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ABSTRACT. We consider a mesoscopic model for a spatially extended FitzHugh-Nagumo neural network
and prove that in the regime where short-range interactions dominate, the probability density of the
potential throughout the network concentrates into a Dirac distribution whose center of mass solves the
classical non-local reaction-diffusion FitzHugh-Nagumo system. In order to refine our comprehension
of this regime, we focus on the blow-up profile of this concentration phenomenon. Our main purpose
here consists in deriving two quantitative and strong convergence estimates proving that the profile
is Gaussian: the first one in a L' functional framework and the second in a weighted L? functional
setting. We develop original relative entropy techniques to prove the first result whereas our second
result relies on propagation of regularity.
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1. INTRODUCTION

1.1. Physical model and motivations. Over the last century, mathematical models were built in
order to describe biological neural activity, laying the groundwork for computational neuroscience.
We mention the pioneer work A. Hodgkin and A. Huxley [21] who derived a precise model for the
voltage dynamics of a nerve cell submitted to an external input. However a general and precise
description of cerebral activity seems out of reach, due to the number of neurons, the complexity of their
behavior and intricate interactions. Therefore, numerous simplified models arose from neuroscience
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over the last decade allowing to recover some of the behaviors observed in regimes or situations of
interest. They may usually be interpreted as the mean-field limit of stochastic microscopic models.
We mention integrate-and-fire neural networks [4, 7, 5], time-elapsed neuronal models [9, 8, 10, 30]
and also McKean-Vlasov models including voltage and conductance variables [6, 31]. In this article,
we study a FitzHugh-Nagumo neural field represented by its distribution u(¢, ¢, u) depending on time
t, position « € K with K a compact set of R¢, and u = (v,w) € R? where v stands for the membrane
potential and w is an adaptation variable. The distribution u is normalized by the total density po(x)
of neuron at position . Therefore p is a non-negative function taken in ¢° (R+ x K, L (Rz)) which
verifies

/ p(t,z,u)du = 1, V(t,z) € Rt x K,
R2

and which solves the following McKean-Vlasov equation (see [11, 12, 27] for other instances of such
model)

O pr + 9y (N(v) —w = Kalpo pl) ) + 0w (A(v,w) ) — Oop = 0,
where the non-linear term g [po ] it is induced by non-local electrostatic interactions: we suppose
that neurons interact through Ohm’s law and that the conductance between two neurons is given by
an interaction kernel ® : K2 — R which depends on their position, this yields

Kolporl(t.z0) = [ (aa!) (0 =) pola e, @' )’ du
K xR2

Moreover, the other terms are associated to the individual behavior of each neuron, given in our context
by the model built by R. FitzHugh and J. Nagumo in [17, 28]. They consist in a drift N € €2 (R),
which is a confining non-linearity: setting w(v) = N(v)/v we suppose

(1.1a) limsup w(v) = —o0,
[v] = 400
w(©)]
(1.1b) sup — < +o00,
i >1 [vfP!

for some p > 2. For instance, these assumptions are met by the original model proposed by R.
FitzHugh and J. Nagumo, where N is a cubic non-linearity

N@w) =v — v,
On top of that A drives the dynamics of the adaptation variable, it is given by
Av,w) = av — bw + ¢,

where a, ¢c € R and b > 0. We also add a diffusion term with respect to v in order to take into account
random fluctuations of the voltage. This type of model has been rigorously derived as the mean field
limit of microscopic model in [1, 3, 12, 27, 25]. Well posedeness of the latter equation is well known
and we do not discuss it here. We refer to [2, Theorem 2.3] for a precise discussion over that matter.

