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Abstract

This paper focuses on acoustic modeling for active noise control applications. The desired
model must be �nite dimensional and e�cient numerically to meet implementation require-
ments. It also must be parameterized by the position considered inside the cavity. This
additional characteristic is desirable for addressing speci�c active noise control applications
such as optimizing microphone placement, estimating acoustic pressure at di�erent positions
of the considered cavity and �nally attenuating noise level in a subarea of the cavity.

The main contribution of this paper is to propose a �nite-dimensional, low-order, and
parameterized acoustic model of a cavity, suitable for active noise control applications. The
resulting model is de�ned as a gray box that combines a one-dimensional analytical model
of acoustic propagation, which handles the physical parameterization, and a black-box model
that copes with actuator and sensor dynamics as well as modeling errors. The parameters of
the proposed model are optimized in order to reproduce the frequency behavior of the real
system (LS2N active noise control platform) in a frequency range. This model allows one to
accurately reproduce the dynamics at any position in the considered cavity. The prediction
performance of the proposed model was compared to a classical black-box model (usually used
for active noise control applications) and validated experimentally using the LS2N active noise
control platform. The analysis highlighted that the proposed gray-box model can predict the
acoustic behavior in a great range of positions.

keywords: Position-dependent acoustic model, �nite-dimensional model, active noise control.

1 Introduction

Most control strategies used in active noise control (ANC) applications are based on an acoustic
model. Di�erent approaches to derive such model are available, each of them having its own
strengths and weaknesses.

Black-box identi�cation methods are probably the most commonly used. They are involved in
mono- and multipoint noise attenuation applications [21, 2, 3, 23, 13, 24] and in virtual microphones
designs [7, 20, 18, 6]. They generally involve �nite dimensional models that are e�cient numerically
(acceptable model order) with strong prediction performances. One should note, however, that
these models are only valid at particular positions in the cavity. The position of the microphone(s)
is not an explicit parameter of these models. Consequently, black-box acoustic models do not allow
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noise attenuation or estimation continuously in a whole volume of a cavity, but only at speci�c
positions.

An alternative to black-box identi�cation is the gray-box approach based on the wave equation.
The resulting models involve physical parameters [8, 26], and describe acoustic behavior inside the
cavity, not only at particular positions. Analytical models obtained from the wave equation are
in�nite dimensional and generally need to be approximated with �nite-dimensional models for use
in ANC applications. They can only be derived for systems with simple geometries and boundary
conditions. If the analytical approach fails, one can still solve the wave equation numerically
using, for instance, �nite di�erences or �nite elements methods. However, the resulting models
usually involve numerous parameters. For all these reasons, models derived from analytical and
numerical solutions of the wave equation are of limited use in ANC applications [10, 14, 1]. The
particularity of the methodology proposed in this paper, when compared to previous works, lies in
the fact that it takes advantage of both black and gray-box approaches to provide a cavity acoustic
model that is suitable for ANC applications [22, 29, 15]. That is a �nite-dimensional, low-order and
parameterized model. The later is de�ned as a gray box that combines a one-dimensional analytical
model of acoustic propagation, which handles the physical parameterization and a black-box model
that copes with actuator and sensor dynamics as well as modeling errors. The parameters of the
proposed model are optimized in order to reproduce the frequency behavior of the real system
(LS2N active noise control platform) in a frequency range, with good prediction performances. In
addition to these features, the proposed acoustic model also relies on a physical parameterization
(speed of sound, impedances and microphone position) and, in this sens, it is di�erent from the
models proposed in other works as for instance in [15]. In this paper, a SEA (Statistical Energy
Analysis) model is proposed where the structural and acoustic coupling system is divided into
several subsystems, and the power balance equations are used to describe the entire system. Note
that such a strategy will not lead to a position dependent model, unlike the approach proposed in
the current paper, which is less suitable for addressing issues related to noise attenuation (control)
and noise estimation in the entire volume of a cavity.

This model could also be used to optimize microphones positions depending on estimation
and control objectives or, alternatively, to estimate online the microphones positions in case they
slightly change during operation. These ANC applications can be seen as perspectives of the
present paper, which only focuses on the acoustic modelling stage.

The paper is organized as follows: Section 2 presents the ANC platform used for model valida-
tion. Section 3 then outlines the proposed methodology, while Section 4 deals with the validation
of the methodology and its comparison with the system-identi�cation-based approach. Results and
contributions are summarized in the conclusion.

