

Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens

Inès Sahraoui, Sondes Melliti Ben Garali, Zoubaida Chakroun, Catherine Gonzalez, Asma Sakka Hlaili, Olivier Pringault

To cite this version:

Inès Sahraoui, Sondes Melliti Ben Garali, Zoubaida Chakroun, Catherine Gonzalez, Asma Sakka Hlaili, et al.. Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens. Ecotoxicology, 2022, 31, pp.700-716. 10.1007/s10646-022-02535-5. hal-03619663

HAL Id: hal-03619663 <https://hal.science/hal-03619663v1>

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens

Inès Sahraoui, Sondes Melliti Ben Garali, Zoubaida Chakroun, Catherine Gonzalez, Olivier Pringault, Asma Sakka Hlaili

To cite this version:

Inès Sahraoui, Sondes Melliti Ben Garali, Zoubaida Chakroun, Catherine Gonzalez, Olivier Pringault, et al.. Monoculture and co-culture tests of the toxicity of four typical herbicides on growth, photosynthesis and oxidative stress responses of the marine diatoms Pseudo-nitzschia mannii and Chaetoceros decipiens. Ecotoxicology, Springer Verlag, In press, $10.1007 \div 10646 - 022 - 02535 - 5$. hal-03619663

HAL Id: hal-03619663 <https://hal.archives-ouvertes.fr/hal-03619663>

Submitted on 30 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Abstract

 The toxicity of four herbicides in mixture (alachlor, diuron, des-isopropyl-atrazine and simazine) on the growth and the photosynthesis parameters of two marine diatoms *Pseudo- niszchia mannii* and *Chaetoceros decipiens* have been investigated for 9 days in monoculture and co-culture tests. The catalase (CAT) and guaiacol peroxidase (GPX) were also monitored to assess the oxidative stress response. In single-species assays, while both species displayed 36 no affected instantaneous growth rate by herbicides, their physiological responses were different. Chl *a* content of *P. mannii* significantly decreased upon herbicide exposure, due probably to pigment destruction or inhibition of their synthesis. This decrease was associated 39 with a reduction in the chlorophyll fluorescence parameters $(ABS_0/RC, TR_0/RC, ET_0/RC, and$ DI0/RC). In contrast, *C. decipiens* maintained an effective photosynthetic performance under herbicide exposure, as Chl *a* per cell content and the specific energy fluxes per reaction center 42 remained unchanged relative to control values. GPX activity was significantly higher in contaminated *P. mannii* and *C. decipiens* monocultures than in controls at early herbicide exposure (1 day), whereas a significant induction of CAT activity occurred later (from day 3 for *C. decipiens* and at day 9 for *P. mannii*) in response to herbicides. In control co-culture, *P. mannii* was eliminated by *C. decipiens*. As observed in the monoculture, the herbicides did not affect the photosynthetic performance of *C. decipiens* in co-culture, but significantly reduced 48 its instantaneous growth rate. The oxidative stress response in co-culture has similar trends to that of *C. decipiens* in monoculture, but the interspecies competition likely resulted in higher 50 CAT activity under herbicide exposure. Results of this study suggest that herbicide toxicity for 51 marine diatoms might be amplified by interspecies interactions in natural communities, which might lead to different physiological and growth responses.

Key words: diatom, herbicide, growth, photosynthesis, antioxidant enzyme activity.

Introduction

 The expansion and intensification of agricultural activities over the last few decades has led to a substantial increase in herbicide use (Mhadhbi et al. 2019; de Suza et al. 2020). These toxicants are not readily adsorbed by soil (Moncada, 2005) and therefore they can reach rivers, lakes and then marine waters, through spraying, leaching and runoff (Carter, 2000; Ramezani, 2008). Some herbicides, belonging to triazines and phenylureas are forbidden or restricted in several Mediterranean countries (e.g. atrazine, 2004/141/CE ; simazine 2004/247/CE and 63 diuron, $2007/417/CE$) but they are still found in aquatic ecosystems (Nödler et al., 2014 ; 64 Bancon-Montigny et al. 2019). Herbicides are persistent pollutants in seawater, since they are 65 weakly adsorbed by marine sediment (Thomas et al. 2002; Tissier et al. 2005). Moreover, their degradation is limited and can potentially produce more toxic and/or persistent secondary metabolites (Ortiz-Hernández et al. 2013). Therefore, herbicides constitute a potential threat for marine ecosystems and their phytotoxicity has already been demonstrated on several 69 phototrophic organisms, including phytoplankton (e.g. glyphosate, Smedbol et al. 2017; Lam et al. 2020; triazine, Yang et al. 2019), microphytobenthic biofilms (e.g. diuron and atrazine, Legrand et al. 2006; glyphosate, Lima et al. 2014) and macrophytes (e.g. norflurazon and fluridone, Chalifour, 2014; paraquat, Moustakas et al. 2016; glyphosate, Mudge and Houlahan, 73 2019). Most herbicides, including triazines and phenylureas, are photosynthetic inhibitors. Their active molecules bind to the D1 protein that blocks electron transport from photosystem II (Schuler and Rand, 2008), thus inhibiting Hill's reaction (Leboulanger *et al.* 2001; Dorigo *et al.* 2004; Macedo et al. 2008). This further provokes oxidative stress with reactive oxidative species (ROS) formation and accumulation leading to the damage of pigments, proteins, and lipids of the photosynthetic apparatus (Gomes and Juneau, 2017). Other herbicides belonging

 to chloroacetamide family, such as alachlor and metalachlor, inhibit the biosynthesis of amino-acids and long chain fatty acids (Boger et al. 2003; Yang et al. 2010; Busi, 2014).

 Several studies have assessed the impact of herbicides on benthic and planktonic microalgae, particularly on diatoms. These silicified microalgae are ubiquitous photosynthetic organisms in marine and fresh waters that account for 20% of global primary production and 84 they are the major contributors to sedimentary organic matter (Nelson et al. 1995; Thornton, $\sqrt{2014}$. Diatoms are at the base of marine food webs, particularly the herbivorous pathway (Sakka Halili et al. 2014; Meddeb et al. 2019) and thus the effects of toxicants on these primary producers can be cascaded to higher trophic levels consequently impacting the function of the whole ecosystem (Relyea, 2009; Pesce et al. 2011; Hashimoto et al. 2019). Diatoms quickly respond to environmental pollutants and hence they are often used as efficient bioindicators to assess the ecological status of aquatic ecosystem (Stevenson and Pan, 2010; Berthon et al. 2011; 91 Pandey, 2017; Pandey et al. 2020). Exposure to herbicides at concentrations ranging from μ g L^{-1} to mg L^{-1} , was often followed by either significant decrease in Chl *a*, growth rate, photosynthetic efficiency or lipid content for several marine diatoms (Schmitt-Jansen and Altenburger, 2005; Gatidou and Thomaidis, 2007; Bao et al. 2011; Ebenezer and Ki, 2013; Coquillé et al. 2018). Deformation of diatom frustules and DNA alteration can be also often observed (Schmitt-Jansen and Altenburger, 2005; Debenest et al. 2008; Roubeix et al. 2011). However, it is possible to observe no adverse effects on diatoms by herbicides. For example, 98 Debenest et al. (2010) have not detected any impact of atrazine (25 μ g l⁻¹) on a freshwater diatom community biomass and Hourmant et al. (2009) even found increase in pigment content, photosynthetic rate, and ATP synthesis for *Chaetoceros gracilis* exposed to bentazon with 101 concentration of 0 to 100 μ g L⁻¹. In fact, there is a considerable variability in diatom species sensitivity to herbicides (Larras et al. 2014), even towards the same herbicide (Larras et al.).

 Most of the data on the sensitivity of diatoms to herbicides are provided from single- species bioassays. These allow a wide assessment of herbicide impacts at the molecular, cellular and population levels (Wood et al. 2016; 2019; Chamsi et al. 2019; Demailly et al. 2019). However, there are insufficient conclusive data in view of the effects of herbicides at the community level. In natural communities, interactions between coexisting species may alter their ability to respond to perturbations. Indeed, it has been shown that diatoms respond differently to environmental stress depending on whether they are tested in laboratory monocultures, mixtures or in natural communities (Bérard et al. 1999; [Schabhüttl](https://www.researchgate.net/scientific-contributions/Stefanie-Schabhuettl-84360191?_sg%5B0%5D=zyHg8oZ4_As5i0_cwrtNUslBet8n94_xh0v49NGO1UA77A2IvYB0U0upLkLAnD7RVefhP7c.N3nn2iRwJH4-rGBdRqjlQ_y_rnMlCCvlZIUVfqTcO7xHcVOEiqCw_E_VT4o_T2Ko-IWQvAZ2O3ETR7ulGWVBUg&_sg%5B1%5D=PEQuJopy7M9nHIoFsxYfl4-WqtsWmtef6aUlPF66rSRSjmEKSS4r93kPhE-K4aX3y2-ngSc.x4sEJu4iho1usKW0lGfeKv8a3r7OOkMbNyVlHHjstuhzDI2zEUbCpRcV-FGEBmD_9P7loudMW-oR0yl4iJFdjw) et al. 2012; Koedooder et al. 2019). The present study aimed to assess the toxicity of four herbicides (diuron, des-isopropylatrazine (DIA), alachlor and simazine) in mixture on two ecologically important marine diatoms: the pennate species *Pseudo-nizschia mannii* and the centric species *Chaetoceros* decipiens. The first species, known as a neurotoxic producer, was recently reported in Mediterranean waters (Sakka Hlaili et al. 2016) and the second is a potentially noxious diatom that can form intense blooms (Smayda, 2006; López-Cortés et al. 2015). These diatoms were 12 109 17 111 22 113 24 114 29 116

 isolated from the Bizerte Lagoon (SW Mediterranean) in which the four herbicides are **predominant** (∑diuron+DIA+alachlor+simazine: 0.035 μg L⁻¹, Bancon-Montigny et al. 2019). Effects were evaluated with different physiological parameters Chl a , growth rate, photosynthetic efficiency, and antioxidant enzyme activities, to better assess the herbicide toxicity. Experiments were carried out either as single-species (monoculture) or two-species (co-culture) bioassays.