1.2. Regime of strong short-range interactions. In this article we consider a situation where ®
decomposes as follows

1
@(w,m') = \Ij(mvm/) + gfso(m—x,%

where the Dirac mass dy accounts for short-range interactions whereas the interaction kernel ¥ models
long-range interactions: it is ”smoother” then &y since we suppose ¥ € €9 (Kw, L' (Kw/)) and assume
the following bounds to hold

(1.2) sup / |W(, )| + ’\I/(w,m')‘r dz’ < +oo0,
reK JK

for some r > 1 (we denote 1’ its conjugate: ' = (r — 1)/r). We point out that our assumptions on ¥

are quite general, this is in line with other works which put great efforts in order to consider general

interactions [22]. The scaling parameter ¢ represents the magnitude of short-range interactions; we

focus on the regime where they dominate, that is, when € < 1. From these assumptions, the equation

on x4 can be rewritten as

(13) O + D (N(0) —w— Kl 1) 1) + O (A (o,0) ) — 020 = 00, (0= V7)),
2



where the averaged voltage and adaptation variables U = (V°, W) at a spatial location x are defined
as

Ve(t,xe) = / v p(t,z,u) du,
(1.4) k2
We(t,z) = /2w pe(t, e, u)du.
R
Previous works already went through the analysis of the asymptotic ¢ < 1 and it was proven that
in this regime the voltage distribution undergoes a concentration phenomenon. We mention [11]
which investigates this subject in a deterministic setting using relative entropy methods and also [33]

where the author study this model in a spatially homogeneous framework following a Hamilton-Jacobi
approach. These works conclude that as € vanishes, u® converges as follows

Ma(t7 T, ’LL) 5_>—>0 5V(t,:l:) (’U) ® ﬂ(ta Z, ’IU) )

where the couple (V, i) solves

0V = NO) =W — Lu[V],
(15) {

O it + Oy (A(V7 w)ﬁ) =0,
with
W = /w,u(t, x,w) dw,
R
and where £,, [V] is a non local operator given by
Loy V=V U py — U (poV),

where %, is a shorthand notation for the convolution on the right side of any function g with ¥

Uk, g(x) = /K\I/(zc,a:’) g(z')dz'.

Then the concentration profile of u® around &y was investigated in [2]. The strategy consists in
considering the following re-scaled version v of u®

1
e (t, x, u) = ﬁzﬁ <t, T, ————

where 6° shall be interpreted as the concentration rate of u® around its mean value V¢. Under the
scaling 6 = /e, it is proven that

1. €~ = e %

(1.6) Ve~ v Mps @1,
where v solves the following linear transport equation

(17) 6tl7— b&w(wﬂ) = 0,

and where the Maxwellian M 05 is defined as

E(x v 2
M e () (v) = Mexp (— po(x) H) .

27 2
The latter convergence translates on u® as follows
(1.8) pe(t, x,uw) -~ M oe-2 (v — V) @ [it, @, u)
with 6° = 4/e. More precisely, it was proven in [2] that (1.8) occurs up to an error of order ¢ in

the sense of weak convergence in some probability space. Our goal here is to strengthen the results
obtained in [2] by providing strong convergence estimates for (1.8). The general strategy is to prove
(1.6) on v* in strong topology and then to deduce (1.8) on . The main difficulties to achieve this
is twofold. On the one hand, since the norms associated to strong topology are usually not scaling
invariant, the time homogeneous scaling §° = /¢ comes down to considering well-prepared initial
conditions. Therefore we find an appropriate scaling 6 which enables to treat general initial condition.
On the other hand, the proof is made challenging by the cross terms between v and w in (1.3). This
issue is analogous to the difficulty induced by the free transport operator in the context of kinetic
theory [14, 19, 20]. In our context, we propagate regularity in order to overcome this difficulty and
3



obtain error estimates.

This article is organized as follows. We start with Section 2, in which we carry out an heuristic
in order to derive the appropriate scaling #° and then state our two main results. We first provide
convergence estimates for p in a L' setting, which is the natural space to consider for such type
of conservative problem (see Theorem 2.2). This result is a direct consequence of the convergence
of the re-scaled distribution v° (see Theorem 2.1) which is obtained in Section 3. Then we propose
convergence estimates in a weighted L? setting (see Theorem 2.4). Once again this result is the
consequence of the convergence of v° (see Theorem 2.3) provided in Section 4. We emphasize that the
latter result allows us to recover the optimal convergence rates obtained in [2] and to achieve pointwise
convergence estimates with respect to time. This analysis is in line with [27], which focuses on the
regime of weak interactions between neurons (this corresponds to the asymptotic € — +o00 in equation

(1.3)).

