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Abstract: In this article, both numerical and experimental investigations were carried out on the
durability of hemp concrete. For this, an accelerated aging process was performed using cycles of
immersion, freezing and drying. Then, an experimental campaign was enabled to determine heat
and mass transfer properties, as well as the microstructure for both aged and reference materials.
Observations using a digital microscope showed the appearance of cracks at the interfaces and an
increase of the porosity of about 6%. These microstructural modifications imply a non-negligible
evolution of heat and mass transfer properties. Thus, a numerical model for the prediction of heat
and mass transfer was developed. The prediction of physical phenomena was computed using
both aged and reference material properties. It highlights the aging effects on the behaviour of the
hemp concrete. The numerical simulation results showed significant discrepancies between the
predicted relative humidity values for the two configurations (aged and reference) of about 18%
and a maximum phase shift of 40 min, due to the amplification of the mass transfer kinetics after
aging. Nevertheless, few deviations in temperature values were found. Thus, after aging, sensible
heat fluxes were overestimated compared to the reference case, unlike latent heat fluxes, where an
underestimation was shown.

Keywords: hemp concrete; hygrothermal properties; accelerated aging; microstructure; bio-based
materials

1. Introduction

Climate change has been observed over recent decades. This phenomenon is related
to gas emissions, particularly those from the building sector. Several regulations have
been proposed to reduce the environmental impact of construction, by increasing building
energy efficiency [1–3]. In France, the thermal regulations (RT2012 and RE2020) prescribe
the construction of building envelopes with low air tightness [4]. As a consequence, the
moisture content in indoor climates increases, which can lead to moisture disorders such
as mould growth [5,6] or low air quality [7].

To avoid these disorders, the choice of construction material is essential. Among the
available materials, the hygroscopic and bio-based ones [8–13], such as hemp concrete,
have interesting advantages from an energetic and environmental point of view [14]. In-
deed, this new, low energy-consuming material is mainly formulated from biomass (animal
or vegetal). It constitutes an essential solution to reducing the environmental impact, by
absorbing CO2, and the energetic impact, due to its promising thermal and hygric prop-
erties [8,9,13], which, consequently, ensures better comfort inside the living environment.
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Thus, several studies have been carried out to investigate the behaviour of such material,
regarding heat and mass transfer [8,15]. Recent studies have been aimed at integrating the
hysteresis effects on the moisture content, to accurately predict the hygrothermal behaviour
of hemp concrete [16–19]. More precisely [17,18], results showed that the predictions
are very sensitive to the model input parameters, such as the moisture capacity, main
adsorption and desorption curves, and the vapour diffusion resistance factor. In [13], it was
also demonstrated that the reliability of the model depends on the microstructure of the
hemp concrete. The morphological variations (due to swelling and shrinking) impact the
structure of the material. Therefore, the hygrothermal behaviour of the material is strongly
influenced by these phenomena [10,20,21]. Additional studies highlighted, through exper-
imental campaigns, the aging and time evolution of the material’s thermophysical and
microstructural properties [22–24].

Thus, there is a strong relation between the aging phenomena of the material, the
modification of the material properties and the heat and mass transfer in the materials. Few
experimental studies have investigated the effect of aging on the heat and mass transfer
properties of hemp concrete. In addition, no numerical investigations have taken account
of this effect on the predictions of the model. The objectives of this article are twofold.
First, the aging effects were investigated using an experimental campaign to estimate
the modification of the material properties. Then, a numerical model was developed
to analyse the prediction of the physical phenomena considering aged and reference
material properties.

2. Basis of the Model

The modelling of coupled heat, air and moisture transfers in the building envelope
is based on the establishment of the mass and energy conservation equations. In this
case, these equations are defined as a function of the transfer potentials that overcome the
problems of discontinuity encountered during the study of multilayer envelopes, namely:
temperature and vapour pressure. The main assumptions are summarised below:

• The different phases are in thermodynamic equilibrium at any point of the porous medium;
• The solid medium is homogeneous, isotropic, non-deformable and unreactive;
• Heat transfer by radiation is negligible compared to the other modes;
• The liquid phase consists of pure water;
• The gaseous phase obeys the law of perfect gases, consisting of water vapour and

dry air;
• The hysteresis and chemical reaction between phases are not considered;
• The evolution of the water content, as a function of temperature, is neglected;
• The evolution of the thermal conductivity, as a function of temperature and humidity,

is neglected;
• The transfer due to gravity is negligible compared to the other modes;
• The total pressure is considered to be constant.