-
- **Material and Methods**
	- **Microalgal isolation and culture conditions**

 Cells of *Chaetoceros* (diameter: 24-27 µm, length: 33-36 µm) and *Pseudo-nitzschia* 128 (width: 1.80-1.90 μ m, length: 32-37 μ m) were collected in spring 2015 with a Hydrobios 23

 µm mesh plankton net by vertical hauls from 3 to 4 m depth to establish laboratory cultures of diatom species. Monoclonal cultures were obtained by single-cell micropipette isolation. Nonaxenic cultures were grown in f*/*2 medium (Guillard and Ryther, 1962) in 125 mL flasks 132 incubated at 20^oC and with a photon flux density of 100 μ E m⁻² s⁻¹, provided by cool-white fluorescent tubes, with a 12:12 h light*:*dark cycle in temperature-controlled chamber (Aqualytic, Dortmund, Germany). Diatom cultures were acclimated to these experimental conditions for a minimum of 4-5 generations before dilution with fresh media and the start of the experiments. For this, early exponentially growing cells were transferred on new f*/*2 media, every 8 days of incubation. Inoculations were carried out in a laminar flow hood and using sterile laboratory material to avoid contamination. All Flasks were swirled by hand at least twice daily, and their positions on the incubator shelves were changed arbitrarily at least once each day to moderate any discontinuities in irradiance or temperature within the incubator.

Species identification

Identification of the two diatom isolates up to the genus level was made by light microscopy under a Zeiss AxioCam HRc light microscope (Zeiss, Oberkochen, Germany). Then, in a second step, transmission electron microscopy was used to identify the two diatoms at the species level*.* For this, 20 mL subsamples of cultures were filtered then washed with mL of distilled water through a 3 µm pore size polytetrafluoroethylene (PTFE) membrane using a Millipore vacuum filtration apparatus. The diatom frustules were then re-suspended in 5 mL distilled water and cleaned by adding 10 mL each of concentrated sulfuric and nitric acid in a boiling water bath for 60 min. Frustules were then washed once more with 250 mL of distilled water in the filtration apparatus and re-suspended in a final volume of 5 mL. For electron microscopy examination, one drop of cleaned sample was diluted 20:1 (for cultures) and single drops were dried onto 400-mesh copper grids bearing pure carbon support films, and examined using a Tecnai G2 TEM operating at 60 kV, at the Electron Microscopy Unit (Faculty

of Sciences of Bizerte, Tunisia). The species *Pseudo-nitzschia mannii* and *Chaetoceros decipiens* Cleve were identified following identification keys of Amato and Montresor (2008) and of Lee et al. (2014), respectively.

Chemicals preparation

 The herbicides used in this study are representative of two different modes of action and have different solubility K_{ow} values (Table 1). Stock solutions of herbicides (all dissolved in 160 sterilized Milli-Q water) were used to prepare an herbicide mixture (diuron, DIA, alachlor and 161 simazine) containing ~ 1 mg l⁻¹ of each herbicide.

Experimental design

Herbicide contamination experiments were carried out on single-species bioassays (monoculture of *Pseudo-nitzschia mannii* or *Chaetoceros decipiens*), as well as on a co-culture of both species. Bioassays were conducted in triplicate in 2 L glass Erlenmeyers flasks, containing 1000 mL of F/2 medium and inoculated with diatom strain cultures in the 167 exponential growth phase. Cultures were set at the initial cell densities of 5 x 10³ mL⁻¹ for *P*. 168 *mannii* and 5 x 10² cells mL⁻¹ for *C. decipiens*, respecting the *in situ* concentrations during 169 bloom periods (Sahraoui et al., 2009; 2012). For each species in monoculture or co-culture, two treatments were carried out: control without any herbicide (treatment C) and treatment 171 contaminated with the herbicide blend solution to have the final concentration of \sim 1 µg L⁻¹ of each herbicide (treatment Herb). The concentration of total herbicides in contaminated flasks 173 was 4.64 μ g L⁻¹. The chosen herbicide concentration represents ~5 times the maximum level 174 observed in Bizerte Lagoon watershed environment (1.246 μ g L⁻¹, Mhadhbi et al. 2019).

 All treatments (in mono- and co-cultures) were incubated for 9 days in the temperature- controlled chamber under the same light and temperature conditions described above. 177 Subsamples were taken from all treatments at six time points $(t= 0, 1, 2, 3, 6, t= 9)$ days) for growth, physiological, photochemical and biochemical analyses.

Laboratory analyses

Chlorophyll *a*

 For chlorophyll *a* (Chl *a*)*,* 10 ml samples were filtered through Whatman GF/F filters. Pigment concentrations were determined using the standard spectrophotometric method 183 (Parsons et al. 1984), following extraction with 10 ml 90% acetone overnight at 4° C in the dark.

Cell density and growth rate calculation

 Samples (1.5 ml) used to determine cell density were immediately fixed with 3% acid Lugol's solution. Counts were done in triplicata on 30 µl aliquots under an inverted microscope 187 at magnification of x 40. The instantaneous specific growth rate (μ_{inst}, d⁻¹) was determined by linear regression of the natural logarithm (ln) of cell count vs time over the sampling days.

Measurements of photosynthetic parameters

190 Samples (10 ml) were dark-adapted for 15 min prior to fluorescence measurements. The AquaPen AP-P100 (Photon Systems Instruments, Czech Republic) was used to measure the rapid polyphasic Chl *a* fluorescence rise during 3 sec by using a LED blue emitter light intensity 193 of $3000 \mu E \text{ m}^2 \text{s}^{-1}$.

 Fluorescence yield (F) at investigated fluorescence transients was determined according to Strasser and Strasser (1995). The fluorescence yield at 50 µs was considered as O transient 196 (F_{50us}) when all reaction centers of PSII are open. The maximal fluorescence yield (F_M) was determined at P transient and the variable fluorescence yields related to J and I transients were determined at 2 ms and 30 ms, respectively. Photosynthetic parameters indicating PSII activity 199 (ABS₀/RC: absorption of photons per active reaction center (RC); TR_0/RC : trapped energy flux per RC; ET_0/RC : electron transport flux per RC and DI_0/RC : non-photochemical energy dissipation per active reaction centre) were evaluated following to Strasser et al. (1999).

Detection of antioxidant enzyme activities

 Samples (100 ml) were collected by centrifugation at 6000 g for 30 min at 4°C and then 204 broken down in the phosphate buffer ($pH = 7.0$) by sonication. Samples were observed under a microscope to make sure the breaking ratio was more than 95%. Finally, the sonicated solution was centrifuged again at 6000 *g* for 30 min at 4°C and the supernatants were collected to measure the antioxidant enzyme activities.

Catalase activity was determined according to the method of Beers and Sizer (1952) by 209 following the H_2O_2 disappearance kinetic for 5 minutes at 240 nm. The reaction medium contained 50 mM phosphate buffer at pH 7.5 and 10 mM H_2O_2 . The extinction coefficient was 211 0.036 mM⁻¹ cm⁻¹ and the reaction was initiated by the addition of the protein extract.

The guaiacol peroxidase (GPX) activity was determined according to the method of Jiang and Penner (2015) based on the increase in the absorbance at 470 nm due to the polymerization of guaiacol to tetragaiacol in the presence of hydrogen peroxide for 5 minutes. The reaction medium contained 0.1 M sodium phosphate at pH 6.5, 0.135 mM H_2O_2 and 3.6 216 mM guaiacol. The molar extinction coefficient of tetragaiacol was $26.6 \text{ mM}^{-1} \text{ cm}^{-1}$. The reaction was initiated by the addition of the protein extract.

Statistical analyses

219 Mean and standard deviation values were calculated for each treatment from three 220 independent replicate cultures and graphed. A two-way ANOVA was used the test the effect of herbicide mixture and culture mode on the instantaneous growth rate of *P. mannii* and *C.* decipiens maintained in monoculture and co-culture. The normality of data distribution (Kolmogorov–Smirnov test) and homogeneity of variance (Bartlett–Box test) were respected and differences were accepted as significant when $p < 0.05$.