2. HEURISTIC AND MAIN RESULTS

As mentioned before the time homogeneous scaling #° = /¢ comes down to considering well-
prepared initial conditions. We seek for a stronger result which also applies for ill-prepared initial
conditions. To overcome this difficulty, our strategy consists in adding the following constraint on the
concentration rate

0t =0)=1.
In this setting, the equation on v* is obtained performing the following change of variable
v— Ve .
(2.1) (t,v, w)— t,T,w—W
in equation (1.3). Following computations detailed in [2], it yields
. 1 1d e
(2.2) Oy v° + divy [b5 ] = Wa” [(2 g 0°|% + % 198\2> v Ve +avu€] :

where b{ is given by
(6°)™" Bj (t, 2, 6% v, w)

Ap (6°v,w)

(2.3) b (¢, z,u) =

and Bj is defined as
Bit,z,u) = NV +v) — NV°) —w — vUx* pg(x) — € (1),
with &€ (u°) the following error term

(2.4) Es iz, ) = - N(v)p (t,z,u) du — N (V° (L, 2)) ,

and where Ag is the linear version of A
Ap(u) = A(u) — A(0).

Since we expect concentration with Gaussian profile M as € vanishes, and keeping the leading order
in (2.2), we find that 6° should verify

1d 05
S 0+ B = g5,
0°(t =0) =1,

whose solution is given by the following explicit formula

(2.5) 6°(t, 2)? = (1 — exp(~(2p5(2)t) /) + exp (—(2p5(a)t) /).

Therefore, we obtain a time dependent 6°, which is of order /¢, up to an exponentially decaying
correction to authorize ill-prepared initial conditions. With this choice, the equation on v* rewrites:

. 1
(2.6) O V¥ + divy [byv°] = W}"pg [v°],
4



where by is given by (2.3) and the Fokker-Planck operator is defined as
o (1] = 0, [ 0v" +0,0°] .

Let us now precise our assumptions on the initial data. We suppose the following uniform bound-
edness condition on the spatial distribution pg

(2.7) ps € €°(K) and m, < p§<1/m,,
as well as moment assumptions on the initial data
(2.8a) sup / lu|? s (2, u) du < m,,
zeK JR?
(2.8b) | P i) ) dude < m,.
KxR2

where p and ' are given in (1.1b) and (1.2), for constants m., m,, M, uniform with respect to . All
along our analysis, we denote by 7,, the translation by wy with respect to the w-variable, for any
given wp in R
Two V (8,2, v,w) = v (t,x,v,w+ wp) .

Since well posedeness of the mean field equation (1.3) and the limiting model (1.5) is well known, we
do not discuss it here and refer to [2, Theorems 2.3 and 2.6] for a precise discussion on that matter.
To apply these results we suppose the following assumptions which are not uniform with respect to &
on 45

sup/ elul*/2 po(x, u)du < +oo,
R2

(2.9) wekt

ig}p{ HVU\//TE(sc, ) ‘ L2e2) < +o0,
and for the limiting problem (1.5), we suppose
(2.10) Vo, fig) € €° (K) x €° (K, L' (R)) .

2.1. L' convergence result. In the following result, we provide explicit convergence rates for v®
towards the asymptotic concentration profile of the neural network’s distribution p° in the regime of
strong interactions in the following L' setting

LYLy, = L™ (K, L' (R?)) .
We prove that the profile of concentration with respect to v is Gaussian and we also characterize

the limiting distribution with respect to the adaptation variable w. We denote by H the Boltzmann
entropy, defined for all function p : R? — R as follows

ip) = [ o) du.

