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ABSTRACT

Multipath is an important source of error when using global navigation satellite systems (GNSS) in urban environment, leading to

biasedmeasurements and thus to false positions. This paper treats theGNSS navigation problem as the resolution of an overdetermined

system, which depends on the receiver’s position, velocity, clock bias, clock drift, and possible biases affecting GNSS measurements.

We investigate a sparse estimation method combined with an extended Kalman filter to solve the navigation problem and estimate

the multipath biases. The proposed sparse estimation method assumes that only a part of the satellites are affected by multipath, i.e.,

that the unknown bias vector is sparse in the sense that several of its components are equal to zero. The natural way of enforcing

sparsity is to introduce an ℓ1 regularization ensuring that the bias vector has zero components. This leads to a least absolute shrinkage



and selection operator (LASSO) problem, which is solved using a reweighted-ℓ1 algorithm. The weighting matrix of this algorithm is

defined as functions of the carrier to noise density ratios and elevations of the different satellites. Moreover, the smooth variations of

multipath biases versus time are enforced using a regularization based on total variation. For estimating the noise covariance matrix,

we use an iterative reweighted least squares strategy based on the so-called Danish method. The performance of the proposed method

is assessed via several simulations conducted on different real datasets.

INTRODUCTION

Multipath (MP) is one of the most difficult error sources that needs to be tackled for GNSS positioning [1]. MP signals are generally

due to reflections on various obstacles, and thus strongly depend on the geometric configuration of the scene of interest. More

precisely, in the absence of obstacle, the receiver will not suffer fromMP. On the contrary, e.g., when the receiver is next to buildings,

the received GNSS measurements are very likely to be subjected to MP. The mitigation of MP in GNSS has received a considerable

attention in the literature. MP can be mitigated for instance at the antenna level [2] or at the receiver level, more precisely working on

the correlator [3, 4] or the discriminator [5]. These techniques require to have access to the receiver’s hardware, which is not possible

when components on the shelf (COTS) have to be used. Dealing with MP at a measurement or position level is thus an interesting

alternative. A first MP mitigation technique consists in exploiting a 3D model of the environment to predict MP signals [6], and

to possibly combine this information with measurements acquired by other sensors, such as cameras or IMU (Inertial Measurement

Unit). However, these techniques require to have access to an accurate 3D model of the environment at any time instant. A second

option is to use the information available at the receiver resulting from pseudoranges, Doppler shifts, satellite ephemeris and C/N0.

Other techniques combine different measurements from the same satellite, e.g., by using the difference between the measurements

from two receivers leading to differential GNSS [7, ch. 8] or from two different users (collaborative or cooperative positioning) [8].

An interesting family of MP mitigation methods relies on statistical tests trying to exclude or correct faulty measurements. The

receiver autonomous integrity monitoring (RAIM) method belongs to this class of strategies [7, ch. 15]. A more recent strategy based

on a-contrario models allows the satellites affected byMP to be excluded from the set of measurements [9]. Note that these techniques

require redundant measurements, which can be restrictive in urban environment. Finally, it is interesting to mention other techniques

assuming that the presence of MP affects the Gaussiannity of the additive noise, which can be handled using Markov processes [10]

or Dirichlet process mixtures [11].

The point of view considered in this work is to model the effect of MP on GNSS measurements as sparse additive biases with

temporal smoothing as in [12, 13]) These additive biases are then estimated and subtracted from the GNSS measurements to mitigate

MP effects. However, we have observed that this method can be sensitive to the imperfect knowledge of the noise covariance matrix.

As a consequence, we propose to use the so-called Danish method [14] to estimate this covariance matrix. The main contribution

of this paper is to combine all these ingredients (sparse estimation, temporal smoothing of the biases and estimation of the noise

covariance matrix) leading to an improved positioning algorithm.