2.1. Mass Conservation Equations

Moisture mass and energy balances are given by the following equations:

∂ul
∂t

= −div(jl) +
.

m (1)

∂uv

∂t
= −div(jv)−

.
m (2)

ρsCp
∂T
∂t

= −div
(

jq
)

(3)

where
.

m
[
kg/

(
m3·s

)]
is the phase change rate, jl,v

[
kg/

(
m2·s

)]
is the flux density of the

liquid and vapour phase, respectively, jq
[
J/
(
m2·s

)]
is the heat flux density, Cp [J/(kg·K)]
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is the heat capacity of the material, ul,v
[
kg/m3] is the water content (l: liquid and v:

vapour) and ρs
[
kg/m3] is the dry density.

2.1.1. Liquid Transfer

In the case of partially saturated porous materials, mass transfer mainly occurs in
two forms simultaneously: liquid and vapour transfer. For clarity, each phase is treated
separately. Transfer of the liquid phase is governed by a capillary pressure gradient
obtained by the application of Darcy’s law. The mass flux density of the liquid phase is
then expressed by Equation (4):

jl = −kl∇Pc (4)

Since a local equilibrium between the gaseous and liquid phases has been assumed,
Kelvin’s law is, therefore, applicable. This law is used to express the capillary pressure
gradient as a combination of vapour pressure and temperature gradient and is given by
Equation (5):

Pc =
RTρl

M
ln(RH) =

RTρl
M

ln
(

Pv

Pvsat

)
(5)

As the saturating vapour pressure depends on temperature, the temperature gradi-
ent appears in the term ∇Pc, in addition to the vapour pressure gradient, as shown in
Equation (6):

∇Pc =

Rρl
M

ln
(

Pv

Pvsat

)
+

RTρl
M

∂ ln
(

Pv
Pvsat

)
∂T

∇T +
RTρl
M·Pv

∇Pv (6)

where Pc [Pa] is the capillary pressure, R [J/(mol·K)] is the gas constant, RH [%] is the rela-
tive humidity, T [K] is the temperature, Pv [Pa] is the water vapour pressure, M [Kg/mol]
the water molar mass, ρl [Kg/m3] is the water density and kl [Kg/(m·s·Pa)] is the hydraulic
conductivity.

By introducing Equation (6) into Equation (4):

jl = −kl

Rρl
M

ln
(

Pv

Pvsat

)
+

RTρl
M

∂ ln
(

Pv
Pvsat

)
∂T

∇T − kl
RTρl
M·Pv

∇Pv (7)

In order to simplify this:

jl = −KT
l ∇T − KP

l ∇Pv (8)

where
[
KP

l
]
= kl

RTρl
MPv

[
kg

m·s·Pa

]
is the coefficient of liquid phase transfer, governed by a

water vapour pressure gradient, and
[
KT

l
]
= kl

(
Rρl
M ln

(
Pv

Pvsat

)
+ RTρl

M
∂ ln
(

Pv
Pvsat

)
∂T

)[
kg

m·s·K

]
is

the coefficient of liquid phase governed by a temperature gradient.

2.1.2. Vapour Transfer

The transfer of the vapour phase is a diffusive process under a vapour pressure
gradient, governed by Fick’s law. The mass vapour flux density is given by Equation (9):

jv = −δp∇Pv (9)

where jv [kg/(m2.s)] is the vapour mass flux density and δp [kg/(m·s·Pa)] is the water
vapour permeability.
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Finally, by adding Equations (1) and (2) and introducing the global moisture flux
(jm = jl + jv) obtained after the additivity of the liquid and vapour mass fluxes, the mass
balance equation becomes:

ρsCm
∂Pv

∂t
= div

(
(KP

l + δp)∇PV + KT
l ∇T

)
(10)

where Cm = 1
Pvsat

∂w
∂HR = [Kg/(Kg·Pa)] is the moisture storage capacity of the material.