 For each experiment (*P. mannii* monoculture, *C. decipiens* monoculture and *P. mannii* + *C. decipiens* co-culture), Student's *t*-tests were performed to detect significant differences in Chl *a* cell content, photosynthetic parameters and antioxidant enzyme activities between control

 For the diatom co-culture under control conditions, the initial Chl *a* per cell content (9.86 \pm 0.8 pg cell⁻¹) slightly diminished at the beginning (until day 3) to increase thereafter significantly by 2 to 3-fold compared to the initial level (Fig. 2c). The herbicide mixture induced a significant increase in Chl *a* cell content compared to the control (**Student's** *t***-test**, $P < 0.05$) with the most important rise at day 3 (increase by 8 folds compared to the control) (Fig. 2c).

Physiological response of diatoms

Photosynthetic parameters

 Whether for the diatom monocultures or co-culture, the maximum quantum yield of PSII (F_v/F_m) did not show any significant difference between the control and herbicide treatment (Student's *t*-test, $P > 0.05$, Fig. 3a). This parameter declined from the beginning (~ 0.7 - 0.8 a.u.) to the end of the experiment, reaching values of -20 to -30 % relative to the initial level (Fig. 3a).

For *P. mannii* in monoculture, the herbicide mixture induced a significant sharp decrease 275 of ABS₀/RC (**Student's** *t***-test,** $P < 0.05$, Fig. 3b). This reduction was noticeable from day 1, such that values of this parameter (in the range of 1.38-1.98 a.u. for control) approached the zero at day 2 (-98.01 % relative to control) Values recovered to control levels at day 3 to decrease again to approximately -50 % relative to the control at day 9. This ratio was unchanged 279 by the herbicide mixture in the monoculture of *C. decipiens* (**Student's** *t***-test**, $P > 0.05$, Fig. 3b) with values ranging in general between 2 and 3 a.u. For the diatom co-culture, there was also 281 no significant effect of the herbicide mixture on ABS₀/RC (**Student's** *t***-test**, $P > 0.05$, Fig 3b) and values were often in the range of 2 to 3 a.u.

Likewise, the ratios of trapping of excitation energy per reaction centre (TR $_0$ /RC) and 284 electron transport per active reaction centre $(ET₀/RC)$ were significantly reduced by herbicide for *P. mannii* monoculture (Student's *t*-test, *P <* 0.05, Fig. 3c, d) as both parameters decreased 286 at day 2 by 80% and 89 % relative to control, respectively. Conversely, TR₀/RC and ET₀/RC were unchanged by the herbicide mixture in *C. decipiens* monoculture (**Student's** *t***-test**, P > (0.05) with values mostly of about 1.5-1.8 a.u. and 1.12-2.1 a.u., respectively (Fig. 3c, 3d). For the diatom co-culture, there was no significant effect of the herbicide mixture on both ratios (Student's *t*-test, *p >* 0.05, Fig. 3c, d).

 Herbicide treatment significantly impacted the dissipated energy flux per active reaction center (DI₀/RC) for *P. mannii* monoculture (**Student's** *t***-test**, $P < 0.05$, Fig. 3e), causing 33- 98% reduction relative to control. Conversely, no significant effect was observed for this physiological parameter for the *C. decipiens* monoculture (range of values: 0.78-1.31 a.u.) nor 295 for the diatom co-culture (range of values: 0.74 -1.18 a.u.) (**Student's** *t***-test**, $P > 0.05$, Fig. 3e).

Antioxidant enzyme activity

 For the *P. mannii* monoculture, the catalase activity was relatively low in the control 298 (range of values: $0.42 - 1.05$ U mg⁻¹ Protein, Fig 4a). The herbicide mixture did not affect the enzyme activity (**Student's** *t***-test**, $P > 0.05$) except at the end of the experiment where a great increase was observed (roughly 20 times the control value, Fig. 4a). In the *C decipiens* control monoculture the catalase activity was significantly greater than that of *P. mannii* control 302 monoculture (range of values: 7.14 -10.52 U mg⁻¹ Protein) (**Student's** *t***-test**, $P < 0.05$). Exposure 303 to herbicide resulted in a significant increase in catalase activity (**Student's** *t***-test**, $P < 0.05$, Fig.4b) and values increased by 3-5 folds relative to control after 3-days treatment. The same 305 response to herbicides was observed for the diatom co-culture (**Student's** *t***-test**, $P < 0.05$, Fig. 4c) as catalase activity increased by 4-7 folds in comparison to control after 3-days treatment.

Overall, the GPX activity, measured in monocultures and co-culture, was not affected by 309 the herbicide mixture addition (**Student's** *t***-test**, $P > 0.05$, Fig. 4d, e, f) except on day 1, when the enzyme showed 2-3 folds higher activity in herbicide treatment. The GPX activity values 311 generally varied within the range of 1.83 -22.41 U mg⁻¹ Protein, for all type of cultures (Fig. 4d, e, f).

DISCUSSION

Herbicide Toxicity towards diatoms in monoculture

Growth and Chl *a* **cell content**

Our findings showed that the herbicide mixture did not significantly affect the instantaneous growth rate of *P. mannii* and *C. decipiens* grown as monocultures (*P* > 0.05, Fig. 1a, b). [Literature](https://fr.pons.com/traduction/anglais-français/Literature) [data](https://fr.pons.com/traduction/anglais-français/data) [on](https://fr.pons.com/traduction/anglais-français/on) [the](https://fr.pons.com/traduction/anglais-français/the) [effect](https://fr.pons.com/traduction/anglais-français/effect) [of](https://fr.pons.com/traduction/anglais-français/of) [herbicides](https://fr.pons.com/traduction/anglais-français/herbicides) on diatom growth [are](https://fr.pons.com/traduction/anglais-français/are) [highly](https://fr.pons.com/traduction/anglais-français/highly) [contrasted.](https://fr.pons.com/traduction/anglais-français/contrasted) [Indeed,](https://fr.pons.com/traduction/anglais-français/Indeed) [it](https://fr.pons.com/traduction/anglais-français/it) [seems](https://fr.pons.com/traduction/anglais-français/seems) [difficult](https://fr.pons.com/traduction/anglais-français/difficult) [to](https://fr.pons.com/traduction/anglais-français/to) [distinguish](https://fr.pons.com/traduction/anglais-français/distinguish) [a](https://fr.pons.com/traduction/anglais-français/a) [general](https://fr.pons.com/traduction/anglais-français/general) [response](https://fr.pons.com/traduction/anglais-français/response) of diatoms [to](https://fr.pons.com/traduction/anglais-français/to) herbicide [exposure.](https://fr.pons.com/traduction/anglais-français/exposure) Previously, authors have reported a decrease in growth for freshwater diatoms in response to 321 herbicides, such as atrazine $(1-1000 \mu g L^{-1})$: Larras et al. 2013; 500 μg l⁻¹: Wood et al. 2014), 322 metolachor $(5{\text -}30 \,\mu g \, L^{-1}$: Roubeix et al. 2011), isoproturon $(5{\text -}20 \,\mu g \, L^{-1}$: Pérès et al. 1996) and 323 diuron (10 μ g L⁻¹: Demailly et al. 2019). All these authors have used herbicides at higher 324 concentrations than used in this study (Σ herbicides ~ 5 μg L⁻¹), which could explain the lack of herbicide impact on the growth of *P. mannii* and *C. decipiens* monocultures. However, other studies have reported positive impact of herbicides on diatom growth (50 μ g L⁻¹ atrazine, 327 Kalopesa et al., 2008; 30 µg L⁻¹ isoproturon, Debenest et al. 2009; and 7 µg L⁻¹ diuron, Ricart

 et al. 2009). In our experiment, *P. mannii* and *C decipiens*, growing as monocultures, seemed to tolerate the herbicide mixture at the tested concentration. Both species originated from Bizerte Lagoon, where noticeable contamination by herbicides has been reported for waters and sediment (Pringault et al. 2016; Bancon-Montigny et al. 2019; Mhadhbi et al. 2019). The ecosystem has long been under the influence of water runoff from adjacent land areas used for agricultural crops cultivation with intensive use of herbicides (Ben Salem et al. 2017). Consequently, it is likely that *P. mannii* and *C. decipiens* isolated from this contaminated ecosystem might have developed tolerance to herbicides through adaptation mechanisms that make them physiologically able to resist to these pollutants.