This paper is organized as follows: Section 1 summarizes some basic principles on satellite navigation, describing how measu-

rements (pseudoranges and pseudorange rates) are related to the state vector (position, velocity, clock bias and clock drift) and to

possible MP biases. This section also recalls the Kalman filtering steps that will be used to track the receiver position. Section 2

presents the methods proposed in [12, 13] to estimate MP biases using sparse estimation, formulating the positioning problem as a

penalized least squares problem with a weighted ℓ1 regularization and ℓ1 smoothing. Section 3 describes the Danish method allowing

the noise covariance matrix to be estimated, thanks to an iterative reweighted least squares (IRLS) algorithm. The proposed navigation

algorithm is presented in Section 4. Section 5 evaluates the performance of the proposed estimation strategy via experimental results,

showing interesting improvements for GNSS navigation.

1 GNSS NAVIGATION

1.1 STATE MODEL

The GNSS navigation problem is formulated using the method described in [7, ch. 7], which is summarized below. The unknown

state vector at time k (to be estimated) is defined as Xk = (xk, yk, zk, bk, ẋk, ẏk, żk, ḃk)
T where rk = (xk, yk, zk)

T and vk =
(ẋk, ẏk, żk)

T are the receiver position and velocity in a given frame, bk is the receiver clock bias, ḃk is the receiver clock drift, and

the subscript k refers to the kth time instant. A random walk is adopted for the state propagation, leading to

Xk+1 = FkXk + uk with Fk =

[

I4 (∆tk)I4
04 I4

]

(1)

where I4 is the 4 × 4 identity matrix, 04 is the 4 × 4 zero matrix, ∆tk is the time between time instants k and k + 1, and uk is a

Gaussian noise vector of covariance matrixQk ∈ R
8×8, i.e.,

uk ∼ N (08,Qk) (2)

where 08 is the zero vector of R
8 and N (.) is the normal distribution (closed-form expressions for Qk can be found in standard

textbooks such as [15, ch. 11], [16, ch. 12]).



1.2 OBSERVATION MODEL

To estimate the unknown state vector Xk, we will use two kinds of measurements: the pseudoranges, corresponding to the ranges

between the receiver and the satellites, and the pseudorange rates (equal to the Doppler measurements up to a multiplicative constant)

corresponding to the relative velocities between the receiver and the satellites. Denoting as sk the number of satellites that are visible

at time instant k, the number of measurements given by the receiver is 2sk, namely sk pseudoranges, denoted as ρ1,k, ..., ρsk,k, and sk
pseudorange rates, denoted as ρ̇1,k, ..., ρ̇sk,k. These measurements are gathered in the vector zk = (zk,1, ..., zk,2sk)

T ∈ R
2sk whose

components are defined as

zk,i = ρi,k and zk,i+sk = ρ̇i,k for i = 1, ..., sk. (3)

These measurements are related to the various components of the state vector since

ρi,k = ‖rk − ri,k‖2 + bk + εi,k (4)

ρ̇i,k = (vk − vi,k)
T rk − ri,k

‖rk − ri,k‖2
+ ḃk + ε̇i,k (5)

where

• ri,k = (xi,k, yi,k, zi,k)
T is the ith satellite position at time k expressed in the same frame as rk,

• vi,k = (ẋi,k, ẏi,k, żi,k)
T is the ith satellite velocity at time instant k expressed in the same frame as vk,

• ‖rk − ri,k‖2 =
√

(xk − xi,k)2 + (yk − yi,k)2 + (zk − zi,k)2 is the range between the user and the ith satellite,

• εi,k and ε̇i,k are the error terms associated with the ith propagation channel (accounting for ionospheric delay, tropospheric

delay, satellite clock biases, satellite position uncertainties, Sagnac effects, relativistic effects, MP biases and receiver noise).

Note that bk and ḃk do not depend on i, and that εi,k and ε̇i,k summarize all the error sources affecting the sk corresponding measu-

rements. After applying correction models for each error except MP, the measurement equations can be rewritten as

zk = hk(Xk) +mk + nk (6)

wheremk = (m1,k, ...,m2sk,k)
T ∈ R

2sk is the vector accounting for the potential MP biases,nk = (n1,k, ..., n2sk,k)
T ∈ R

2sk is the

receiver noise vector supposed centered and Gaussian with unknown covariance matrixRk ∈ R
2sk×2sk (as discussed in Section 3),

and hk is a nonlinear function which is not explicited here but can be deduced from (4), (5) and error models as in [7, ch. 7]. Provided

that the measurement equation is nonlinear, it is natural to use the extended Kalman filter (EKF) [7, ch. 3], [17, ch. 8] to estimate the

state vectorXk.