2 Experimental setup: LS2N Box

As mentioned in the introduction, the proposed methodology is applied and validated on an ANC
experimental platform. This demonstrator is presented in Figure 1. It consists of a rectangular
cavity made of plywood, except for the top, which is composed of acrylic glass. It is instrumented
with three speakers and up to �ve microphones.

In this paper, only one microphone and one speaker are used (as shown in Figure 2) for mea-
suring useful system frequency responses. As depicted in Figure 2, ξ designates the position along
the longest axis of the LS2N Box.

The system whose behavior must be captured by the proposed model is the transfer function
between the speaker input signal and the microphone (placed at any position in the cavity) output
signal.
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Figure 1: LS2N box.
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Figure 2: Scheme of the LS2N Box (top view), the height (z axis) measures 30 cm.

Figure 3 illustrates three typical frequency responses (denoted Gexp) of this system (measured
in the same y-z plane). The signi�cant number of modes below 1000 Hz makes the demonstrator a
relevant test bench for ANC applications. The superposition of the three responses in low frequency
indicates that the acoustic �eld can be considered one-dimensional in low frequency (below 600 Hz).
This result was expected because the �rst cross section modes in y- and z-direction cut on at 680 Hz
and 566 Hz, respectively.

Figure 3: Experimental frequency response Gexp at ξ = 0.8 m.

3 Model synthesis

The proposed modeling approach is presented in three steps. The model structure is �rst outlined.
Next, the parameters of the proposed model are optimized to �t the experimental response of
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the system. Finally, the resulting in�nite-dimensional model, G∞app, is approximated by a �nite-
dimensional model, GNapp, which is the proposed acoustic model for ANC.

3.1 Structure of the mixed model of in�nite order: G∞
app

The objective of the G∞app model presented in this section is to reproduce the above-mentioned
experimental response. This experimental response is composed of the acoustic response of the
system, along with the sensor and actuator dynamics. As Figure 3 demonstrates, the acoustic
behavior is mainly one dimensional. Note also that there are di�erent applications for which the
system is in the form of a cavity for which the one-dimensional model behave nearly like the three-
dimensional model, especially at low frequencies, so that it can be used in the context of ANC.
This is particularly the case, to a certain extent, with the passenger compartment of a mobile
device such as car, trains, airplanes. . . Thus, the proposed structure for G∞app is as follows:

G∞app(s, ξ) = G∞1D(s, ξ)Gextra(s). (1)

In this expression, G∞1D(s, ξ) is a one dimensional acoustic model, while Gextra(s) is a transfer
function (independent of the position) introduced to handle the speaker and microphone dynamics
and the potential modeling errors caused by the strong hypothesis made during the construction
of G∞1D. Both parts of the model are further explained below.

3.1.1 Acoustic part: G∞1D

The analytical model G∞1D is based on the following one-dimensional wave equation:

∂2 p

∂t2
(t, ξ) = c2

∂2 p

∂ξ2
(t, ξ)− 1

Zl

∂ p

∂t
(t, ξ) (ξ ∈ (0, L), t > 0), (2)

with the following boundary conditions (at ξ = 0 and ξ = L) [27, 28, 11, 19]:

∂ p

∂ξ
(t, 0) =

1

Z0

∂ p

∂t
(t, 0), (t > 0), (3a)

∂ p

∂ξ
(t, L) = − 1

Z1

∂ p

∂t
(t, L) + u(t), (t > 0). (3b)

In these expressions, p is the pressure; ξ is the position along the main axis of the cavity; c is
the speed of sound; Z0 is the impedance at position ξ = 0; Zl is the impedance for every ξ ∈ (0, L);
Z1 is the impedance at position ξ = L; and u(t) is the signal applied by the speaker, which is
positioned at ξ = L. The numerical value L equals 1.175 m.