 In monoculture, the Chl *a* per cell content of *[P.](https://fr.pons.com/traduction/anglais-français/PS-N) mannii* [was](https://fr.pons.com/traduction/anglais-français/was) [significantly](https://fr.pons.com/traduction/anglais-français/significantly) [affected](https://fr.pons.com/traduction/anglais-français/affected) [by](https://fr.pons.com/traduction/anglais-français/by) Herb [treatment](https://fr.pons.com/traduction/anglais-français/treatment) ($P < 0.05$, Fig. 2a), although growth was not affected (Fig. 1a). This suggests that the per-cell [Chl](https://fr.pons.com/traduction/anglais-français/Chl) *[a](https://fr.pons.com/traduction/anglais-français/a)* content would decrease under herbicide contamination probably due to inhibition of pigment synthesis or pigment destruction. In fact, herbicides, particularly the PSII inhibitors (e.g. DIA, diuron and simazine), are known to act by binding to the exchangeable quinone site 342 in the PSII reaction center, thus blocking electron transfer (Gomes and Juneau, 2017; Thomas et al. 2020). The [excitation](https://fr.pons.com/traduction/anglais-français/excitation) [of](https://fr.pons.com/traduction/anglais-français/of) [the](https://fr.pons.com/traduction/anglais-français/the) PSII [complex](https://fr.pons.com/traduction/anglais-français/complex) is therefore [directly](https://fr.pons.com/traduction/anglais-français/directly) transferred [to](https://fr.pons.com/traduction/anglais-français/to) O_2 O_2 , [resulting](https://fr.pons.com/traduction/anglais-français/resulting) [in](https://fr.pons.com/traduction/anglais-français/in) [the](https://fr.pons.com/traduction/anglais-français/the) [formation](https://fr.pons.com/traduction/anglais-français/formation) [of](https://fr.pons.com/traduction/anglais-français/of) [singlet](https://fr.pons.com/traduction/anglais-français/singlet) [oxygen](https://fr.pons.com/traduction/anglais-français/oxygen) [causing](https://fr.pons.com/traduction/anglais-français/causing) [uncontrolled](https://fr.pons.com/traduction/anglais-français/ncontrolled) [oxidation](https://fr.pons.com/traduction/anglais-français/oxidation) [of](https://fr.pons.com/traduction/anglais-français/of) [membranes](https://fr.pons.com/traduction/anglais-français/membranes) [components](https://fr.pons.com/traduction/anglais-français/components) [in](https://fr.pons.com/traduction/anglais-français/in) [particular](https://fr.pons.com/traduction/anglais-français/particular) [chlorophyll](https://fr.pons.com/traduction/anglais-français/chlorophyll) [pigments,](https://fr.pons.com/traduction/anglais-français/pigments) [including](https://fr.pons.com/traduction/anglais-français/including) [Chl](https://fr.pons.com/traduction/anglais-français/Chl) *a* [\(Thomas et al. 2020\).](https://fr.pons.com/traduction/anglais-français/a.) Furthermore, PSII inhibiting herbicides [would](https://fr.pons.com/traduction/anglais-français/would) [be](https://fr.pons.com/traduction/anglais-français/be) [responsible](https://fr.pons.com/traduction/anglais-français/responsible) [for](https://fr.pons.com/traduction/anglais-français/for) [the](https://fr.pons.com/traduction/anglais-français/the) [accumulation](https://fr.pons.com/traduction/anglais-français/accumulation) [of](https://fr.pons.com/traduction/anglais-français/of) [compounds](https://fr.pons.com/traduction/anglais-français/compounds) [such](https://fr.pons.com/traduction/anglais-français/such) [as](https://fr.pons.com/traduction/anglais-français/as) [polyenes,](https://fr.pons.com/traduction/anglais-français/polyenes) [phytils](https://fr.pons.com/traduction/anglais-français/phytiles) [and](https://fr.pons.com/traduction/anglais-français/and) [phytophloenes](https://fr.pons.com/traduction/anglais-français/phytophloenes) [that](https://fr.pons.com/traduction/anglais-français/that) inhibit [chlorophyll](https://fr.pons.com/traduction/anglais-français/chlorophylls) synthesis in microalgae (Thomas et al. 2020). Conversely to *P. mannii*, herbicides did not cause any effect on Chl *a* cell content of *C. decipiens* monoculture ($P > 0.05$, Fig. 2b), suggesting that the two species have different levels of tolerance to herbicides. In fact, studies carried out on *Chaetocero*s species reported different results. An increase in Chl *a* content was observed for *C. gracilis* exposed to 50 to 60 μ g l⁻¹ of Bentazon, while a drastic decrease was found for *Chaetoceros* sp. as a short-term

353 response to 2,4-D dimethylamine (50 to 300 mg 1^{-1}) and endosulfan (20 to 100 mg 1^{-1}) exposure (Mine and Matsunaka 1975; Hii et al. 2009).

Photosynthetic response and antioxidant enzymes activity

 Whether for *P. mannii* or for *C. decipiens* grown in monoculture our [results](https://fr.pons.com/traduction/anglais-français/results) [showed](https://fr.pons.com/traduction/anglais-français/showed) [that](https://fr.pons.com/traduction/anglais-français/that) [the](https://fr.pons.com/traduction/anglais-français/the) [Fv/Fm](https://fr.pons.com/traduction/anglais-français/Fv/Fm) [ratio](https://fr.pons.com/traduction/anglais-français/ratio) [has](https://fr.pons.com/traduction/anglais-français/a) [been](https://fr.pons.com/traduction/anglais-français/een) [unaltered](https://fr.pons.com/traduction/anglais-français/naltered) [by](https://fr.pons.com/traduction/anglais-français/by) the tested [herbicide](https://fr.pons.com/traduction/anglais-français/herbicide) mixture ($P \le 0.05$ $P \le 0.05$ $P \le 0.05$ $P \le 0.05$, Fig 3.a), [suggesting](https://fr.pons.com/traduction/anglais-français/suggesting) a relative [integrity](https://fr.pons.com/traduction/anglais-français/integrity) [of](https://fr.pons.com/traduction/anglais-français/of) [photosystem](https://fr.pons.com/traduction/anglais-français/photosystem) [II](https://fr.pons.com/traduction/anglais-français/II) [under](https://fr.pons.com/traduction/anglais-français/nder) [the](https://fr.pons.com/traduction/anglais-français/the) [experimenta](https://fr.pons.com/traduction/anglais-français/experiment)l [conditions.](https://fr.pons.com/traduction/anglais-français/conditions) However, herbicide-induced changes were clearly visible in all the other OJIP parameters (ABS₀/RC, 360 TR₀/RC, ET₀/RC and DI₀/RC) for *P. mannii* monoculture (Fig. 3). Several authors have already pointed out that Fv/Fm is probably not the best parameter to evaluate toxic effects of herbicides due to its relatively low sensitivity (e.g. Juneau et al. 2007; Kargar et al. 2019). Fv/Fm measures the optimal photosynthetic efficiency and does not reflect the true nature of PSII-activity under normal light conditions (Juneau et al. 2007). The decrease in the photosynthetic parameters in *P. mannii* monoculture may indicate an increase in activated fraction of RCs or in antenna size by *P. mannii* to counterbalance the chlorophyll pigment deterioration by herbicides (cf. Fig. 2a) to maintain an efficient light energy transfer. In fact, these ratios are influenced by the ratio of active/inactive RCs of light harvesting complex (LHC) and as the number of active centers increased, they decreased (Mathur et al. 2011; Kumar et al. 2019). None of the specific energy fluxes per RC were affected by herbicides for *C. decipiens* monoculture (*[P](https://fr.pons.com/traduction/anglais-français/(p)* > [0.0](https://fr.pons.com/traduction/anglais-français/0.)5, Fig 3), suggesting that the species could maintain an effective photosynthetic performance under herbicide exposure, which could explain the lack of effect on its Chl *a* content. Therefore, *C. decipiens* seemed to be physiologically more tolerant to herbicides than *P. mannii*. This could be due to the antenna organization, which differs significantly between pennate and centric diatoms (Gundermann et al. 2019).

The enzymes involved in oxidative damage repair have significantly increased under herbicide contamination. However, this stimulation was different between the diatom species.

 Indeed, the CAT activity has increased for *P. mannii* only by the end of the experience, whereas *C. decipiens* showed a considerably higher CAT response to the herbicide mixture (*P* < 0.05, Fig. 4). CAT enzyme has been possibly activated to regulate toxic levels of reactive oxygen species (ROS) which production was probably induced by herbicides (Bai et al. 2015; Thomas et al. 2020). *For C. decipiens*, the eventual oxidative damage could be likely induced by the Very-Long-Chain Fatty Acid (VLCFA) inhibitor (alachlor) as the PSII inhibiting herbicides has 384 not impacted its photosynthetic performance $(P > 0.05$, Fig 3). It is widely known that the toxicity of chloroacetamides like alachlor is linked to the oxidation of cell components with the increase of ROS and lipid peroxidation (Maronić et al. 2018). At short term (day 1), the herbicide mixture promptly stimulated the GPX activity for *P. mannii* and *C. decipiens* (Fig. 4), probably indicating an oxidative short-term stress in both species under herbicide exposure, as it has been observed with other chemical toxic compounds (Manimaran et al. 2012, Nguyen 390 Deroche et al. 2012). In summary, it seems that the antioxidant enzymatic response to herbicides could provide an efficient protection to *C. decipiens*, probably resulting in the maintenance of its photosynthetic apparatus integrity and Chl *a* per-cell content. On the other hand, the antioxidant defense system of *P. mannii* was only triggered at the short time scale which might result in significant effects on the photosynthetic apparatus integrity.

Herbicide toxicity towards diatoms in co-culture

Growth and Chl *a* **cell content**

Under control conditions, diatom [species](https://fr.pons.com/traduction/anglais-français/species) in co-culture have [evolved](https://fr.pons.com/traduction/anglais-français/evolved) [in](https://fr.pons.com/traduction/anglais-français/differently) a different way than when maintained [in](https://fr.pons.com/traduction/anglais-français/in) [monoculture,](https://fr.pons.com/traduction/anglais-français/co-culture) with a slower growth for *C decipiens* and a decline for *[P.](https://fr.pons.com/traduction/anglais-français/PS-N) mannii*. (two-way ANOVA, *P* < 0.05, Fig. 1). [This](https://fr.pons.com/traduction/anglais-français/This) suggests that *[C.](https://fr.pons.com/traduction/anglais-français/CHEAT) decipiens* achieved growth advantage by dominating *P. mannii* due to either a better competition for resources (e.g., nutrients, light) and/or a chemically mediated interference (i.e. allelopathy). In our study, the mono- and co-cultures bioassays were performed under similar physico-chemical conditions,

 using the same non-limiting nutrient concentrations, that the exclusion of *P. mannii* in co-404 culture might probably be explained by allelopathy. Allelopathy was found to play a significant role in dominance, succession, and formation of natural diatom communities (Leflaive and Ten Hage, 2009; Zhang et al. 2014). In addition, the small size of *P. mannii* may increase its sensitivity to allelopathic interactions due to a high surface/volume ratio (Lyczkowski and Karp-Boss, [2014\)](https://link.springer.com/article/10.1007/s10750-019-3933-8#ref-CR35).