1.3 THE EXTENDED KALMAN FILTER FOR NAVIGATION

The EKF consists in applying a Kalman filter to the state equation (1) and the first order approximation around X̂k|k−1 (which is the

one step prediction of the Kalman filter) of hk(Xk) in (6),

zk ≈ hk(X̂k|k−1) +Hk(Xk − X̂k|k−1) +mk + nk (7)

whereHk ∈ R
2sk×8 is the Jacobian matrix of the function hk at point X̂k|k−1. This measurement equation can be rewritten as

zk − hk(X̂k|k−1)−mk = Hk(Xk − X̂k|k−1) + nk (8)

where the left hand side term is a nonlinear function of the state X̂k|k−1. Assuming thatmk is a known bias term and that Rk is a

known covariance matrix, the EKF leads to

X̂k|k−1 = Fk−1X̂k−1|k−1 (9)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1 (10)

Kk = Pk|k−1H
T
k

(

HkPk|k−1H
T
k +Rk

)−1
(11)

X̂k|k = X̂k|k−1 +Kk(zk − hk(X̂k|k−1)−mk) (12)

Pk|k = (I8 −KkHk)Pk|k−1. (13)

The next sections propose a method allowing the unknown bias vectormk and the unknown covariance matrixRk to be estimated.

These estimated quantities will be used in place ofmk andRk in (12) and (11).



2 SPARSE ESTIMATION THEORYAPPLIED TO GNSS MULTIPATHMITIGATION

This section recalls the principles of the sparse estimation method of [12] using the least absolute shrinkage and selection operator

(LASSO) problem and a reweighted-ℓ1 regularization.

2.1 THE LASSO PROBLEM

Assume that we have a vector of measurements ỹk ∈ R
2sk defined as ỹk = H̃kθk+ñk, where H̃k ∈ R

2sk×2sk is a known regression

matrix, θk ∈ R
2sk is an unknown vector (to be estimated) and ñk ∈ R

2sk is an unknown noise term1. When H̃k is not full rank,

the problem is underdetermined, and a classical way of estimating θk from the observed measurement vector ỹk is to consider a data

fidelity term 1
2‖ỹk − H̃kθk‖

2
2 penalized by an appropriate regularization. If one wants to promote the sparsity of θk , one can think

of defining this regularization as the ℓ1 norm of θk defined by

‖θk‖1 =

2sk
∑

i=1

|θk,i|. (14)

This problem formulation leads to the so-called LASSO estimator defined as [18]

θ̂k = argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 (15)

where λk ∈ R
+ is a fixed constant referred to as regularization parameter.

2.2 THE REWEIGHTED-ℓ1 ALGORITHM OF [12]

Candès [19] investigated a so-called reweighted-ℓ1 method defined as follows

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖Wkθk‖1 (16)

whereWk ∈ R
2sk×2sk is a diagonal weighting matrix. Ideally, the weights contained inWk should be inversely proportional to the

magnitude of the true unknown vector θk, i.e., such that

wk,i =

{ 1
|θk,i|

, θ0,i 6= 0,

∞, θk,i = 0.
(17)

However, this weight definition cannot be used in practice since θk is an unknown vector. An iterative solution was studied in [19]

to estimate the weights wk,i. However, this method did not provide promising results for our application, which motivated us to

investigate another reweighting scheme. Looking carefully at (17), we can see that if we have a priori information that θk,i has a large

(resp. small) value, we should define a low (resp. high) weight wk,i. The weighting scheme proposed in the next section takes this

observation into account.