Remark 1. In the rest of this paper, we assume that the acoustic impedances Z0, Z1 and Zl are
constant and independent of the frequency of excitation. We also recall that acoustic impedances
are usually complex numbers. Its imaginary part re�ects to the �exibility of the boundary, while its
real part re�ects the damping (see e.g. [19, � 6.6]). Let us also recall that the boundary of the cavity
are made of wood and of acrylic glass (on the top), hence it seems reasonable that the boundaries
of the cavity are rigid. This assumption leads to the fact that the these impedances are real. In
addition, since acrylic glass is more re�ective than wood, it is also expected that Zl is larger than
Z0 and Z1. All these facts will be con�rmed in Table 1, where we give values of these parameters,
see also Remark 6.
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The resulting analytical transfer function G∞1D from u to p is derived by applying the Laplace
transform in time to (2) and (3) (initial conditions are assumed to be zero). This approach leads
to the following equations where p̄ and ū denote the Laplace transforms of p and u, respectively,
and where s is the Laplace variable:(

s2 +
s

Zl

)
p̄(s, ξ) = c2

∂ p̄

∂ξ2
(s, ξ) (ξ ∈ (0, L)), (4)

∂p̄(s, 0)

∂ξ
=

s

Z0
p̄(s, 0), (5a)

∂p̄(s, L)

∂ξ
= − s

Z1
p̄(s, L) + ū(s). (5b)

The general solution of (4) is of the form:

p̄(s, ξ) = A(s) sinh (κ(s)ξ) + B(s) cosh (κ(s)ξ) . (6)

In this expression, κ(s) is de�ned as follows:

κ(s) =
1

c

√
s2 +

s

Zl
. (7)

While the coe�cients A(s) and B(s) are obtained when applying boundary constraints (5a)
and (5b):

A(s) =
ū(s)(

κ(s) +
Z0κ(s)

Z1

)
cosh (κ(s)L) +

(
s

Z1
+
Z0κ

2(s)

s

)
sinh(κ(s)L)

,

B(s) =

Z0κ(s)

s
ū(s)(

κ(s) +
Z0κ(s)

Z1

)
cosh (κ(s)L) +

(
s

Z1
+
Z0κ

2(s)

s

)
sinh(κ(s)L)

.

It �nally leads to the following transfer function:

G∞1D(s, ξ) =
p̄(s, ξ)

ū(s)
=

sinh (κ(s)ξ) +
Z0κ(s)

s
cosh (κ(s)ξ)(

κ(s) +
Z0κ(s)

Z1

)
cosh (κ(s)L) +

(
s

Z1
+
Z0κ

2(s)

s

)
sinh(κ(s)L)

. (8)

This transfer function reproduces only the acoustic behavior. It is parameterized with three
impedances (Z0, Z1 and Zl), the speed of sound c, and the length of the cavity L (whose val-
ues are taken from Table 1).

Remark 2. One can easily con�rm that the relation (8) is independent of the choice of the complex
root determination made in (7). Indeed, let us set (s2+s/Zl)/c

2 = ρeiθ, with ρ ∈ R+ and θ ∈ R. It
is well-known that

√
ρeiθ = exp(ln(ρeiθ)/2), but, the ln function is not de�ned on the whole complex

plane. However, whatever the choice of determination is, we have ln eiθ ∈ {i(θ + 2kπ) | k ∈ Z}.
Hence, we have,

√
ρeiθ ∈ {−√ρeiθ/2,√ρeiθ/2}. Injecting these two possibilities in (8), leads to the

same expression, i.e., G∞1D in independent of the root determination used to de�ne κ.

Remark 3. One may note that the simple geometry of the considered ANC platform simpli�es the
obtaining of the position-dependent part of the model. For more complex geometry this step of the
methodology will be more challenging.
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3.1.2 Extra part: Gextra

As mentioned previously the extra part of the model Gextra represents the speaker and microphone
dynamics and the potential model errors. In this paper, its order is set to 10 (i.e. slightly higher
than typical speaker and microphone models, both of which are order 3 and only valid in low
frequency [12]). This order can be adjusted if necessary (e.g., according to the frequency range
considered).

3.2 Model parameters optimization

Once the structure of the model is de�ned, all the model's parameters (Z0, Z1, Zl, c, L, and the
numerator and denominator coe�cients of Gextra) are optimized to �t the experimental frequency
response of the system Gexp. The optimized criterion J is given by:

J =

∥∥Gexp(·, ξr)−G∞app(·, ξr)∥∥2,[ω−,ω+]∥∥Gexp(·, ξr)− E
ω+
ω− (Gexp(·, ξr))

∥∥
2,[ω−,ω+]

. (9)

In this expression, ω− and ω+ are respectively the lower and upper pulsations of the considered
frequency range. In addition, the average E

ω+
ω− and the norm ‖·‖2,[ω−,ω+] are respectively de�ned by

Eω+
ω−(f) =

∫ ω+

ω−

f(jω) dω and ‖f‖2,[ω−,ω+] =

(∫ ω+

ω−

|f(jω)|2 dω

)1/2

. (10)

Remark 4. Only discretized expressions of the average E
ω+
ω− and the norm ‖ · ‖2,[ω−,ω+] given

by (10) will be used in the sequel.