2.1.3. Energy Transfer

In partially saturated porous media, heat transfer occurs in three forms: conduction
(expressed by Fourier’s law), convection through liquid and vapour fluxes, and the transfer
of latent heat due to phase changes. The density of the heat flux is expressed as follows [25]:

jq = −λ∇T + hl jl + hv jv (11)

where
hl = cl

(
T − Tre f

)
et hv = cl

(
T − Tre f

)
+ Lv = hl + Lv (12)

From Equation (12), the density of the heat flow becomes:

jq = −λ∇T + hl jm + Lv jv (13)

where Lv [J/Kg] is the latent heat of evaporation, hl , hv [J/Kg] are the mass enthalpies of
liquid and vapour water, respectively, cl [J/(Kg·K)] is the mass heat capacity, Tre f [K] is
the reference temperature and λ [W/(m·K)] is the thermal conductivity of the material.

By introducing the expressions of liquid (8) and vapour (9) flux densities into the
relationship (13), the heat flux density becomes:

jq = −
(

λ + hlKT
l

)
∇T −

(
hl(KP

l + δp) + Lvδp

)
∇Pv (14)

Finally, introducing Equation (14) into the energy conservation balance equation gives:

ρsCp
∂T
∂t

= div(λ∗∇T + χ∇Pv) (15)

where λ∗ =
(
λ + hlKT

l
)
[W/(m·K)] is the coefficient of heat transfer by conduction, due

to temperature gradient χ =
(
hl(KP

l + δp) + Lvδp
) [ W

m·Pa

]
, which is the coefficient of heat

transfer by convection due to the vapour pressure gradient.
Finally, the EDP system translating the hygrothermal behaviour prediction model is

as follows: {
ρsCm

∂Pv
∂t = div

(
(KP

l + δp)∇Pv + KT
l ∇T

)
ρsCp

∂T
∂t = div(λ∗∇T + χ∇Pv)

(16)

Boundary conditions are of great importance in numerical simulation, in order to
have a more accurate prediction close to realistic cases in terms of air flow at the material
boundary. In this case, the boundary conditions chosen were of the imposed flow type. The
heat flux (q) and the mass flux (g) are evaluated at the air/material interfaces as follows [26]:

q = hc

(
Tair − Tsur f

)
(17)

g = hm

(
Pv,air − Pv,sur f

)
(18)

where hc
[
W/

(
m2·K

)]
is the convective heat transfer coefficient, hm = 9.23 10−5 T

Sd Patm
[m/s] is

the convective mass transfer coefficient calculated by the Lewis method, and Sd = µ d [m]
is the vapour diffusion resistance, expressed in (m). The latter expresses the thickness of
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air of the same resistance as the material. d [m] is the thickness of the studied sample, and
µ [−] is the water vapour diffusion resistance factor.

2.2. Model Validation

To be able to use the developed model in a faithful way, it is essential to carry out
a validation of the model based either on a comparison of the numerical results with
experimental results, or with an analytical solution. In this case, the validation consisted
of comparing the numerical simulation results obtained by the developed model with
other reference results defined in the European standard EN 15026 (AFNOR 2008). The test
proposed by the standard consists of studying a very thick homogeneous material (20 m
semi-infinite wall) and reproducing the temperature and water content profiles after 7, 30
and 365 days. The initial and boundary conditions adopted are of the Dirichlet type and
are given in Figure 1:
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The input parameters for this material are summarised below (EN 15026).
The thermal conductivity as a function of water content is given by Equation (19):

λ = 1.5 + 15.8 ∗ 10−3w (19)

The hydraulic conductivity is also given as a function of water content as follows:

kl = exp(−39.2619 + 0.0704 ∗
(

w− 146
2

)
− 1.7420 ∗ 10−4 ∗

(
w− 146

2

)2
− 2.7953 ∗ 10−6(w− 146/2)3−

1.1566 ∗ 10−7 ∗ (w− 146/2)̂4 + 2.5969 ∗ 10−9 ∗ (w− 146/2)̂5
) (20)

Concerning water vapour permeability, it is given by the following expression:

δp =
(

0.01801528/R_const/293.15 ∗ 26.1e− 6/200(1− w/146)/
(
(1− 0.497)(1− w/146)2 + 0.497

))
(21)

The adsorption isotherm and the moisture storage capacity are given by the expres-
sions (22) and (23), respectively:

W = (146/
(

1 + (−8e− 8 ∗ 462 ∗ 293.15 ∗ 1000 ∗ log(HR))1.6
)0.375

(22)

Cm =
∂w

∂HR
(23)