2.3 A REWEIGHTED-ℓ1 METHOD FOR GNSS

In the presence of an additive bias affecting the measurement equation, introducing the notations yk = zk − hk(X̂k|k−1) ∈ R
2sk

and xk = Xk − X̂k|k−1, Eq. (7) can be rewritten

yk = Hkxk +mk + nk. (18)

The proposed MP mitigation method assumes that the bias vectormk is sparse, i.e., that some of its components are exactly equal to

0. In other words, we assume that among all the satellites, only a few of them suffer from MP. Exploiting this sparsity assumption,
we propose to solve the following problem

argmin
xk,mk

1

2
‖yk −Hkxk −mk‖

2
2 + λk‖Wkmk‖1 (19)

in order to estimate the bias vectormk, and feed it to the proposed EKF in (13). Regarding the weighting matrixWk, we propose to

consider the strategy of [12], leading to

w1(x) =











10
x−T

a

((

A× 10
F−T

a − 1
)

x−T
F−T

+ 1
)−1

, x < T

1, x ≥ T

(20)

where

1The meaning of the different vectors ỹk,θk, ñk in the GNSS context will be clarified in subsection 2.3.



• x is the value of C/N0 expressed in dBHz,

• T = 45 is a threshold after which the weight is set to 1 (indicating that the measurements are “good”),

• a = 80 allows the bending of the curve to be adjusted,

• F = 20 defines the value of C/N0 for which the function w1 is forced to have the weight defined by parameter A

• A = 30 controls the value of the function w1 for x = F (since w1(F ) = 1/A)

and

w2(x) =

{

sin2 (x)
sin2 (5◦)

x < 5◦

1 x ≥ 5◦
(21)

where x is a given satellite elevation expressed in degrees. The final weight for a given satellite introduced in the reweighted-ℓ1
approach is defined as the product of the two previous functions, i.e.,

wi,k [(C/N0)i,k, ei,k] = w1 [(C/N0)i,k]w2(ei,k) (22)

where wi,k is the ith diagonal element of the matrixWk, (C/N0)i,k and ei,k are the C/N0 and elevation associated with the ith

satellite at time instant k. These weights allow us to give more importance to satellites associated with high values of C/N0 and/or

high elevations, since these satellites are less likely to suffer from MP. In order to obtain a formulation similar to (16), it is interesting

to note that the minimization of (19) with respect to xk for a fixedmk has the following closed-form expression

xk = (HT
k Hk)

−1HT
k (yk −mk) (23)

which is the classical least squares solution. After replacing this expression of xk in (19), we obtain the so-called profile likelihood

L(mk) =
1

2
‖(I2sk −Πk)(y −mk)‖

2
2 + λk‖Wkmk‖1 (24)

whereΠk is the following projection matrix

Πk = Hk(H
T
k Hk)

−1HT
k . (25)

Finally, after introducing the following notations

ỹk = (I2sk −Πk)yk (26)

H̃k = (I2sk −Πk)W
−1
k (27)

θk = Wkmk (28)

the original problem (19) reduces to

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1. (29)

We identify a LASSO problem whose solution can be obtained using classical efficient algorithms [18, 20, 21]. In this paper, we have

used the “shooting algorithm” (detailed for instance in [22] and [23]). We have shown in [13] that enforcing smoothness to the MP

bias amplitudes provides better local results, as presented in the next subsection.

2.4 SMOOTH SPARSE ESTIMATION FOR GNSS

Based on the fused LASSO described in [24], we proposed in [13] to introduce a penalty associated with the temporal variations of

the different biases leading to the following problem

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖1. (30)

Note that the temporal smoothing is assigned to the weighted biases and not to the biases themselves. Indeed, this strategy induces

more smoothing to channels affected by large weights, which is a desired property.

However, some satellites might not be visible at some time instants k. Thus, the last regularization term has to be only evaluated

for satellites that are visible at time instants k and k − 1. In order to respect this constraint, we introduce the following penalty

‖θk − θ̂k−1‖1,Sk
=

∑

i∈Sk

|θi,k − θ̂i,k−1| (31)

where Sk is the set of indices associated with satellites that are jointly visible at time instants k and k− 1. This leads to the following
problem

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖1,Sk

(32)



3 ROBUST COVARIANCE ESTIMATION: THE DANISH METHOD

The Danish method is an iterative reweighted least squares algorithm based on the deviations between the observations and the

measurement model by modifying some a priori variances until some consistency has been achieved. The a priori variances used

in this work denoted as σ2
i,0, i = 1, . . . , 2sk were chosen as in [25]. They allow us to define an initial covariance matrix R0 =

diag(σ2
i,0)i=1,...,2sk , which is used to define the covariance matrix of the residuals at time instant k