The optimization of G∞app is carried out using the experimental frequency response Gexp (pre-
sented in Figure 3 [blue line, y = 0.125 and z = 0.15]) obtained at a single reference position
ξr = 0.8 m and over the frequency range ω ∈ [ω−, ω+] = 2π[100, 1000] rad/s. The frequency step,
used for the discretization (see Remark 4), is 0.3 Hz.

Remark 5. If desired, one could consider an optimization with several (or even a range of)
reference positions. In that event, ξr would be a vector (or, respectively a range) and the criterion
would be de�ned as the maximum of J over ξr.

Several gradient-based and metaheuristic optimization methods were tested unsuccessfully.
This is due either to an unsatisfactory performance or a high number of decison variables. The
well-known Particle Swarm Optimization (PSO) methaheuristic [9, 26] seems, however, to yield
satisfactory results. The values of the parameters of G∞app after PSO optimization are given in
Table 1.

Parameter Value

Zl 6.70× 1012 m/s
Z0 8.00× 106 m/s
Z1 1.08× 103 m/s
c 3.48× 102 m/s
L 1.175 m

Table 1: Model-optimized parameters values.
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Remark 6. For the particle swarm optimization, we also optimize c and L. Indeed, the sound
celerity is depends on external physical parameters (such as temperature and humidity), and in the
algorithm, we allow c to range in [330, 350] m/s. Similarly, since the considered cavity does not
have a cuboid shape, we let L range in [1.15, 1.2]m (these two bounds are the minimal and maximal
length of the considered cavity).
In addition, as mentioned in Remark 1, the impedances are complex numbers. We did the opti-
mization with complex impedances, and get a tiny imaginary part (of order 10−1). We hence decide
to neglect it. This is in accordance with the fact that the boundaries of the cavity are rigid. In
addition, as expected in Remark 1, we observe that Zl > max{Z0, Z1}, and latter, we will consider
that Zl = ∞, that is to say that the acrylic glass boundary is perfectly re�ective (see e.g. [28,
� III.B]).

Remark 7. The unit of Zl, Z0 and Z1 does not correspond to that of an impedance. In fact, Zl

(and similarly Z0 and Z1) is of the form Zl =
Z
′
l

ρ , where ρ is the air density, and Z
′

l is an impedance

whose unit is kg.m−2.s−1.

3.3 Reduced-order model: GN
app

The optimization of the model parameters was conducted on in�nite-dimensional model G∞app. It is
now necessary to approximate this model by a �nite-dimensional model denoted GNapp. The in�nite-
dimensional component of G∞app is G

∞
1D (Gextra is already �nite dimensional). Thus, approximating

G∞app is equivalent to reducing G∞1D to the �nite-dimensional model denoted GN1D. Model GNapp is
consequently de�ned as follows:

GNapp(s, ξ) = GN1D(s, ξ)Gextra(s). (11)

Beforehand, an additional hypothesis is introduced regarding impedance Zl. Its value, very high
in Table 1, may be set to in�nity without causing signi�cant deterioration of the model frequency
response. With this assumption, κ(s) becomes κ(s) = s/c and G∞1D can be rewritten as follows:

G∞1D(s, ξ) =
1

s

Z0Z1

(
c

Z0
sinh

sξ

c
+ cosh

sξ

c

)
(Z0 + Z1)

(
c2 + Z0Z1

c(Z0 + Z1)
sinh

sL

c
+ cosh

sL

c

) . (12)

The approach used to approximate this model is based on Cauchy residues. First, the in�nite
partial-fraction expansion (see [4]) of s × G∞1D is derived. This in�nite sum is then truncated to
obtain a �nite dimensional model. The truncation order is chosen to ensure an acceptable level of
fit between the frequency response of s×G∞1D and its �nite dimensional approximation s×GN1D.

3.3.1 In�nite partial-fraction expansion of s×G∞1D
Deriving the in�nite partial-fraction expansion of s×G∞1D(s, ξ) requires the explicit expression of
its poles pk:

pk = p0 + j
cπk

L
(k ∈ Z). (13)

The coe�cient p0 appearing in (13) is given by

p0 =
c

2L
ln

(
c2 + Z0Z1 − c (Z0 + Z1)

c2 + Z0Z1 + c (Z0 + Z1)

)
.
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The above expressions are valid for Z0 > c and Z1 > c, conditions which are satis�ed here (see
Table 1). Furthermore, all the poles of s × G∞1D are simple, pk is the complex conjugate of p−k,
and in particular, p0 is real.