Theorem 2.1. Under assumptions (1.1a)-(1.1b) on the drift N, assumption (1.2) on the interaction
kernel W, consider the unique sequence of solutions (uf)eso to (1.3) with initial conditions satisfying
assumptions (2.7)-(2.9) and the solution v to equation (1.7) with an initial condition Dy such that

(2.11) vg € L™ (K, W21 (R)) , and sup/ |w Ow Doz, w)| dw < +00.
zeK JR
On top of that, suppose that there exists a positive constant my such that it holds
(2.12) su% 116 = Two 6 |l pgerr, < ma |wol, Vwy e R,
e>

and suppose that there exists a positive constant mo such that

(2.13) sup | H[v] | gy < m3-
e>0
Then, there exists a positive constant C independent of € such that for all € less than 1, it holds

t
/0 Hf - MP?J@DHL;OL}L (s)ds < 2V2t || 75 — DOH}J/(;L}U + Ve (4ﬁm2 + Ceth) ,
5



for all time t > 0. In particular, under the compatibility assumption

_ _ 1/2 _
HVS - VOHL;’EOL}U c50 O(\/g) )

it holds

t
sup |:€_2bt/0 Hye(s) — Mp: @D(s) HL%OL}L ds

teRt

— 0(ve).

e—0

In this result, the constant C' only depends on my, msy, my, and m, (see assumptions (2.7)-(2.8b)) and
the data of the problem vy, N, ¥ and Ap.

The proof of this result is divided into two steps. First we prove that v® converges towards the
following local equilibrium of the Fokker-Planck operator

—&
M @ V%,

where 7 is the marginal of v* with respect to the re-scaled adaptation variable

ve(t, x, w) = /l/s(t,m,u)dv,
R

and solves the following equation, obtained after integrating equation (2.6) with respect to v
(2.14) 8t17€—68w(w175):—aOE&U/UZ/E(t,w,u)dU.
R

The argument relies on a rather classical relative entropy. However, the analysis becomes more intricate
when it comes to the convergence of the marginal 7. As already mentioned, the proof of convergence
is made challenging by cross terms between v and w in equation (2.6) inducing in equation (2.14) the
following term which involves derivatives of v*

aw/vug(t,w,u)dv.
R

To overcome this difficulty, we perform a change of variable which cancels the latter source term and
then conclude by proving a uniform equicontinuity estimate.

We now interpret Theorem 2.1 on the solution u to equation (1.3) in the regime of strong interac-
tions

Theorem 2.2. Under the assumptions of Theorem 2.1 consider the unique sequence of solutions
(1f)eso0 to (1.3) as well as the unique solution (V, [i) to equation (1.5) with an initial condition
fio which fulfills assumption (2.10)-(2.11). On top of that, we suppose the following compatibility
assumption to be fulfilled

£ £ —E — 1/2
(2.15) [Uo = UG [l ooy + Nlp0 = £ lieia) + 15 — Foll e =, O (VE) -

There exists (C, g9) € (Ri)z such that for all € less than &g, it holds

t
[ = gy (a5 < CCTVE L v e R

where the limit p is given by
onoi= Mpo|95|72 ('U — V) ®,E
In this result, the constant C' and ¢ only depend on the implicit constant in assumption (2.15), on the

constants my, ma My, my and m, (see assumptions (2.12)-(2.13) and (2.7)-(2.8b)) and on the data
of the problem fg, N, ¥ and Ay.

Proof. Since the norm || - || £1(g2) is unchanged by the re-scaling (2.1), this theorem is a straightforward
consequence of Theorem 2.1 and Proposition 2.5, which ensures the convergence of the macroscopic
quantities (V°, W) . O

6



On the one hand we obtain L' in time convergence result which is a consequence of the relative
entropy estimate between v and M. This is somehow similar to what is obtained in various classical
kinetic models. Let us mention for instance the diffusive limit for the Vlasov-Poisson-Fokker-Planck
[14, 19, 26]. On the other hand, we obtain the convergence rate O(v/€) instead of the optimal conver-
gence rate, which should be O(g) as rigorously proven for weak convergence metrics (see [2], Theorem
2.7). This is due to the fact that we use the Csizar-Kullback inequality to close our L! convergence
estimates. Therefore it seems quite unlikely to recover the optimal convergence rate in a L' setting.
This motivates our next work, on the L? convergence (Theorems 2.3 and 2.4), in which pointwise in
time convergence is achieved.