Ck = R0 −Hk(H
T
k R

−1
0 Hk)

−1HT
k . (33)

Each value of the variance is then updated iteratively as a function of the corresponding residuals, where l refers to the current iteration

and i = 1, . . . , 2sk

σ2
i,l+1 = σ2

i,0 ×

{

exp
(wi,l

T

)

if wi,l > T

1 otherwise
(34)

with

wi,l =

∣

∣

∣

∣

∣

v̂i,l
√

Ck,i

∣

∣

∣

∣

∣

(35)

v̂i,l =
[

I −Hk(H
T
k WlHk)

−1HT
k Wl

]

(yk − m̂k) (36)

Wl = diag

(

1

σ2
i,l

)

(37)

T = F−1
(

1−
α0

2

)

(38)

where Ck,i is the ith diagonal element of Ck, the weights wi,l are the normalized residual updates after each iteration l, F is the

inverse distribution function of a N (0, 1) normal distribution, and α0 is the desired probability of false alarm (chosen as α0 = 0.02
in this paper). Note that the iterations (34) to (37) are made until some stopping criterion is satisfied (e.g., when the variances have

converged or when a maximum number of iterations has been reached). The noise covariance matrix is finally estimated as

R̂k = diag(σ2
i,l+1)i=1,...,2sk . (39)

4 PROPOSED NAVIGATIONALGORITHM

The proposed navigation method estimates the MP bias vector thanks to the proposed weighted sparse regularizations (with and

without smoothing, as in Section 2.3 and 2.4), uses the Danish method to estimate the noise covariance matrix as in Section 3, and

finally replaces these estimates into the EKF presented in Section 1.3. The final proposed strategy can be summarized as

1. estimate the unknown parameter vector θ̂k as the solution of

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 (40)

or2

argmin
θk∈R

2sk

1

2
‖ỹk − H̃kθk‖

2
2 + λk‖θk‖1 + µk‖θk − θ̂k−1‖1,Sk

(41)

2. estimate the bias vector as m̂k = W−1
k θ̂k,

3. estimate the noise covariance matrix as R̂k with the Danish method,

4. consider the EKF proposed in Section 1.3 with equations (9), (10), (11), (12) and (13).

5 EXPERIMENTAL RESULTS

To appreciate the efficiency of the proposed method and evaluate the interest of temporal smoothing, the navigation algorithm was

applied to real measurements provided by a Ublox AEK-4T receiver with and without temporal smoothing. The obtained results are

compared with the standard EKF (no bias estimation, no covariance estimation), the Danish method alone (no bias estimation, covari-

ance estimation thanks to the Danish method), the solution investigated in [12] (bias estimation thanks to sparse regularization without

2see [26] for an example of algorithm to solve this problem



temporal smoothing, no covariance estimation), referred to as Weighted LASSO, the solution investigated in [13] (bias estimation

thanks to sparse regularization with temporal smoothing, no covariance estimation), referred to as Fused LASSO, and the solution

provided by the receiver (which is a black box), referred to as Ublox. A reference solution was obtained during the measurement

campaign using a very accurate receiver, i.e., a Novatel SPAN composed of a GPS receiver Propak-V3 and an inertial measurement

unit (IMAR).

We decided to divide the whole campaign into two parts: the first part corresponds to few MP (sparsity assumption is then

appropriate), referred to as “light urban” and the second part is a more urban trajectory (where the sparsity assumption might fail),

referred to as “deep urban”. Note that the regularization parameters λk and µk were fixed by cross-validation leading to (λk, µk) =
(1, 1). The whole trajectory is depicted in Fig. 1. As one can see, this trajectory covers various scenarios from open sky (bottom) to
deep urban (top). The planar and altitude errors (versus time) are displayed in Fig. 2, and the corresponding cumulative distribution

functions (CDFs) are shown in Fig. 3. Finally, some error percentiles have been summarized in Tab. 1. The CDF plots show that

the solutions combining the weighted LASSO and the Danish method, and the Fused LASSO and the Danish method yield the best

results for both types of error, except for the maximum altitude error (whose minimum is reached by the Ublox). We can also notice

that the standard EKF does not provide good localization performance.