Using trigonometric relations, s×G∞1D(s, ξ) can be expressed as

s×G∞1D(s, ξ) = C

A(ξ)
sinh

ξ(s− p0)

c

sinh
L(s− p0)

c

+B(ξ)
cosh

ξ(s− p0)

c

sinh
L(s− p0)

c

 , (14)

with

C =
Z0Z1

(Z0 + Z1)

(
c2 + Z0Z1

c(Z0 + Z1)
cosh

p0L

c
+ sinh

p0L

c

) ,
A(ξ) =

c

Z0
cosh

ξp0
c

+ sinh
ξp0
c

and

B(ξ) =
c

Z0
sinh

ξp0
c

+ cosh
ξp0
c
.

Based on the above expression and on the in�nite partial-fraction expansion given in [4] (see also
[5, Section 4.3 and Exercise 4.24]), the transfer function s × G∞1D given by (12) is rewritten as
follows, for every ξ ∈ [0, L):

s×G∞1D(s, ξ) =
a0(ξ)

s− p0
+

+∞∑
k=1

(
ak(ξ)

s− pk
+

a−k(ξ)

s− p−k

)
, (15)

where the coe�cients ak(ξ) are the residues of s×G∞1D in pk,

ak(ξ) = res(s×G∞1D, pk) = lim
s→pk

(s− pk)s×G∞1D(s, ξ) =
f(pk, ξ)

g′(pk)
,

where f and g are respectively the numerator and denominator of s×G∞1D (recall that all the poles
of s × G∞1D are simple). It is easy to check that a−k(ξ) is the complex conjugate of ak(ξ) and, in
particular, that a0(ξ) is a real number. Consequently, s×G∞1D, given by (15), can be expressed as

s×G∞1D(s, ξ) =
a0(ξ)

s− p0
+ 2

∞∑
k=1

s<(ak(ξ))−<(pka−k(ξ))

s2 − 2<(pk)s+ |pk|2
, (16)

where <(·) is the real part of a complex number.

Remark 8. An analytical validation of expression (16) is provided in Appendix A, which explains
in particular why the relation is not valid for ξ = L.

3.3.2 Reduced-order transfer function s×GN1D
The transfer function s × GN1D(s, ξ) of reduced order is designed to approximate the behavior
of the system (12) on a prede�ned range of frequencies. To construct this transfer function,
expression (16) is truncated up to a large enough order N > 1. The following reduced-order
transfer function is considered:

s×GN1D(s, ξ) =
a0(ξ)

s− p0
+ 2

N∑
k=1

s<(ak(ξ))−<(pka−k(ξ))

s2 − 2<(pk)s+ |pk|2
. (17)

The integerN is large enough so that the transfer function of reduced order matches the system (12)
in a prede�ned frequency range and for every ξ ∈ [0,Ξ] (with Ξ ∈ (0, L) given a priori).
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3.3.3 Numerical validation of the �nite order model

The value of N is set to N = 20. Model GN1D is consequently of order 2 (N + 1) = 42. Figure 4
compares the frequency responses of G∞1D and GN1D for ξ = 0.8 m.

The indicator used to evaluate the accuracy of the approximated model is denoted fit. This
indicator quanti�es how the frequency response of a given model Ĝ matches the reference frequency
response Gref .

fit = max

0, 100

1−

∥∥∥Gref − Ĝ∥∥∥
2,[ω−,ω+]∥∥Gref − E

ω+
ω− (Gref )

∥∥
2,[ω−,ω+]


 . (18)

The notations in (18) are the same as in (10). A fit value of 100 would mean a perfect match
between the given model and the reference (in terms of frequency response).

Figure 5 presents the fit indicator (de�ned by (18) with Gref = G∞1D, Ĝ = GN1D and [ω−, ω+] =
2π [100, 1000] rad/s, the frequency step used for the discretization, see Remark 4, is of 0.1 rad/s)
obtained with respect to the position ξ. As in [1], a very close match between the �nite- and
in�nite-dimensional models is obtained. The degradation visible in Figure 5 for ξ values close to L
is due, as expected, to equation (17), which is not valid for ξ = L (see Remark 8).