2.2. Weighted L? convergence result. In this section, we provide a pair of result analog to The-
orems 2.1 and 2.2 this time in a weighted L? setting. Since our approach relies on propagating
w-derivatives, we introduce the following functional framework

AN () = 1 (K, HY (m5))
equipped with the norm
19 Ltgmey = 50 {17 @, ) g oms) } »
reK

where HY(m%,) is the weighted Sobolev space whose norm is given by

2 —
17 gy = 3= [

2

Oh, v(w)| ms(w)du,

and where the weight m;, is given by

. _ 27 1, .
(2.16) e (u) = Wexp(Q(pomw+mw|2>),

for some exponent x > 0 which will be prescribed later. We also introduce the associated weight with

respect to the adaptation variable
_ 27 K. 9
m(w) = \/— exp | = |w|[7).
(w) = /= exp (5 ful?)

and denote by % (m) the corresponding functional space associated to the marginal 7, depending
only on (z,w) € K x R.
Hence, the following result tackles the convergence of v in the L? weighted setting

Theorem 2.3. Under assumptions (1.1a)-(1.1b) on the drift N and the additional assumption

(2.17) |s|u>p1 (vw(v) — CoN'(v)) < +o0,

for all positive constant Cy > 0, supposing assumption (1.2) on the interaction kernel ¥, consider the
unique sequence of solutions (11°)e>o to (1.3) with initial conditions satisfying assumptions (2.7)-(2.9)
and the solution v to equation (1.7) with an initial condition vy. On top of that, consider an exponent
Kk which verifies the condition

1
2.1 —
(2.18) we (g5

and consider a rate au lying in (0, 1-— (2b/<c)*1) . There exists a positive constant C' independent of
e such that for all € between 0 and 1 the following results hold true

(1) consider k in {0, 1} and suppose that the sequence (1),  verifies
(2.19) sup || 14 || ks (mey < +00,
e>0

and that Dy verifies

(2.20) vy € HK(m).
7



Then for all time t in R it holds
17(6) = 0 sy
< ¢t (H vy — o H%k(m) + C |y ijk-‘,—l(mg) <\/§ + min{l’ Ot e Bms })) ’

where the asymptotic profile v is given by (1.6);
(2) suppose assumption (2.19) with index k = 1 and assumption (2.20) with index k = 0, it holds
for all timet >0

155(8) = 2@ lrogmy < € (175 = Pollwrogmy + C 19 llpagmey e /el + 1) .

In this theorem, the positive constant C' only depends on k, o, My, my, My (see assumptions (2.7),

(2.8a) and (2.8b)) and on the data of the problem: N, Ay and V.

The proof of this result is provided in Section 4 and relies on regularity estimates for the solution
V¢ to equation (2.6). These regularity estimates allow us to bound the source term which appears in
the right hand side of equation (2.14).

We now interpret the latter theorem in terms p°. Let us emphasize that since m® defined by (2.16)
depends on e through the spatial distribution pg, we introduce weights which do not depend on e
anymore and which are meant to upper and lower bound m¢. We consider (, ) lying in K x R? and

define
1

exp <8 (po(a) v + KIWI2)> :

m (w) = K2 exp <E \w[2>,

=

mg (u) = (po(z) k)

mg (u) = (po(T) k)

w) = K2 exp (25 wl*).

With these notations, our result reads as follows

Theorem 2.4. Under the assumptions of Theorem 2.3 consider the unique sequence of solutions
(uf)e>0 to (1.3) and the solution (V, i) to (1.5) with initial condition (V, i) satisfying (2.10). The
following results hold true

(1) Consider k in {0, 1} and suppose

(2:21) sup | 16 | w1 (m+y < +09,
e>0
as well as the following compatibility assumption
(2.22) 1o = Us ey + 100 = 8 Iy + 15 — o Loy =, O () -

On top of that, suppose that there exists a constant C such that
(223) Slll:()) H ,E/O — Ty ,a() ||Hk(m+) < C |'LUO| s vw() eER.
e>