Given the complexity and the strongly coupled nature of the partial differential
equations describing the phenomena of heat, air and moisture transfer, the resolution
was carried out by the finite element method, using the Comsol Multiphysics simulation
environment. This software is a powerful simulation code for solving a variety of research
and engineering problems, including the treatment of multiphysical problems where
several phenomena are involved simultaneously, such as the coupled transfer of heat and
moisture. The temperature and water content profiles obtained by the developed model
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have been compared with those of the literature (EN 15026 standard). The results are
presented in Figures 2 and 3.
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These results clearly show that the developed model allows perfect reproduction
of the temperature and water content profiles proposed by the EN 15026 standard, with
good accuracy. In addition, satisfying the standard result means that the numerical results
correspond to the standard results with a tolerance of 2.5%.

Based on these results, it can be concluded that, on the one hand, the proposed model
is able to finely predict the hygrothermal behaviour of this type of material proposed by the
standard and, on the other hand, that the Comsol Multiphysics environment is reliable and
can be used for future simulations. The model developed and implemented in Comsol was
then used to numerically study the effect of material ageing on its hygrothermal behaviour.

3. Materials and Methods

The material considered in this study is hemp concrete. It comprises hemp shives
with air lime and hydraulic binders and has been elaborated in the laboratory according to
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professional recommendations (see Table 1). After formulation, samples were conserved in
their moulds for four days, in a climate chamber at a temperature of 20 ◦C and a relative
humidity of 50%. Then, the moulds were disassembled to allow drying of the samples.
From this moment on, mass monitoring was carried out for a period of 24 h, in order to
obtain the drying kinetics. Investigations were started after sample mass stabilisation,
which corresponds to a mass variation of less than 0.1%.

Table 1. Standard proportion of lime binder, hemp shives and water, by mass, for concrete.

Hemp Shive (Chanvribat) Binder (Tradical PF70) Water

16% 34% 50%

The aim of the experimental campaign was to obtain the model input parameters of
aged and reference materials. Thus, the importance of aging phenomena on the prediction
of the physical phenomena was investigated. It is important to underline the fact that the
type of accelerated aging that needs to be chosen mainly depends on the climatic conditions
of the city where the material is to be used. For example, for regions with a mild climate,
such as coastal zones, less-severe accelerated aging was chosen. This protocol consists
in applying a succession of humidification and drying cycles at 85% and 20% relative
humidity, respectively. The temperature was kept constant at 30 ◦C and the duration
of the test was 8 months. Despite the long duration of this type of aging, we did not
observe significant changes in the properties of the material after aging. These results are
in line with the literature where authors have concluded that microstructural changes are
not sufficient to lead to modifications in material properties during the first months of
aging [27,28].

However, for harsh climates, where the climatic conditions are variable (e.g., Canada),
another type of accelerated aging was used in the laboratory to characterise the extreme
degradation case of these materials. The latter consisted of applying successive 48 h wetting
cycles, followed by a freezing phase at −18 ◦C, over 24 h. It ended with drying in a climatic
chamber at 50 ◦C, for 72 h. As illustrated in Figure 4, the entire design lasted 42 days. This
protocol reflects the extreme degradation that hemp concrete can undergo after several
years of use under harsh conditions.
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Figure 4. Accelerated aging protocol (immersion/freezing/drying).

Other samples, denoted as reference materials, were stored in a climatic chamber at
T = 23 ◦C and RH = 50%. At the end of the aging process, the samples were stored in
this chamber so that all materials (aged and reference) had the same thermal and mass
equilibrium state before characterisation.
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Concerning the characterisation procedure, the specific heat capacity was measured
by using the Calorimeter Calvet® device, which is based on a static measurement method.
The thermal conductivity was characterised by the λ-Meter Ep500e® device, based on the
guarded hot-plate method according to the standards EN 12667 [29] and EN 12664 [30].
The adsorption isotherm curves were evaluated according to a gravimetric experimental
approach, using the ProUmid device. The moisture storage capacity (Cm) was deduced
directly from the slope of the water sorption isotherm curve. Finally, the water vapour per-
meability was measured by using the Gravitest® device, which is based on the cup method
according to the standard NF-EN-12572 [31]. More information on the characterisation
methods can be found in these studies [9,12,32].