Figure 4: Frequency response of G∞1D and GN1D at ξ = 0.8 m (y = 0.125 m, z = 0.15 m).

4 Experimental validation

To evaluate the performance of the proposed model, in this section, we compare it to the system
identi�cation approach. Thus, the black-box model is presented �rst and then compared to the
proposed approach.

4.1 Black-box model: Gbb

This section deals with obtaining a black-box model able to reproduce the experimental response
presented in Figure 3 (blue line) through identi�cation. Di�erent identi�cation algorithms can be
used for ANC applications. As detailed in [17], ANC designers mainly use time approaches. In this
paper, the identi�cation should allow to match the frequency response of the reference model. The
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(m)

Figure 5: Fit indicator value between G∞1D and GN1D according to ξ.

selected method is consequently based on a frequency approach and makes use of the subspace
N4SID algorithm [25]. This algorithm is non-iterative. It only requires the a priori model order and
gives a full state space realization as a result. This algorithm has proven its e�ciency for previous
ANC applications involving the LS2N Box [17, 16]. A possible alternative to the subspace method
is using a prediction-error method that optimizes e.g. a model in a companion form. Although
the number of decision variables is reduced, using the canonical companion state-space form, it is
still high, and results of the prediction error method are not always satisfying. This problem is
due to poor conditioning of the canonical form for high-order models, and the increased risk of
getting local optima. The latter risk may be avoided by initializing the prediction error method
with the result of the subspace method. However, the result, when acceptable, is not signi�cantly
improved, indicating that the subspace method result is near optimal.

The identi�cation is conducted at the single reference position ξ = 0.8 m previously used to
optimize the parameters of G∞app. The order of the identi�ed model is 52, and its frequency validity
range is [100-1000] Hz.

4.2 Parameterized gray-box and black-box models compared

Both the GNapp and Gbb models were identi�ed using the experimental frequency response obtained
at position ξ = 0.8 m. The comparison between the two models and the experimental data at this
position is given in Figure 6a. Each model was also compared to the experimental data obtained
at di�erent positions: ξ = 0.9 m in Figure 6b and ξ = 0.4 m in Figure 6c. Given that GNapp is
parameterized with the position while Gbb is not, only the former is able to predict the acoustic
pressure at points relatively far from the microphone used for the identi�cation stage. At each
position ξ where experimental data were measured, a fit value was calculated for each model. The
resulting evolution of the fit indicator according to the position ξ is given in Figure 7. This fit is
the one given in (18) with Gref = Gexp and Ĝ = GNapp or Ĝ = Gbb, [ω−, ω+] = 2π [100, 1000] rad/s.
The frequency step, used for the discretization, is 0.3 rad/s.

At the reference position ξ = 0.8 m, Gbb performs better than GNapp. However, it is worse
than GNapp at positions ξ = 0.9 m and ξ = 0.4 m. These results are illustrated in Figure 7, which
highlights that the identi�ed model Gbb performs better than GNapp around the reference position,
but rapidly (from 5 cm) weakens when moving away from this position. The fit values obtained
with GNapp also decrease when moving away from the reference position but remain acceptable, as
seen in Figure 6c, which compares the experimental frequency response with the proposed model
response at the position where the worst �t value was obtained. This expected result can be
summarized as follows: The identi�ed model Gbb is more accurate than the proposed model GNapp
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(a) ξ = 0.8 m. (b) ξ = 0.9 m.

(c) ξ = 0.4 m.

Figure 6: Experimental frequency responses (y = 0.125 m, z = 0.15 m).

(m)

Figure 7: Evolution of the fit indicator according to ξ.

at a precise position (especially for more complex geometries and boundary conditions), but fails
to accurately reproduce the acoustic behavior in the cavity on a large spatial range because the
position dependence is not mastered.
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One may also note the antiresonances of the model GNapp, which are not present in the experi-
mental response of the system. This di�erence does not seem signi�cant in broadband applications
because it a�ects only the frequencies where the gain of the system is relatively low. Optimized
impedances that are purely real (see Remarks 1 and 6) can also relate to the antiresonance fre-
quency mismatch as noted in the experimental validation. In future works we will try to improve
this part by adding new optimization parameters.