Then for all integer i and under the constraint o, < min{m./2,1— (2br)~'}, there eists
(Ci, e0) € (Ri)Q such that for all € less than e, it holds for all t € Ry,

i A Cit i1 et 1
|0 = V) (0 = 1) (0) gy < Cie©UHee?) (355 4 emoiemn )
where the limit p is given by
n = MP0|95|_2 (’U — V) ®ﬁ
(2) Suppose assumption (2.21) with k = 1, assumption (2.23) with k =0 and
1Uo = U§ lleiey + 1l 0 = 05 lioqaey + 15 = o Loy =, O (& v/Tnel ) .
There ezists (C', €g) € (Ri)Q such that for all € less than eq, it holds

| 75(t) — At) | pogm-y < Ce'ey/[Ine|, VteR,.
8



This result is a straightforward consequence of Theorem 2.3 and the convergence estimates for the
macroscopic quantities given by item (1) Proposition 2.5. We postpone the proof to Section 4.3 and
make a few comments. On the one hand, we achieve pointwise in time convergence estimates, which
is an improvement in comparison to our result in the L' setting. This is made possible thanks to the
regularity results obtained for ¥, which we were not able to obtain in the L' setting. On the other
hand, we recover the optimal convergence rate for the marginal ¢ of u° towards the limit @, up to
a logarithmic correction. The logarithmic correction arises due to the fact that we do not consider
well prepared initial data (see Proposition 4.10 for more details). In the statement (1), we prove
convergence with rate O(ei) for all 4. This is specific to the structure of the weighted L? at play in
this result.

2.3. Useful estimates. Before going to the proof of our main results, we remind here uniform esti-
mates with respect to e, already established in [2], for the moments of p® and for the relative energy
given by

M, () () = [l (2 w) du
R2

Dy)(tw) = [ o= V(b))

where ¢ > 2.

Proposition 2.5. Under assumptions (1.1a)-(1.1b) on the drift N, (1.2) on ¥, (2.7)-(2.8b) on the
initial conditions pg consider the unique solutions p* and (V, i) to (1.3) and (1.5). Furthermore,
define the initial macroscopic error as

Emac = [[Uo = U || oo iy + [P0 = £5 | Lo () -
There exists (C', g9) € (]RI)2 such that
(1) for all e < eg, it holds
[U(t) = U ) ey < C min (€ (Emac +¢), 1), VteRT,
where U and U are respectively given by (1.4) and (1.5).

(2) For alle >0 and all q in [2, 2p| it holds
M i)tw) < C,  Y(tz) € RY x K,

where exponent p is given in assumption (1.1b). In particular, U is uniformly bounded with

respect to both (t, ) € RT x K and ¢.
(8) For alle >0 and all q in [2, 2p] it holds

t
D)t x) < C {exp (—qm* 5) + sg} , V(t,z) e RT x K.
(4) For all e > 0 we have
t
[E(ps(t,x,-))| < C [exp <—2m*€> + 5} , Y(t,x) eR" x K,

where & is defined by (2.4).

The proof of this result can be found in [2]. More precisely, we refer to [2, Proposition 4.4] for the
proof of (1), [2, Proposition 3.1] for the proof of (2) , [2, Proposition 3.3] for the proof of (3) and [2,
Proposition 3.5] for the proof of (4).

3. CONVERGENCE ANALYSIS IN L!

In this section, we prove Theorem 2.1 which ensures the convergence of v towards the asymptotic
profile My @ v in a L' setting. In order to explain our main argument, we outline the main steps of
our approach on a simplified example : the diffusive limit for the kinetic Fokker-Planck equation. We
consider the asymptotic limit € — 0 of the following linear kinetic Fokker-Planck equation

1 1
atf5 + gv'vmfs = ?vv'(vfa + va6)7
9



where (z,v) lie in the phase space R? x R%. In this context, the challenge consists in proving that as
€ vanishes, it holds