The results of the characterisation of aged and reference materials are presented in
Table 2. The sorption curves and moisture capacity of both materials are given in Figure
5a,b. The material properties correspond to the model inputs. As noted in Table 2, the
results highlight the impact of aging on the material properties. Modifications of the
microstructure have been observed. An increase of 6% of the total porosity was noted after
aging. Indeed, the hygrothermal variations that occurred during the aging process led
to swelling and shrinking of the hemp shives. Furthermore, the freezing cycles modified
the morphology of the material. As a consequence, remarkable differences between the
macroscopic properties were observed.

Table 2. Aged and reference properties used to feed the numerical model.

Samples
Tested Reference Standard

Deviation Aged Standard
Deviation

ρs [kg/m3] 3 484.56 4.12 480.27 4.36
λ [mW/m·K] 3 100.73 2.27 89.42 1.45
Cp[J/(Kg·K)] 1 872.34 - 902.60 -
δp [kg/(m·s·Pa)] 3 2.85 × 10−11 8.01 × 10−13 3.95 × 10−11 3.09 × 10−12

Porosity [%] 3 71.51 0.22 76.07 0.88
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The water vapour adsorption isotherms and moisture storage capacities of aged and
reference hemp concrete are shown in Figure 5a,b, respectively.

4. Results and Discussion
4.1. Aging Effects on the Prediction of Heat and Mass Transfer in Hemp Concrete

Using the properties for both the aged and reference materials, the predictions for
heat and mass transfer were computed using the model presented in Section 2. Two
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configurations were considered, isothermal and non-isothermal, inspired by the Nordtest
protocol [33,34].

4.1.1. Isothermal Case

The isothermal case is illustrated in Figure 6. The temperature was set as a constant
while the relative humidity varied with time. A sample of 20 cm of hemp concrete was
submitted to a moisture flux on one face for 72 h. The other material faces were assumed
to be adiabatic and impermeable, to ensure a unidirectional transfer. The total pressure
was assumed to be constant in this case. The initial and boundary conditions are given in
Figure 6.
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Figure 6. Schematic diagram showing the climatic conditions applied in the isothermal case.

The relative humidity profile for both materials is presented in Figure 7. Based on the
results, the hygrothermal behaviour of the aged material is different from the reference
one. Discrepancies of 12% and 9% are observed at t = 1100 min and t = 1430 min, respec-
tively. Those differences are probably related to the modification of the microstructure and
material properties of the aged material, as shown in Figure 8.

Energies 2021, 14, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 7. Isothermal case: Relative humidity profiles of aged (W) and reference (R) hemp concrete: (discontinuous line: 
reference material and continuous line: aged material). 

Indeed, the modification of the microstructure of hemp concrete after aging implies 
changes in the total porosity and pore size distribution, which modifies the physical pa-
rameters related to transfers within the material. As a result, significant changes in the 
hygric and thermal properties of the material have occurred (Figure 5, Figure 8, and Table 
2), hence the discrepancies observed. 

 
Figure 8. Photograph showing the effect of aging on the microstructure of hemp concrete: (a) reference hemp concrete; (b) 
aged hemp concrete. 

Furthermore, the kinetics of mass transfer are faster in the aged material. As can be 
seen in Figure 9, during the humidification process, the relative humidity in the aged ma-
terial is higher than the reference one. The amplitude is also higher. However, during the 
drying phase, the relative humidity becomes lower and reaches the defined boundary 
condition faster. In addition, a small offset in the dynamics was also noticed between the 
two materials. The maximal offset reached 24 min. This faster kinetic is due to the increase 
of the vapour permeability of the aged material, leading to a reduction of the vapour dif-
fusion resistance. 

(W)
(W)
(W)

(R)Reference

R
el

at
iv

e 
hu

m
id

ity
[-]

(a) (b) 1000 μm 1000 μm

Figure 7. Isothermal case: Relative humidity profiles of aged (W) and reference (R) hemp concrete:
(discontinuous line: reference material and continuous line: aged material).
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Figure 8. Photograph showing the effect of aging on the microstructure of hemp concrete: (a) reference hemp concrete; (b)
aged hemp concrete.

Indeed, the modification of the microstructure of hemp concrete after aging implies
changes in the total porosity and pore size distribution, which modifies the physical
parameters related to transfers within the material. As a result, significant changes in
the hygric and thermal properties of the material have occurred (Figure 5, Figure 8, and
Table 2), hence the discrepancies observed.