The single-species exposure to the herbicide mixture, at the tested concentration, showed that *P. mannii* and *C. decipiens* were tolerant, with no significant impact on their instantaneous growth rates (two-way ANOVA, $P > 0.05$, Table 2). However, growth of *C. decipiens* in co-412 culture was significantly impacted by herbicides (two-way ANOVA, $P < 0.05$, Table 2), suggesting that its resistance to herbicide exposure could be modulated when the species 414 competes in co-culture. This trend may be explained by the classical trade-off theory between tolerance ability and competitive-response ability in phytoplankton (Mohr, 2019; Lürling, 2021).

 The differences in sensitivity to herbicides among *P. mannii* and *C. decipiens* under co- culture conditions might be also explained by differences at the genetic level or in the trophic mode. In fact, some authors have observed that herbicides may cause [a](https://fr.pons.com/traduction/anglais-français/a) [decrease](https://fr.pons.com/traduction/anglais-français/decrease) [in](https://fr.pons.com/traduction/anglais-français/in) growth of [some](https://fr.pons.com/traduction/anglais-français/some) diatoms, specifically from the centric genera, whereas it has the opposite effect on pennate [diatoms](https://fr.pons.com/traduction/anglais-français/diatoms) [\(Tang](https://fr.pons.com/traduction/anglais-français/Tang) [et](https://fr.pons.com/traduction/anglais-français/et) [al.](https://fr.pons.com/traduction/anglais-français/al)[,](https://fr.pons.com/traduction/anglais-français/,) 1997; [Bérard](https://fr.pons.com/traduction/anglais-français/Berard) et [al](https://fr.pons.com/traduction/anglais-français/al)[.,](https://fr.pons.com/traduction/anglais-français/,) 2004). In this sense, Larras et al. (2014) have found a strong phylogenetic signal for diatom sensitivity to herbicides with a major separation within the phylogenetic tree. These authors observed that the most sensitive species were mainly centrics and araphid diatoms whereas the most resistant species were mainly pennates. Other authors asserted that sensitivity differences among diatom species to herbicides is more likely related to their trophic mode (Larras et al. 2012). Indeed it was argued that heterotrophic diatoms were more tolerant than autotrophic diatoms species to PSII inhibitors (Pérès et al.

 [1996;](https://link.springer.com/article/10.1007/s11356-015-5430-6#ref-CR30) Bérard et al. [1998;](https://link.springer.com/article/10.1007/s11356-015-5430-6#ref-CR3) Debenest et al. [2009\)](https://link.springer.com/article/10.1007/s11356-015-5430-6#ref-CR11). For this assumption, authors explained that conversely to autotrophic species, facultative or obligatory heterotrophic species (eventually the case of *P. mannii* in this study) could metabolize other substrata to decrease their dependence on photosynthesis (Larras et al. 2012) and thus to prevent effects of PSII inhibitor herbicides. Heterotrophy has been clearly evidenced for several species of the genus *Pseudo-nitzschia* (Mengelt and Prezelin, 2005, Loureiro et al. 2009, Melliti Ben Garali et al. 2016).

 In our experiment, the growth of *P. mannii* was inhibited by *C. decipiens* which dominated the co-culture, substantially on days 6 and 9. The Herbicide induced increase of Chl *a* cell content seemed then to be likely related to *C. decipiens* (Fig. 2). This suggest that the competitive advantage of *C. decipiens* might not affect its Chl *a* response to herbicides. Increased Chl *a* content in response to herbicides has been noted for several microalgae, including *C. gracilis*, contaminated by PSII inhibitors such as diuron (Magnusson et al. 2008; Stachowski-Haberkorn et al. 2013), atrazine (Adler et al. 2007), bentazon (Mine and Matsunaka, 1975), isoproturon and terbutryn (Rioboo et al. 2002). This reaction, also known as "greening", is widely described as an increase in pigment in antennae in order to maximize light harvesting as a strategy to counterbalance the herbicide action (Magnusson et al. 2008; Ricart et al. 2009; Mansano et al. 2017) and hence maintain an efficient conversion of light energy into chemical energy (Coquillé et al. 2014). This would allow an adaptation of photosynthetic metabolism to herbicide effects.

Photosynthetic response and antioxidant enzymes activity

448 Maximum quantum yield of PSII (F_v/F_m) as well as all the energy fluxes per RC $(ABS₀/RC, TR₀/RC, ET₀/RC, and DI₀/RC)$ were unchanged by the herbicide mixture for the diatom co-culture (*P* > 0.05, Fig. 3), closely retracing evolution of these parameters for *C.* decipiens (Fig. 3), which has by far dominated the diatom co-culture. So, as for Chl *a*, the competitive advantage of *C. decipiens* on co-culture did not also influence its photosynthesis

 response to the herbicide mixture. As observed for *P. mannii* or *C. decipiens* monocultures, the GPX activity was stimulated only after one day of contamination in co-culture (Fig. 4), suggesting that this enzyme could be considered as the antioxidant defense at early exposure to herbicides. There was a significant increase of CAT activity by herbicides in co-culture (*P* < 0.05, Fig. 4), especially at late herbicide exposure, similarly to that observed for *C. decipiens* monoculture, providing additional support that the physiological response of the co-culture to herbicides was likely attributed to *C. decipiens*. However, CAT activity levels were $\frac{1}{2}$ significantly higher than those measured for *C. decipiens* monoculture (Student's *t*-test, *P* < 0.05, Fig. 4) and values at days 3 and 6 were 1.2 to 2 folds higher than in *C. decipiens* 462 monoculture, probably suggesting a higher CAT response due to the competitive stress. These results provided further evidence that GPX and CAT enzymes were triggered by the herbicide- induced oxidative stress, at early and tardy exposure, in order to repair damage and keep the diatom in good physiological state during most period of herbicide contamination.

CONCLUSION

 The study found that response to herbicides differ between the two marine diatoms and between the culture conditions. The diatom C. decipiens was more sensitive to herbicides in coculture than in the single species-pollutant experiment, which suggest that herbicide pollution 470 in natural environments might considerably alter the diatom populations and phytoplankton communities. We link altered growth of *C. decipiens* to a modified physiological profile under herbicide conditions, thereby suggesting that chemical pollutants effects are not only reflected by changes in cell densities but also by changes in the physiology of the cells. In order to attain higher comparability with natural conditions, further studies should focus on the effects of herbicide pollution and other abiotic fluctuations and their interactions with competition between diatoms. More complex diatom combinations could be also tested in order to identify composite ecosystem responses and acquire approaches to apprehend changes that might take

place under future environmental scenarios.

DECLARATIONS

ACKNOWLEDGMENTS

This work was in part supported by IRD through the Laboratoire Mixte International (LMI) COSYS-Med (Contaminants et Ecosystèmes Sud Méditerranéens).

COMPLIANCE WITH ETHICAL STANDARDS

 Conflict of interest**:** the authors have no competing interests to declare that are relevant to the content of this article.

AVAILABILITY OF DATA AND MATERIAL

 All data and materials as well as software application or custom code comply with field standards.

ETHICS APPROVAL

This article does not contain any studies with animals performed by any of the authors

AUTHOR CONTRIBUTIONS

 IS, SMB, ZC and ASH contributed to the study conception and design. Laboratory analyses were performed by IS and ZC and CG. The first draft of the paper was written by IS. ASH and OP commented on previous versions of the paper. All authors read and approved the final paper.