[ w,v) ~ M) @p(tx),
e—0
where p is a solution to the heat equation
Orp = ADgp,

and where M stands for the standard Maxwellian. Relying on a rather classical relative entropy
estimate, it is possible to prove that f¢ converges to the following local equilibrium of the Fokker-
Planck operator

M@ p°,
where the spatial density of particles p® is defined by

p° = / fedv.
R4

Then, the difficulty lies in proving that the spatial density of particles p* converges to p. The
convergence analysis is made intricate by the transport operator, which keeps us from obtaining a
closed equation on p°

1
o p° + Vz-/ vffdv = 0.
e Rd
To overcome this difficulty, our strategy consists in considering the following re-scaled quantity
m(t,x) = fe(t,x —ev,v) dv.
Ra

On this simplified example, the advantage of considering 7 instead of p is straightforward as it turns
out that #® is an exact solution of the limiting equation. Indeed, changing variables in the equation
on f¢ and integrating with respect to v, we obtain

0t7r6 = Amﬂ'g.

Therefore, the convergence analysis comes down to proving that n° is close to p°. It is possible to
achieve this final step taking advantage of the following estimate

| p° — 7T€||L1(Rd) <A+ B,

where A and B are defined as follows
A= H MR T_co ps — T—cw f8 HLl(RQd) s

B = /Rd/\/l('ﬁ) | f&— 1o [° HLl(de) dvo,

and where 7., stands for the translation of vector oy with respect to the ax-variable. To estimate A,
we use the first step, which ensures that f€ is close to M ® p®. Then, to estimate B, it is sufficient to
prove equicontinuity estimates for f€, that is

| f© = Tao f© HLI(RM) S lzol -
In the forthcoming analysis, we adapt the latter arguments in our context.

3.1. A priori estimates. The main object of this section consists in deriving equicontinuity esti-
mates for the sequence of solutions (1), , to equation (2.6). To obtain this result, we make use of
the following key result

Lemma 3.1. Consider § in {0, 1} and smooth solutions f and g to the following equations
{ O f +divyla(t,y, & fl+ AB)dive[(b1 + bs) (t,y, &) f] = Mt)* A¢ f,
Org + divyla(t,y, &) gl + At)dive [ba(t, ¥, &) g] = A (t)*Acyg.
set on the phase space (t,y,¢) € RT x RN x R%®, with d; > 0 and dy > 1, where

(a:R+de1de2—>Rd1> and (bi:R+de1de2—>Rd2>, ief{1,2,3),
10



are given vector fields and where X\ is a positive valued function. Suppose that f and g have positive
values and are normalized as follows

[ favde= [ gayas =1,
Rd1+d2 Rd1+d2
Then it holds for all time t > 0

BY) I~ 90 gy < 2V2 <Hfo 00 1 gy ( / R(s ) ) |
where R is defined as

RO = [ (100 = baPf A Ldive [bag + (6 = 1) AVeg 1) (. w, )y

We postpone the proof of this result to Appendix A. Thanks to the latter lemma, we prove the
following equicontinuity estimate for solutions to (2.6)

Proposition 3.2. Consider a sequence (V). of smooth solutions to equation (2.6) whose initial
conditions meet assumption (2.12). There exists a positive constant C independent of ¢ such that for
all e > 0, it holds

1
VAt @) = iy V(0 @) ey < O ([hun] 4 [@wo]*) o ¥, @) e R K

where C' is explicitly given by

C = /max (8my, 1/b),
with my defined in assumption (2.12).

Proof. We fix some x in K and some positive €. Then we consider some wg in R and the following
re-scaled version f of v°

flt,w,v) =elt 6(75 T,v,e btw).
We compute the equation solved by f performing the change of variable
(3.2) w— e Pty
in equation (2.6), this yields
1
J6<*
where Ap and Bf are given by (2.3). On top of that, we define g := 7, f, which solves the following

equation

Org + O {ebtAo(Oev, 0)9} + %&, {BS (t,m,@sv,e_bt(wtho))g} =

O + 0 [ A0 (70, 0) f] + eieav [B5 (t.w. 070, ) ] = 5 P lf].

