ D n ), the Cauchy residue Theorem ensures that We easily conclude by the dominated convergence Theorem that, lim This concludes the proof.

Figure 1 :

 1 Figure 1: LS2N box.

Figure 2 :

 2 Figure 2: Scheme of the LS2N Box (top view), the height (z axis) measures 0.3 m. The thickness of the plywood is 2.10 -2 m and the one of the acrylic glass is 10 -2 m.

Figure 3 :

 3 Figure 3: Experimental frequency response G exp at ξ = 0.8 m.

  Figure 4 compares the frequency responses of G ∞ 1D and G N 1D for ξ = 0.8 m. The indicator used to evaluate the accuracy of the approximated model is denoted f it. This indicator quanties how the frequency response of a given model G matches the reference frequency response G ref , and is dened by

Figure 4 :Figure 5 :

 45 Figure 4: Frequency response of G ∞ 1D and G N 1D at ξ = 0.8 m (y = 0.125 m, z = 0.15 m).

  (a) ξ = 0.8 m. (b) ξ = 0.9 m. (c) ξ = 0.4 m.

Figure 6 :

 6 Figure 6: Experimental frequency responses (y = 0.125 m, z = 0.15 m).

Figure 7 :

 7 Figure 7: Evolution of the f it indicator according to ξ.
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 122222 k cos(kπζ) z 2 + (kπ)2 .Consequently, in order to prove the result, it is enough to show thatlim n→∞ ∂Dn g ζ (s) z -s ds = 0,for a particular choice of sequences (a n ) n and (b n ) n . For every n ∈ N * , we dene,X n = an -an g ζ (x -jb n ) z -x + jb n dx + -an an g ζ (x + jb n ) z -x -jb n dx, Y n = bn -bn g ζ (a n + jy) z -a n -jy dy + -bn bn g ζ (-a n + jy) z + a n -jy dy, so that ∂Dn g ζ (s) z -s ds = X n + jY n .Noticing that g ζ (-z) = -g ζ (z), we easily obtain thatX n = 2z an -an g ζ (x -jb n ) z 2 -(x -jb n ) 2 dx, Y n = 2z bn -bn g ζ (a n + jy) z 2 -(a n + jy) 2 dy.Let us chose a n = n and b n = nπ + π/2, we then have (recall that ζ ∈ [0, 1])|g ζ (x -jb n )| 2 = | cosh(ζx + jζ(n + 1/2)π)| 2 | sinh(x + j(n + 1/2)π)| 2 = sinh 2 (ζx) + cos 2 (ζ(n + 1/2)π) cosh 2 x 2 and |g ζ (a n + jy)| 2 = | cosh(ζn + jζy)| 2 | sinh(n + jy)| 2 = sinh 2 (ζn) + cos 2 (ζy) sinh 2 n + sin 2 y sinh 2 (ζn) + 1 sinh 2 We thus have, ∂Dn g ζ (s) z -s ds = |X n + jY n | (x -jb n ) (a n + jy) (x -jb n ) (a n + jy) 2 | dy .

2 +

 2 Thisensures the relation[START_REF] Loiseau | Robust active noise control in a car cabin: Evaluation of achievable performances with a feedback control scheme[END_REF].Let us now prove the equality[START_REF] Moreau | A review of virtual sensing algorithms for active noise control[END_REF].Let us rst observe that∂ f ζ (z) ∂ξ = sg ζ (z) for every z ∈ C \ jπZ.Observe also that f 0 (z) = 0. By the dominated convergence theorem, we can integrate term by term the sum appearing in[START_REF] Loiseau | Robust active noise control in a car cabin: Evaluation of achievable performances with a feedback control scheme[END_REF] to obtainf ζ (z) = ζ + 2s 2(kπ) 2 (-1) k kπ sin(kπζ).

Finally, by developing

  in Fourier series the 2-periodic function dened by ζ → ζ on (-1, 1), we obtain ζ = -2 ∞ k=1 (-1) k sin(kπζ) kπ (ζ ∈ [0, 1)).

Table 1 :

 1 Model-optimized parameters values. For the particle swarm optimization, we also optimize c and L. Indeed, the sound celerity depends on external physical parameters (such as temperature and humidity), and in the algorithm, we allow c to range in [330, 350] m/s. Similarly, since the considered cavity does not have a cuboid shape, we let L range in[1.15, 1.2] m (these two bounds are the minimal and maximal length of the considered cavity).

	Parameter	Value	
	Z l	6.70 × 10 12 m/s
	Z 0	8.00 × 10 6 m/s
	Z 1	1.08 × 10 3 m/s
	c	3.48 × 10 2 m/s
	L	1.175	m
	Remark 4.		

Table 2 :

 2 Experimentation models characteristics. As already mentioned, using a prediction error approach and a model in the companion form for G bb would reduce the number of decision variables, but would also introduce conditioning and optimization problems.

	G N app	G bb
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A Innite partial-fraction expansion of s × G ∞ 1D (s, ξ)

In order to obtain the expression ( 16) from [START_REF] Landau | Robust and adaptive feedback noise attenuation in ducts[END_REF], it is enough to show this results for the meromorphic functions

In fact, this follows from the changes of variables z = L(s -p 0 )/c and ζ = ξ/L, and the linearity of the residues.

More precisely, noticing that the set of zeros of sinh is jπZ, and noticing that

for every k ∈ Z, our aim is to prove the following lemma.

Lemma A.1. For every z ∈ C \ jπZ, we have

and

The proof of ( 19) is classical and similar to the innite partial fraction expansions given in [START_REF] Curtain | Transfer functions of distributed parameter systems: A tutorial[END_REF] (see also [START_REF] Curtain | An introduction to innite-dimensional linear systems theory[END_REF]Section 4.3]), and is given here for the sake of completeness. We however think that the proof of ( 20) is more tricky, and we did not nd similar computation in the literature.

Proof. Let us rst prove the equality (19).

Let us rst note that for every given z ∈ C \ jπZ and every k ∈ Z, we have