REFRENCES

- Adler NE, Schmitt-Jansen M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297-306
- Amato A, Montresor M (2008) Morphology phylogeny and sexual cycle of *Pseudo-nitzschia* mannii sp nov (Bacillariophyceae): a pseudo-cryptic species within the *P pseudodelicatissima* complex. Phycologia 47(5):487-497
	- Bai X, Sun C, Xie J, Song H, Zhu Q, Su Y, Qian H, Fu Z (2015) Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in *Phaeodactylum tricornutum*. Environ Sci Pollut R 22 (22):17499-17507. http://doi.org/10 1007/s11356-015-4923-7
- Bancon-Montigny M, Gonzalez C, Delpoux S, Avenzac M, Spinelli S, Mhadhbi T, Mejri K, Sakka Hlaili A, Pringault O (2019) Seasonal changes of chemical contamination in coastal waters during sediment resuspension. Chemosphere 235:651-661. http://doi.org/10 1016/j chemosphere 2019 06 $\frac{1}{57}$ 509 213

- Bao VWW, Leung KMY, Qiu J-W, Lam MHW (2011) Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar Pollut Bull 62:1147-1151 1 511 2 512
	- Beers RFJr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133-140
	- Ben Salem F, Said O, Duran R, Grunberger O (2017) First Survey of Agricultural Pesticides Used for Crops in Ichkeul Lake-Bizerte Lagoon Watershed (Tunisia). Environ Sci Ind J 13(6)156

Bérard A, Pelte T, Menthon E, Druart JC, Bourrain X (1998) Characterisation of phytoplankton from two limnic systems contaminated by a herbicidal photosynthetic inhibitor The PICT method (pollution-induced community tolerance): application and significance. Ann Limnol Int J Lim 34 $(3):269-282$ 9 517 $10\,518$

- Bérard A, Leboulanger C, Pelte T (1999) Tolerance of *Oscillatoria limnetica* Lemmermann to atrazine in natural phytoplankton populations and in pure culture: influence of season and temperature. Arch Environ Contam Toxicol 37:472-479
- Bérard A, Dorigo U, Mercier I, Becker-van Slooten K, Grandjean D, Leboulanger C (2004) Comparison of the ecotoxicological impact of the triazines Irgarol 1051 and atrazine on microalgal cultures and natural microalgal communities in Lake Geneva. Chemosphere 53:935- 44. http://doi.org/10 1016/S0045-6535(03)00674-X 18 524
- Berthon V, Bouchez A, Rimet F (2011) Using diatom life-forms and ecological guilds to assess organic pollution and trophic level in rivers: a case study of rivers in south-eastern France. Hydrobiologia 673:259-271. http://doi.org/10 1007/s10750-011-0786-1 23 528 24 529 25 530
	- Böger P (2003) Mode of Action for Chloroacetamides and Functionally Related Compounds. J Pest Sci 28:324-329 http://doi.org/10 1584/jpestics 28 324
- Busi R (2014) Resistance to herbicides inhibiting the biosynthesis of Very Long Chain Fatty Acids. Pest Manag Sci 70 (9):1378-1384 http://doi.org/10 1002/ps 3746 30 533 31 534
	- Carter A (2000) How pesticides get into water And proposed reduction measures. Pestic Outlook 11:149-156 http://doi.org/10 1039/b006243j
- Chalifour A, Arts MT, Kainz MJ, Juneau P (2014) Combined effect of temperature and bleaching herbicides on photosynthesis pigment and fatty acid composition of *Chlamydomonas reinhardtii*. Eur J Phycol 49(4):508-515 35 537
- Chamsi O, Pinelli E, Faucon B, Perrault A, Lacroix L, Sánchez-Pérez JM, Charcosset J-Y (2019) Effects of herbicide mixtures on freshwater microalgae with the potential effect of a safener. Ann Limnol Int J Lim 55 (3). http://doi.org/10 1051/limn/2019002 39 540 $40\,541$
- Coquillé N, Jan G, Moreira A, Morin S (2014) Use of diatom motility features as endpoints of metolachlor toxicity. Aquat Toxicol 158:202-210. http://doi.org/10 1016/j aquatox 2014 11 021 43 543 44 544

 Coquillé N, Ménard D, Rouxel J, Dupraz V, Melissa E, Pardon P, Budzinski H, Morin S, Parlanti E, Stachowski-Haberkorn S (2018) The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species dependent. Aquat Toxicol 198:103-117. http://doi.org/10 1016/j aquatox 2018 02 019 46 545 47 546 48 547 49 548

- De Souza R, Seibert D, Quesada H, Bassetti FJ, Fagundes-Klen M, Bergamasco R (2020) Occurrence impacts and general aspects of pesticides in surface water: A review Process. Saf Environ Prot 135:22-37. http://doi.org/10 1016/j psep 2019 12 035 51 549 52 550 53 551
- Debenest T, Silvestre J, Coste M, Delmas F, Pinelli E (2008) Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities. Aquat Toxicol 88 (1): 84-94 552 56 553 57 554
- Debenest T, Pinelli E, Coste M, Silvestre J, Mazzella N, Madigou C, Delmas F (2009) Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat Toxicol 93:11-17 60 556
-

-
-

 Debenest T, Silvestre J, Coste M, Pinelli E (2010) Effects of pesticides on freshwater diatoms. Rev Environ Contam Toxicol 203:87-103 Demailly F, Elfeky I, Malbezin L, Le Guédard M, Eon M, Bessoule JJ, Feurtet-Mazel A , Delmas F, Mazzella N, Gonzalez P, Morin S (2019) Impact of diuron and S-metolachlor on the freshwater diatom *Gomphonema gracile*: Complementarity between fatty acid profiles and different kinds of ecotoxicological impact-endpoints. Sci Total 20 (688):960-969. http://doi.org/10 1016/j scitotenv 2019 06 347 Dorigo U, Bourrain X, Bérard A, Leboulanger C (2004) Seasonal changes in the sensitivity of river microalgae to atrazine and isoproturon along a contamination gradient. Sci Total Environ 318: 101-114 http://doi.org/10 1016/S0048-9697(03)00398-X Ebenezer V, Ki J-S (2013) Physiological and biochemical responses of the marine dinoflagellate *Prorocentrum minimum* exposed to the oxidizing biocide chlorine. Ecotox Environ Safe 92: 129-134. 10. http://doi.org/1016/j ecoenv 2013 03 014i Finizio A, Vighi M, Sandroni D (1997). Determination of N-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods. Chemosphere 34: 131-161. <http://doi.org/>:10.1016/S0045-6535(96)00355-4. Gatidou G, Thomaidis NS, 2007. Evaluation of single and joint toxic effects of two antifouling biocides their main metabolites and copper using phytoplankton bioassays. Aquat Toxicol 15 85 (3):184-191 http://doi.org/10 1016/j aquatox 2007 09 002 Epub 2007 Sep 6 PMID: 17942164 Gomes M, Juneau P (2017) Temperature and Light Modulation of Herbicide Toxicity on Algal and Cyanobacterial Physiology. Front Environ Sci 5 50. http://doi.org/10 3389/fenvs 2017 00050 Guillard RRL, Ryther JH (1962) Studies on Marine Planktonic Diatoms I *Cyclotella nana* Hustedt and *Detonula confervacea* (Cleve) Gran. Can J Microbiol 8:229-239. [http://doi.org/ org/10 1139/m62-](http://doi.org/%20org/10%201139/m62-029) [029](http://doi.org/%20org/10%201139/m62-029) Gundermann K, Wagner V, Mittag M, Büchel C (2019) Fucoxanthin-chlorophyll protein complexes of the centric diatom *Cyclotella Meneghiniana* differ in Lhcx1 and Lhcx6_1 content. Plant Physiol 179 (4):1779-1795. http://doi.org/: 10 1104/pp 18 01363 Epub 2019 Feb 7 Hashimoto K, Eguchi Y, Oishi H, Tazunoki Y, Tokuda M, Sánchez-Bayo F, Goka K, Hayasaka D (2019) Effects of a herbicide on paddy predatory insects depend on their microhabitat use and an insecticide application. Ecol Appl 29 (6) 01945. http://doi.org/:10 1002/eap 1945 Hii Y, Shia K, Chuah T-S, Hing LS (2009) Physiological responses of *Chaetoceros sp.* and *Nannochloropsis sp.* to short-term 2 4-D dimethylamine and endosulfan exposure. Aquat Ecosyst Health 12:375-389. http://doi.org/10 1080/14634980903347662 Hourmant A, Amara A, Pouline P, Durand G, Arzul G, Quiniou F (2009) Effect of Bentazon on Growth and Physiological Responses of Marine Diatom: *Chaetoceros gracilis*. Toxicol Mech Method 19:109-115. http://doi.org/10 1080/15376510802290892 Jiang S, Penner MH (2015) Selective oxidation of enzyme extracts for improved quantification of peroxidase activity. Anal Biochem 1(476): 20-25. http://doi.org/10 1016/j ab 2015 01 017 Epub 2015 Jan 29 PMID: 25640588 Juneau P, Qiu B, Deblois C (2007) Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect. Review Toxicol Environ Chem 89:609-625. http://doi.org/10 1080/02772240701561569 Kalopesa E, Nikolaidis G, Menkissoglu-Spiroudi, U (2008). Atrazine effects on growth of the diatom *Rhizosolenia setigera* (Ehrenberg) brightwell. Fresenius Environ Bull 17 :1932-1937. Kargar M, Ghorbani R, Rashed M, Mohammad H, Rastgoo M (2019) Chlorophyll Fluorescence - a Tool for Ouick Identification of Accase and ALS Inhibitor Herbicides Performance Planta Daninha 37. http://doi.org/10 1590/s0100-83582019370100132 1 558 4 560 5 5 6 1 10 564 11 565 12 566 14 567 15 568 16 569 19 571 20 572 23 574 24 575 25 576 28 578 32 581 33 582 583 36 584 37 585 38 586 40 587 41 588 42 589 44 590 45 591 46 592 50.595 54 598 55 599 58 601 59 602