Figure 1: Studied trajectory.

Planar 50% 67% 75% 95% 99% Max

Standard EKF 6.25 11.72 15.10 29.75 41.19 68.487

Weighted LASSO 3.46 4.74 5.79 16.45 28.27 52.059

Fused LASSO 3.439 4.69 5.63 16.06 26.66 39.21

Danish 3.59 4.68 5.539 13.75 23.48 42.29

Weighted LASSO + Danish 3.31 4.32 4.91 12.71 21.86 42.58

Fused LASSO +Danish 3.34 4.33 9 4.97 12.27 21.20 44.46

Ublox 3.78 5.17 6.36 13.67 22.68 45.58

Horizontal 50% 67% 75% 95% 99% Max

Standard EKF 5.96 10 15.54 39.34 73.47 88.61

Weighted LASSO 5.13 6.06 6.66 14.04 26.93 49.11

Fused LASSO 5.03 5.89 6.45 13.17 26.36 35.32

Danish 5.46 6.19 6.71 12.51 18.05 33.27

Weighted LASSO + Danish 5.71 6.58 7.03 11.57 18.47 32.27

Fused LASSO +Danish 5.57 6.41 6.85 12.62 17.97 32.64

Ublox 10.05 12.65 14.08 16.55 17.24 22.73

Table 1: Chosen percentile of planar errors (top) and altitude errors (bottom) for the different methods (in meters).



Figure 2: Estimated planar (top) and altitude (bottom) errors versus time for the different methods.

Figure 3: Estimated planar (left) and altitude (right) error CDFs for the different methods.



To better characterize all these solutions, we have divided the whole campaign into two parts and have evaluated the navigation

performance for these two parts. The trajectory corresponding to a light urban scenario is depicted in Fig. 4. The corresponding

planar and altitude errors (versus time) are shown in Fig. 5, whereas the corresponding CDFs are displayed in Fig. 6. All methods

outperform the standard EKF, as the error is not centered white Gaussian. Note that all the proposed methods seem to be equivalent

in terms of CDFs. However, the Fused LASSO + Danish provides the best results with the lower maximum error.

Figure 4: Part of the trajectory with few MP and zoom.

Figure 5: Estimated planar (top) and altitude (bottom) errors versus time for the different methods for the light urban scenario.

The trajectory corresponding to a deep urban scenario is depicted in Fig. 7. The planar and altitude errors and the corresponding

CDFs are shown in Figs. 8 and 9. The solution given by the Ublox receiver provides the smallest planar error. Indeed, in such

environments, the sparsity assumption fails and the algorithms are not able to estimate all the biases. However, all the proposed

solutions outperform the standard EKF. Moreover, the proposedWeighted LASSO + Danish performs better than the Danish method,

hence the benefits of estimating the biases due to MP. It is interesting to note that the Fused LASSO + Danish does not provide good

results. This could be due to the fact that discontinuities of the MP biases in such environments are not contradictory and there is no

need to introduce a temporal smoothing for this part of the trajectory.



Figure 6: Estimated planar (left) and altitude (right) error CDFs for the different methods for the light urban scenario.

Figure 7: Studied trajectory with supposed many MP and zoom.



Figure 8: Estimated planar (top) and altitude (bottom) errors CDFs versus time for the different methods for the deep urban scenario.

Figure 9: Estimated planar (left) and altitude (right) error CDFs for the different methods for the deep urban scenario.



CONCLUSION

This paper investigated a modification of the reweighted-ℓ1 method investigated in [12] and its smoothed version introduced in [13]

to mitigate MP effects for GNSS navigation. The proposed modified algorithm exploits the joint smoothness and sparsity properties

of MP affecting the different satellite channels with an estimation of the measurement noise covariance matrix based on the Danish

method. Experiments conducted on real data clearly outlined the benefits of estimating jointly the measurement noise covariance

matrix, multipath biases and the position-clock bias state vector. Although the sparsity assumption fails in very harsh environments

such as urban canyons, the proposed method performs better than the standard extended Kalman filter. As future work, we think that

it might be interesting to develop algorithms switching between methods using smoothing or not, depending on the type of urban

scenario (resp. light or deep).
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