Furthermore, the kinetics of mass transfer are faster in the aged material. As can
be seen in Figure 9, during the humidification process, the relative humidity in the aged
material is higher than the reference one. The amplitude is also higher. However, during
the drying phase, the relative humidity becomes lower and reaches the defined boundary
condition faster. In addition, a small offset in the dynamics was also noticed between
the two materials. The maximal offset reached 24 min. This faster kinetic is due to the
increase of the vapour permeability of the aged material, leading to a reduction of the
vapour diffusion resistance.
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Figure 9. Isothermal case: Evolution of the relative humidity of aged and reference hemp concrete (W: Weathered; R:
Reference).

The temperature evolution of both materials is given in Figure 10. The difference in
the predictions is very small. Indeed, the boundary conditions consider a constant time
temperature. The temperature variations in the materials are mainly due to the coupling
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effects through the latent heat transfer. The small discrepancies observed arise from the
difference in the vapour permeability for both materials.
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Figure 10. Isothermal case: Temperature evolution of aged and reference hemp concrete (W: Weathered; R: Reference).

4.1.2. Non-Isothermal Case

For this second case study, the material was submitted to time-varying boundary con-
ditions, as shown in Figure 11. The sample was exposed to an increase of both temperature
and relative humidity at 80% and 20 ◦C for 8 h. Then, after 16 h, the temperature and
relative humidity decreased to 0.1 and 5 ◦C, respectively. The initial conditions were 20 ◦C
and RH = 0.5.

Energies 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 11. Dynamic climatic conditions applied in the non-isothermal case. 

Figures 12 and 13 give the time and space variation of temperature in both aged and 
reference materials. The difference between both predictions is less than 1 °C. 

 
Figure 12. Non-isothermal case: Temperature profiles of aged and reference hemp concrete (W: Weathered; R: Reference). 

However, during the drying process, the heat transfer occurs faster in the aged ma-
terial, due to a diminution of its thermal conductivity. During the humidification, the pre-
dictions almost overlapped between the two materials. During this phase, the mass trans-
fer influences heat transfer through latent phenomena. Since the aged material has higher 
vapour permeability, there is probably compensation between sensible and latent heat 
flux. 

Figure 11. Dynamic climatic conditions applied in the non-isothermal case.

Figures 12 and 13 give the time and space variation of temperature in both aged and
reference materials. The difference between both predictions is less than 1 ◦C.
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Figure 13. Non-isothermal case: Temperature evolution of aged and reference hemp concrete over time (W: Weathered; R:
Reference).

However, during the drying process, the heat transfer occurs faster in the aged ma-
terial, due to a diminution of its thermal conductivity. During the humidification, the
predictions almost overlapped between the two materials. During this phase, the mass
transfer influences heat transfer through latent phenomena. Since the aged material has
higher vapour permeability, there is probably compensation between sensible and latent
heat flux.

Figure 14 shows the profiles of relative humidity in both materials. The difference
reaches 18% at t = 1430 min. As for the previous isothermal case, faster mass transfer occurs
in the aged material due to higher vapour permeability.
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Figure 14. Non-isothermal case: Relative humidity profiles of aged and reference hemp concrete (W: Weathered; R:
Reference).

In Figure 15, an offset of 40 min can be observed in the dynamic mass transfer. This
difference in the kinetics of mass transfer leads to non-negligible discrepancies in the
prediction of the physical phenomena. Moreover, those discrepancies are higher for this
case than for the non-isothermal one. Indeed, the model considers the effect of mass
transfer under temperature gradient: the so-called “thermo-diffusion effect” [35–37].
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Reference).

4.2. Impact of Aging on the Energy Efficiency Assessment at the Wall Scale

It is important to remember that these accelerated aging tests do not simulate the real
case to which the materials are subjected over time. However, they allow simulation of the
extreme degradation case of these materials.

Additional, one-dimensional simulations were performed to evaluate the impact of
material aging effects on the energy efficiency assessment. A wall of 20 cm thickness,
built with hemp concrete, was submitted to climatic variations in the city of La Rochelle,
France. The outside boundary conditions are given in Figure 16. The internal temperature
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and relative humidity were set, as illustrated in Figure 16. A slight increase in both fields
occurred during the summer period. The initial condition was T = 20 ◦C and RH = 0.5. The
investigations were carried out for one year in both configurations. The first one assumed
a reference material, with standard material properties. The second one considered a wall
with aged material properties.
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Figure 16. Inside and outside boundary conditions applied to the studied wall: (a) Temperature;
(b) Relative humidity.