- Koedooder C, Stock W, Willems A, Mangelinckx S, De Troch M, Vyverman W, Sabbe K (2019) Diatom-Bacteria Interactions Modulate the Composition and Productivity of Benthic Diatom Biofilms Front Microbiol. http://doi.org/:10 10 3389/fmicb 2019 01255 Kumar K, Young-Seok H, Kyung-Sil C, Jeong-Ae K, Taejun H (2009) Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol Environ Health Sci 1(1). http://doi.org/10 1007/BF03216459 Lam C, Kurobe T, Lehman P, Berg M, Hammock B, Stillway M, Pandey P, Teh S (2020) Toxicity of herbicides to cyanobacteria and phytoplankton species of the San Francisco Estuary and Sacramento-San Joaquin River Delta California USA. J Environ Sci Health Part A 55:1-12 http://doi.org/10 1080/10934529 2019 1672458 Larras F,Bouchez A, Rimet F, Montuelle B (2012) Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms. Plos One 8:1-9 Larras F, Lambert A-S, Pesce S, Rimet F, Bouchez A, Montuelle B (2013) The effect of temperature and a herbicide mixture on freshwater periphytic algae. Ecotoxicol Environ Safe 98 :162-170. http://doi.org/10 1016/j ecoenv 2013 09 007 Larras F, Keck F, Montuelle B, Rimet F, Bouchez A (2014) Linking Diatom Sensitivity to Herbicides to Phylogeny: A Step Forward for Biomonitoring? Environ Sci Technol 48(3):1921-1930. http://doi.org/10 1021/es4045105 Leboulanger C, Rimet F, Lacotte M, Bérard A (2001) Effect of atrazine and nicosulfuron on freshwater microalgae. Environ Int 26 (3):131-135. http://doi.org/10 1016/S0160-4120(00)00100- $\frac{25}{25}$ 624 8 Lee SD, Joo H, Lee J (2014) Critical criteria for identification of the genus *Chaetoceros* (Bacillariophyta) based on setae ultrastructure II Subgenus Hyalochaete. Phycologia 53:614-638. http://doi.org/10 2216/14-51R21 Leflaive J, Ten-Hage L (2009) Chemical interactions in diatoms: Role of polyunsaturated aldehydes and precursors. New Phytol 184:794-805. [http://doi.org/10 1111/j 1469-8137200903033](http://doi.org/10%201111/j%201469-8137200903033) x Legrand H, Herlory O, Jean-marc G, Gerard B, Richard P (2006) Inhibition of microphytobenthic photosynthesis by the herbicides atrazine and diuron. Cah Biol Mar 47 (1):39-45 Lima IS, Baumeier NC, Rosa RT, Campelo PM, Rosa EA (2014) Influence of glyphosate in planktonic and biofilm growth of *Pseudomonas aeruginosa*. Braz J Microbiol 45(3):971-975 [http://doi.org/:10 1590/s1517-83822014000300029](https://doi.org/10.1590/s1517-83822014000300029) López-Cortés D, Nuñez-Vazquez E, Band-Schmidt C, Gárate-Lizárraga I, Hernandez F, Bustillos J (2015) Mass fish die-off during a diatom bloom in the Bahía de La Paz Gulf of California. Hidrobiologica 25:39-48 Loureiro S, Jauzein C, Garcés E, Collos Y, Camp J, Vaqué D (2009) The significance of organic nutrients to *Pseudo-nitzschia delicatissima* (Bacillariophyceae) nutrition. J Plankton Res 31(4): 399-410 Lürling M (2021) Grazing resistance in phytoplankton. Hydrobiologia 848:237-24[9. http://doi.org/10](file:///C:/Users/DELL/Downloads/.%20http:/doi.org/10%201007/s10750-020-04370-3) [1007/s10750-020-04370-3](file:///C:/Users/DELL/Downloads/.%20http:/doi.org/10%201007/s10750-020-04370-3) Lyczkowski ER, Karp-Boss L (2014) Allelopathic effects of *Alexandrium fundyense* (Dinophyceae) on *Thalassiosira cf gravida* (Bacillariophyceae): a matter of size. J Phycol 50(2):376-387. http://doi.org/10 1111/jpy 12172 Epub 2014 Mar 15 PMID: 26988194 Macedo RS, Lombardi AT, Omachi CY, Rörig LR (2008) Effects of the herbicide bentazon on growth and photosystem II maximum quantum yield of the marine diatom *Skeletonema costatum*. Toxicol In Vitro 22 (3):716-22. http://doi.org/10 1016/j tiv 2007 11 012 Epub 2007 Nov 23 PMID: 18180139 1 605 2 606 6 609 10 612 11 613 19 619 23 622 24 623 27 625 28 626 29 627 31 628 32 629 35 631 44 638 48 641 51 643 52 644 53 645 55 646 56 647 57 648 58 649
-
- Magnusson M, Heimann K, Negri A (2008) Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar Pollut Bull 56:1545-1552. http://doi.org/:10 1016/j marpolbul 2008 05 023 1 651 2 652
	- Manimaran K, Panneerselvam K, Ashokkumar S, Prabu VA, Sampathkumar P (2012) Effect of copper on growth and enzyme activities of marine diatom *Odontella mobiliensis*. Bull Environ Contamin Toxicol 88:30-37. http://doi.org/:10 1007/s00128-011-0427-4
	- Mansano A, Moreira R, Dornfeld H, Freitas E, Vieira E, Sarmento H, Rocha O, Seleghim M (2017) Effects of diuron and carbofuran and their mixtures on the microalgae *Raphidocelis subcapitata*. Ecotox Environ Safe 142:312-321. http://doi.org/10 1016/j ecoenv 2017 04 024
	- Maronić SD, Ivna Š, Horvatić J, Pfeiffer T, Stević F, Waeg G, Jaganjac M (2018) S-metolachlor promotes oxidative stress in green microalga *Parachlorella kessleri* - A potential environmental and health risk for higher organisms. Sci Total Environ 637-638: 41-49. http://doi.org/10 1016/j scitotenv 2018 04 433
	- Mathur S, Allakhverdiev S, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (*Triticum aestivum*). Biochim Biophys Acta 1807:22-29. http://doi.org/10 1016/j bbabio 2010 09 001
	- Meddeb M, Niquil N, Grami B, Mejri K, Haraldsson M, Chaalali A, Pringault O, Sakka Hlaili A (2019) A new type of plankton food web functioning in coastal waters revealed by coupling Monte Carlo Markov Chain Linear Inverse method and Ecological Network Analysis. Ecol Indic 104:67-85. http://doi.org/10 1016/j ecolind 2019 04 077
	- Melliti Ben Garali S, Sahraoui I, de la Iglesia P, Chalghaf M, Diogène J, Ksouri J, Sakka Hlaili A (2016) Effects of nitrogen supply on *Pseudo-nitzschia calliantha* and *Pseudo-nitzschia cf seriata*: field and laboratory experiments. Ecotoxicol 25(6):1211-1225. http://doi.org/10 1007/s10646- 016-1675-1 Epub 2016 May 25 PMID: 27225994
	- Melliti Ben Garali S, Sahraoui I, de la Iglesia P, Chalghaf M, Diogène J, Ksouri J, Sakka Hlaili A (2020) Factors driving the seasonal dynamics of *Pseudo-nitzschia* species and domoic acid at mussel farming in the SW Mediterranean Sea. Chem Ecol 36(1):66-82. http://doi.org[/10](https://doi.org/10.1080/02757540.2019.1676417) [1080/02757540 2019 1676417](https://doi.org/10.1080/02757540.2019.1676417)
	- Mengelt C, Prézelin B (2005) A Potential Novel Link Between Organic Nitrogen Loading and *Pseudo-nitzschia spp* Blooms California and the World Ocean - Proceedings of the Conference http://doi.org/10 1061/40761(175)78
	- Mhadhbi T, Pringault O, Nouri H, Spinelli S, Hamouda B, Gonzalez C (2019) Evaluating polar pesticide pollution with a combined approach: a survey of agricultural practices and POCIS passive samplers in a Tunisian lagoon watershed. Environ Sci Pollut Res 26(1):342-361. http://doi.org/10 1007/s11356-018-3552-3
	- Mine A, Shooichi M (1975) Mode of action of bentazon: Effect on photosynthesis. Pest Biochem Physiol 5(5):444-450. http://doi.org/10 1016/0048-3575(75)90017-6
- Mohr MP (2019) Defense mechanisms in phytoplankton: traits and trade-offs Technical University of Denmark 99 p 47 687
	- Moncada A (2005) Environmental fate of diuron Environmental Monitoring Branch Department of Pesticide Regulation (http://www.cdpr ca gov/docs/empm/pubs/fatememo/diuron pdf)
- Moustakas M, Malea P, Zafeirakoglou A, Sperdouli I (2016) Photochemical changes and oxidative damage in the aquatic macrophyte *Cymodocea nodosa* exposed to paraquat-induced oxidative stress. Pestic Biochem Physiol 126:28-34. http://doi.org/10 1016/j pestbp 2015 07 003 Epub 2015 Jul 20 PMID: 26778431 54 692 55 693 56 694
- Mudge J, Houlahan J (2019) Wetland macrophyte community response to and recovery from direct application of glyphosate-based herbicides. Ecotoxicol Environ Safe 183:109475 http://doi.org/10 1016/j ecoenv 2019 109475 59 696 60 697