After having compared the performances of the models, one may also be interested in com-
parisons between the characteristics of the two models. This comparison is provided in Table 2.
Although they are of similar order, the number of decision variables is completely di�erent for GNapp
and Gbb. Whereas Gbb has a full state-space representation of order �fty-two and all its param-
eters are manipulated by the subspace algorithm, GNapp has only �ve physical parameters (three
impedances, the speed of sound, and the length of the cavity) plus nineteen parameters from the
numerator and denominator of Gextra to be optimized. Thus, the proposed model is parsimonious
in terms of decision variables. Furthermore, Gextra being a low-order transfer function, it does
not introduce conditioning problems. Finally, whereas GNapp masters the position dependence, Gbb
does not.

GNapp Gbb

Order 52 52
Number of decision variables (5+19=) 24 2808
Parameters with physical meaning Partially No
Explicit position dependence Yes No

Table 2: Experimentation models characteristics.

Remark 9. As already mentioned, using a prediction error approach and a model in the companion
form for Gbb would reduce the number of decision variables, but would also introduce conditioning
and optimization problems.

Let us mention that increasing the number of decision variables in the black-box model, might
not help to have a better �t outside the reference position. Indeed, for this task, one shall do more
measurements and perform an identi�cation at all measurement points. While for the proposed
model, the �t can be increased by increasing N , this, up to some limit, which relies on how the
one-dimensional wave equation well represent the wave equation set in the acoustic cavity. For
complex geometries, obtaining GNapp is not so easy, and relies on the computation of the eigenvalues
of the Laplace operator. In the present paper, the elongated geometry of the LS2N cavity allows
us to reduce our self to the one-dimensional wave equation, and GN1D can be explicitly computed.
Finally, Let us also mention that obtaining GNapp requires more analytical work than obtaining Gbb.

5 Conclusion

The main contribution of this paper is that it proposes a �nite-dimensional, low-order, and param-
eterized acoustic model of a cavity suitable for ANC applications. The resulting gray-box model
allows one to accurately reproduce the dynamics at any position in the considered cavity. It is
based on a basic one-dimensional acoustic propagation model and on a low-order transfer function
that handles the actuator and sensor dynamics and the remaining model errors (mainly due to the
one-dimensional assumption). The prediction performance of the proposed model was compared
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to a classical black-box model. The analysis highlighted that the proposed gray-box model can
predict the acoustic behavior in a great range of positions, while the black-box model cannot.
The reason is that the gray-box model is parameterized by the position inside the cavity, while
the black-box model is not. Finally, the strength of the proposed model resides in its numerical
e�ciency and its analytic dependency on the position inside the cavity.

It is suitable either to estimate the pressure signal with a single or restricted number of micro-
phones at any position in the cavity or to design a controller aimed at attenuating the noise level
in a whole subarea of the cavity.
We can also deal with the problem of modeling obstacles within the study system, to be closer
to practical cases. As example, to model the interior of a car (e.g. seats...), one could consider
a parameter dependent impedance Zl, along of LS2N cavity. When adding obstacles inside the
acoustic cavity, building an observer can also help to have a better prediction of the behavior
system with respect to the space variable.
As mentioned at the end of Section 4, obtaining GNapp for complex geometries might be a chal-
lenge. However, we think that for geometries close enough to cuboids, the methodology used in
this paper could still be applied, provided that the one-dimensional wave equation is replaced by
the three-dimensional one set in a cuboid.
These issues constitute some perspectives of the present paper.

A In�nite partial-fraction expansion of s×G∞1D(s, ξ)
In order to obtain the expression (16) from (14), it is enough to show this results for the meromor-
phic functions fζ(z) = sinh(ζz)

sinh z and gζ(z) = cosh(ζz)
sinh z , with ζ ∈ [0, 1]. In fact, this follows from the

changes of variables z = L(s− p0)/c and ζ = ξ/L, and the linearity of the residues.
More precisely, noticing that the set of zeros of sinh is {jkπ, k ∈ Z}, and noticing that

res(fζ , jkπ) = (−1)kj sin(kπζ) and res(gζ , jkπ) = (−1)k cos(kπζ),

our aim is to prove the following lemma.

Lemma A1. For every z ∈ C \ {jkπ, k ∈ Z}, we have

gζ(z) =
1

z
+ 2z

∞∑
k=1

(−1)k cos(kπζ)

z2 + (kπ)2
(ζ ∈ [0, 1]), (19)

and

fζ(z) = 2

∞∑
k=1

(−1)k+1kπ sin(kπζ)

z2 + (kπ)2
(ζ ∈ [0, 1)). (20)

Proof. Let us �rst prove the equality (19).
Let us �rst note that for every given z ∈ C \ jπZ and every k ∈ Z, we have

res

(
gζ(·)
z − ·

, jkπ

)
=

(−1)k cos(kπζ)

z − jkπ
and res

(
gζ(·)
z − ·

, z

)
= −gζ(z).