The impact on the energy efficiency was evaluated through the computation of the
inside heat flux jq, the monthly conduction loads E and the inside moisture flux jm of
the studied wall, in order to evaluate the behaviour of hemp concrete in an extreme
degradation case.

Figure 17a–c shows the time evolution of the latent, sensible and total heat flux,
respectively. In addition, Figure 18a gives the probability density function of the difference
of heat flux between both configurations. The sensible heat flux is overestimated by the
simulation considering the reference material properties. Inversely, the latent heat flux is
underestimated for the same configuration. These results are consistent with the previous
ones and the modification of the macroscopic material properties, particularly the vapour
permeability and the thermal conductivity. The primer is higher, while the latter is lower,
for the aged material. One can remark that the sensible flux has a higher magnitude
than the latent one for both configurations. Thus, the total flux is higher in the reference
configuration. As a consequence, the conduction loads are lower in the case of aged
material, as illustrated in Figure 18b. In other words, the thermal efficiency is improved
with aged materials.
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Figure 19b compares both configurations. For most of the occurrences, the difference
between the moisture flux in both configurations is negative. Thus, the magnitude of the
moisture flux is higher for the aged material. Consequently, more moisture is released by the
wall to the inside air zone in the case of aged material. This is mainly due to a modification
of the sorption cure and vapour permeability transfer by the aging phenomena.
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In fact, these results only concern this type of accelerated aging (immersion/gel/drying).
A different type of aging can give rise to different results. It is important to note that the
physical model considers the aging effects through the macroscopic material properties.
The aging phenomena induces a modification of the microstructure of the material through
the phenomena of (i) swelling and shrinking of the fibres, (ii) the deterioration of the
interface fibres/binders and (iii) the leaching of pore solution ions [20]. These modifications
impact the macroscopic properties, such as vapour permeability, sorption curves and
thermal conductivity, and are determined using an experimental campaign. The modified
macroscopic properties were used in the model so that the aging effects on the prediction
of heat and mass transfer could be investigated. At no point does the model include a
prediction of the degradation of the microstructure.

5. Conclusions

This study presents an experimental and numerical investigation of the aging effects
on the hygrothermal behaviour of hemp concrete. For this, samples were submitted to
several cycles of wetting, drying and freezing. Then, an experimental campaign was
undertaken to determine the transfer properties of both aged and reference materials. In
addition, a model to predict the phenomena of heat and mass transfer in the material was
proposed and validated using results from the literature. To investigate the aging effects
on the model predictions, the model inputs were defined according to the properties of
both materials. The investigations led to the following conclusions:

• According to the experimental results, the aging protocol had a significant impact
on the microstructure of the hemp concrete. Observations made using a digital
microscope highlighted important cracks at the interface between the hemp shives
and the binder. Those cracks were induced by swelling and shrinking of the hemp
shives due to their sensitivity to heat and mass variations. Moreover, an overall
increase of the porosity (by 6%) was observed for the aged material. The modifications
of the microscopic properties led to a 39% increase of the vapour permeability and



Energies 2021, 14, 7005 17 of 19

11% of the thermal conductivity. In addition, significant differences were noted on the
sorption curve and moisture capacity.

• According to the numerical investigations, a validated model was proposed, based
on a normative comparison. For both cases, isothermal and non-isothermal, the
aging effects modified the predictions of the heat and mass transfer, compared to the
reference material. In the isothermal case, the difference reached 12% between the
relative humidity profiles. In the second case, those differences were increased by 6%,
highlighting the coupling effects between heat and mass transfer. Furthermore, the
sensible heat flux was overestimated by the simulation considering the properties of
the reference material. As for the latent heat flux, it was underestimated for the same
configuration. Consequently, the conduction loads were lower in the case of aged
materials. In other words, thermal efficiency is improved with aged materials.

Lastly, these results highlight the importance of aging effects on the hygrothermal
behaviour of hemp concrete, using experimental and numerical investigations. Given the
aggressiveness of the accelerated aging protocol applied in this study, it is important to note
that this protocol reflects the extreme degradation case that hemp concrete can undergo
after several years of use in harsh climates.
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