 Nelson DM, Treguer P, Brzezinski MA, Leynaert A, Queguiner B (1995) Production and dissolution of biogenicsilica in the ocean: revised global estimates comparison withregional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359-72 Nguyen DN, Caruso A, Thi TL, Bui T, Schoefs B, Gérard T, Manceau A (2012) Zinc affects differently growth photosynthesis antioxidant enzyme activities and phytochelatin synthase expression of four marine diatoms. Sci World J. 2012:982957. http://doi.org/:10 1100/2012/982957 Nödler K, Voutsa D, Licha T (2014).Polarorganic micropollutants in the coastal environment of different marine systems. Mar. Pollut. Bull 85:50-59. http://dx.doi.org/10. 1016/j.marpolbul.2014.06.024. Ortiz-Hernandez L, Enrique S-S, Castrejón-Godínez M, Dantan E, Popoca E (2013) Mechanisms and strategies for pesticide biodegradation: Opportunity for waste soils and water cleaning. Revista Internacional de Contaminacion Ambiental 29:85-104 Pandey L (2017) The use of diatoms in ecotoxicology and bioassessment: Insights advances and challenges. Water Res 115:1-20 Pandey L, Sharma YC, Park J, Choi S, Lee H, Lyu J, Han T (2020) Evaluating features of periphytic diatom communities as biomonitoring tools in fresh brackish and marine waters 194:67-77 http://doi.org/10 1016/j aquatox 2017 11 003 Parsons TR, Maita Y, Lalli CM (1984) A Manual of Chemical and Biological Methods for Seawater Analysis Pergamon Press Oxford 173 pp Pérès F, Florin D, Grollier T, Feurtet-Mazel A, Coste M, Ribeyre F, Michalet R, Boudou A (1996) Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosm. Environ Pollut 94:141-52. http://doi.org/:10 1016/S0269-7491(96)00080-2 Pesce S, Bouchez A, Montuelle B (2011) Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems. Rev Environ Contamin Toxicol 214:87-124.http://doi.org/10 1007/978-1-4614-0668-6_5 Pringault O, Lafabrie C, Avezac M, Bancon-Montigny C, Carre C, Chalghaf M, Delpoux S, Duvivier A, Elbaz-Poulichet F, Gonzalez C, Got P, Leboulanger C, Spinelli S, Sakka Hlaili A, Bouvy M (2016) Consequences of contaminant mixture on the dynamics and functional diversity of bacterioplankton in a southwestern Mediterranean coastal ecosystem. Chemosphere 144:1060- 1073[. http://doi.org/10 1016/j chemosphere 2015 09 093](http://doi.org/10%201016/j%20chemosphere%202015%2009%20093) Ramezani S, Saharkhiz M, Ramezani F, Mohammad Hossein F (2008) Use of essential oils as bioherbicides. J Essent Oil-Bear Plants 11:319-327. http://doi.org/10 1080/0972060X 2008 10643636 Ricart M, Barceló D, Geiszinger A, Guasch H, Alda MLD, Romaní AM, Vidal G, Villagrasa M, Sabater S (2009) Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere 76:1392-1401 Roubeix V, Mazzella N, Méchin B, Coste M, Delmas F (2011) Impact of the herbicide metolachlor on river periphytic diatoms: Experimental comparison of descriptors at different biological organization levels. Intern J Limnol 47 :239-249. http://doi.org/10 1051/limn/2011009 Sahraoui I, Sakka Hlaili A, Hadj Mabrouk H, Léger C, Bates SS (2009) Blooms of the diatom genus *Pseudo-nitzschia* H Peragallo in Bizerte lagoon (Tunisia SW Mediterranean). Diatom Res 24(1):175-190. http://doi.org[/10 1080/0269249X 2009 9705789](https://doi.org/10.1080/0269249X.2009.9705789) Sahraoui I, Grami B, Bates SS, Bouchouicha D, Chikhaoui MA, Mabrouk HH, Hlaili AS (2012) Response of potentially toxic *Pseudo-nitzschia* (Bacillariophyceae) populations and domoic acid 1 699 2 700 5 702 6 703 7 704 10 706 11 707 15 710 711 19 713 26 718 33 723 36 725 37 726 38 727 41 729 42 730 45 732 46 733 49 735 53 738 ⁵⁴ 739 56 740

- 743 to environmental conditions in a eutrophied SW Mediterranean coastal lagoon (Tunisia). Estuar 744 Coast 102:95-104. https://doi.org/10 1016/j ecss 2012 03 018 745 Sakka Hlaili A, Niquil N, Legendre L (2014) Planktonic food webs revisited: Reanalysis of results 746 from the linear inverse approach Prog Oceanogr.120:216-229. https://doi.org/10 1016/j pocean 2013 09 003 748 Sakka Hlaili A, Sahraoui I, Bouchouicha-Smida D, Melliti Garali S, Ksouri J, Chalghaf M, Bates SS, Lundholm N, Kooistra W, de La Iglesia P, Diogène J (2016) Toxic and potentially toxic diatom blooms in Tunisian (SW Mediterranean) waters: Review of ten years of investigations. Adv 751 Environ Res 48:51-69 Nova Science Publishers 572 Inc (Daniels J A editor) Schabhüttl S, Peter H, Weigelhofer G, Hein T, Weigert A, Striebel M (2012) Temperature and species 753 richness effects in phytoplankton communities. Oecologia 171 (2):527-536. http://doi.org/:10 754 1007/s00442-012-2419-4 Schmitt M, Altenburger R (2005) Predicting and observing responses of algal communities to 756 photosystem II-herbicide exposure using pollution-induced community tolerance and species-757 sensitivity distributions. Environ Toxicol Chem 24:304-312. http://doi.org/:10 1897/03-647 1 Schuler LJ, Rand GM (2008) Aquatic risk assessment of herbicides in freshwater ecosystems of South 759 Florida. Arch Environ Contam Toxicol 54(4):571-83. http://doi.org/10 1007/s00244-007-9085-2 Epub 2007 Dec 19 PMID: 18094912 Sherwani S I, Arif I A, Khan H A (2015). Modes of Action of Different Classes of Herbicides. [http://doi.org/1](http://doi.org/)0.5772/61779. 763 Smayda TJ (2006) Autecology of bloom forming microalgae: Extrapolation of laboratory results to field populations and the Redfield - Braarud debate revisited p $215-270$ In D V Subba Rao [ed] 765 Algal Cultures Analogues of Blooms and Application Science Publishers Enfield NH 766 Smedbol É, Lucotte M, Labrecque M, Lepage L, Juneau P (2017) Phytoplankton growth and PSII 767 efficiency sensitivity to a glyphosate-based herbicide (Factor 540°). Aquat Toxicol 192:265-273 768 http://doi.org/10 1016/j aquatox 2017 09 021 Epub 2017 Sep 28 PMID: 28992597 Stachowski-Haberkorn S, Jérôme M, Rouxel J, Khelifi C, Rincé M, Burgeot T (2013) 770 Multigenerational exposure of the microalga *Tetraselmis suecica* to diuron leads to spontaneous 771 long-term strain adaptation Aquat Toxicol 140 380-388 Stevenson R, Pan Y (2010) Assessing environmental conditions in rivers and streams with diatoms 773 The Diatoms: Applications for the Environmental and Earth Sciences Second Edition 774 http://doi.org/:10 1017/CBO9780511763175 005 775 Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental 776 questions: The JIP-Test In: Mathis P Ed photosynthesis: from light to biosphere KAP Press 777 Dordrecht. 977-980. http://doi.org/10 1007/978-94-009-0173-5_1142 Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescent transient In Behl RK Punia MS and Lather BPS (eds) Crop 780 Improvement for Food Security: 72-115 SSARM Hisar India Tang J, Hoagland KD, Siegfried BD (1997) Differential toxicity of atrazine to selected freshwater algae. Bull Environ Contamin Toxicol 59:631-637 Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: Inputs occurrence and environmental fate. Sci Tot Environ 293:117-127 Thomas M, Flores F, Kaserzon S, Reeks T, Negri A (2020) Toxicity of the herbicides diuron 786 propazine tebuthiuron and haloxyfop to the diatom *Chaetoceros muelleri*. Sci Reports 10 (1) 787 19592. http://doi.org/10 1038/s41598-020-76363-0 1 744 2 3 4 746 5 747 6 748 8 749 9 750 12 752 16 755 17 756 18 757 20 758 21 759 22 760 24 761 25 762 28 764 29 765 33 768 ³⁴ 769 38 772 42 775 43 776 44 777 46 778 47 779 50 781 51 53 783 54 784 57 786 58 787 65
- 10 11 13 14 15 19 23 26 27 30 31 32 35 36 37 39 40 41 45 48 49 52 55 56 59 60 61 62 63 64

Figure 1 $\frac{1}{2}$

-
-
-
-
-
-
-
-
-
-

 $\frac{20}{21}$ **Figure 2**

-
-
-

Table 1 Chemical family, physical proprieties and action modes of the different tested herbicides.

^a Sherwani *et al.*, 2015, ^b Finizio et al., **1997**, ^c Thurman and Meyer, 1996

Table 2 F ratios of two-way ANOVA analysis testing for effects of treatment (control/herbicide) and culture mode (monoculture/co-culture) on instantaneous growth rates (IGR) of *P. mannii* and *C. decipiens*

Suppl Mtrls (not cover letter - place cover letter in "comments")

Click here to access/download [Suppl Mtrls \(not cover letter - place cover letter in](https://www.editorialmanager.com/ectx/download.aspx?id=157009&guid=273ffd3f-49cb-4f0b-bda4-730a61bfb111&scheme=1) "comments") Figure captions (Sahraoui et al.).docx