Let (an)n∈N∗ and (bn)n∈N∗ be two sequences of real positive numbers, such that bn /∈ πZ and
lim
n→∞

an = lim
n→∞

bn =∞. We de�ne

Dn = {x+ jy | (x, y) ∈ [−an, an]× [−bn, bn]} and Cn = ∂Dn.
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Given z ∈ C \ {jkπ, k ∈ Z}, for n ∈ N large enough (n shall be such that z ∈ Dn), the Cauchy
residue Theorem ensures that

1

2jπ

∮
Cn

gζ(s)

z − s
ds = −gζ(z) +

∑
k∈Z
|kπ|<bn

(−1)k cos(kπζ)

z − jkπ
= −gζ(z) +

1

z
+ 2

∑
k∈N∗
kπ<bn

(−1)k cos(kπζ)

z2 + (kπ)2
.

Consequently, in order to prove the result, it is enough to show that

lim
n→∞

∮
Cn

gζ(s)

z − s
ds = 0,

for a particular choice of sequences (an)n and (bn)n. For every n ∈ N∗, we de�ne,

Xn =

∫ an

−an

gζ(x− jbn)

z − x+ jbn
dx+

∫ −an
an

gζ(x+ jbn)

z − x− jbn
dx and

Yn =

∫ bn

−bn

gζ(an + jy)

z − an − jy
dy +

∫ −bn
bn

gζ(−an + jy)

z + an − jy
dy,

so that
∮
Cn

gζ(s)

z − s
ds = Xn + jYn. Noticing that gζ(−z) = −gζ(z), we easily obtain that

Xn = 2z

∫ an

−an

gζ(x− jbn)

z2 − (x− jbn)2
dx and Yn = 2z

∫ bn

−bn

gζ(an + jy)

z2 − (an + jy)2
dy.

Let us chose an = n and bn = nπ + π/2, we then have (recall that ζ ∈ [0, 1])

|gζ(x− jbn)|2 =
| cosh(ζx+ jζ(n+ 1/2)π)|2

| sinh(x+ j(n+ 1/2)π)|2
=

sinh2(ζx) + cos2(ζ(n+ 1/2)π)

cosh2 x
6 2 and

|gζ(an + jy)|2 =
| cosh(ζn+ jζy)|2

| sinh(n+ jy)|2
=

sinh2(ζn) + cos2(ζy)

sinh2 n+ sin2 y
6

sinh2(ζn) + 1

sinh2 n
6 2.

We thus have,

∣∣∣∣∮
Cn

gζ(s)

z − s
ds

∣∣∣∣ = |Xn + jYn| 6 2
√

2|z|

(∫ an

−an

1

|z2 − (x− jbn)2|
dx+

∫ bn

−bn

1

|z2 − (an + jy)2|
dy

)

6 2
√

2|z|
(∫ +∞

−∞

1

|z2 − (x− jbn)2|
dx+

∫ +∞

−∞

1

|z2 − (an + jy)2|
dy

)
.

We easily conclude by the dominated convergence Theorem that, lim
n→∞

∮
Cn

gζ(s)

z − s
ds = 0. This

ensures the relation (19).

Let us now prove the equality (20).

Let us �rst observe that
∂ fζ(z)

∂ξ
= sgζ(z) for every z ∈ C \ jπZ. Observe also that f0(s) = 0. By

the dominated convergence theorem, we can integrate term by term the sum appearing in (19) to
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obtain

fζ(s) = ζ + 2s2
∞∑
k=1

(−1)k

s2 + (kπ)2

∫ ζ

0

cos(kπx) dx

= ζ + 2s2
∞∑
k=1

(−1)k

s2 + (kπ)2
sin(kπζ)

kπ

= ζ + 2

∞∑
k=1

(
1

(kπ)2
− 1

s2 + (kπ)2

)
(−1)kkπ sin(kπζ).

Finally, by developing in Fourier series the 2-periodic function de�ned by ζ 7→ ζ on (−1, 1), we
obtain

ζ = −2

∞∑
k=1

(−1)k sin(kπζ)

kπ
(ζ ∈ [0, 1)).

This concludes the proof.
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