1
0=
Thanks to the change of variable (3.2), we can apply Lemma 3.1 to f and g with the following
parameters

fpﬁ[g]-

(0,A)=(1,1/67),
a(t,w,v) = e’ Ay (6°v, 0),

1

by (t,w,v) = Bj (t,w,@sv,e*btw) ~

(bg, bg) = (T’woblv O) .
According to (3.1) in Lemma 3.1, it holds

v,

1 1 — e—?bt
170) = 00 sy < 2VE 1o = s, + (5

Therefore, according to assumption (2.12), we obtain the result after inverting the change of variable
(3.2) and taking the supremum over all  in K.

2
) |U)0|7 VteR".

g
11



We conclude this section providing regularity estimates for the limiting distribution 7 with respect
to the adaptation variable, which solves (1.7). The proof for this result is mainly computational since
we have an explicit formula for the solutions to equation (1.7).

Proposition 3.3. Consider some vy satisfying assumption (2.11). The solution U to equation (1.7)
with initial condition Dy verifies

17() oo i we1qry) < e (208) 1170 | poo (i woamy) » VEERY,
and
|| w@w D(t) HLOO(K,Ll(R)) = || w@w ) ”Loo(K7L1(R)) s Vte RT.
Proof. Since ¥ solves (1.7), it is given by the following formula
o(t, x, w) = ey (m, ebtw> , V(t,x) e R" xK.
Consequently, we easily obtain the expected result. O
We are now ready to prove the first convergence result on v°.

3.2. Proof of Theorem 2.1. The proof is divided in three steps. First, we prove that the solution
v° to (2.6) converges to the local equilibrium
Mp8 ® EE 3

by applying a rather classical entropy estimate. Then, as in the example developed at the beginning
of Section 3, we introduce an intermediate quantity g*, which converges to the solution v to equation
(1.7). At last, we prove that g° is close to 7¢ thanks to the equicontinuity estimate given in Proposition
3.2 and therefore conclude that the marginal 7° converges towards v.

3.2.1. Convergence of v° towards Mps @ 1° : relative entropy estimate. This step relies on a rather
classical relative entropy estimate for the solution v to equation (2.6): we investigate the time evolu-

tion of the relative entropy
VE
H| v | My | = / Ve ln<>du,
[ pO] R2 M

along the trajectories of equation (2.6).

Proposition 3.4. Under assumptions (1.1a)-(1.1b) on the drift N and (1.2) on the interaction kernel
U, consider a sequence of solutions (u¥)e>0 to (1.3) with initial conditions satisfying assumptions (2.7)-
(2.8b) and (2.13). Then for alle <1, it holds

/Hy My ©F |y, (5)ds < VE(2maVE + CE4D) . Vi 0,

where my is given in assumption (2.13). In this result, the constant C only depends on m., my, and m,,
(see assumptions (2.7)-(2.8b)) and the data of the problem N, ¥ and Ag.

Proof. All along this proof, we choose some x lying in K and we omit the dependence with respect
to (¢, ) when the context is clear. We compute the time derivative of H [v° | /\/lpg] multiplying
equation (2.6) by In (uE / M pS)- After integrating by part the stiffer term, it yields

d 1
EH[VE|M/)(€)] + ‘9€|QI[VE|MP(E)] = A’
where the Fisher information is defined by
Ve 2
TV [ M| = Oy 1 “du,
(1M ] = [ oo ()| v aw

and where A is given by

A:—/divu be 1f ln(ya>du.
[ ava i) (7

After an integration by part, A rewrites as follows

1 Ve
A = 196/RQBS(t,a:,QEU,w) Oy [ln(/%)] v®du + b,
12



where Bf is given by (2.3). According to items (2) and (4) in Proposition 2.5 , V* and £(u®) are
uniformly bounded with respect to both (¢,z) € Rt x K and € > 0. On top of that, according to
assumptions (1.2) and (2.7) on ¥ and pj, VU *, p is uniformly bounded with respect to both € K and
e > 0. Consequently, applying Young’s inequality, assumption (1.1b) and since N is locally Lipschitz,
we obtain

A <

< I[V‘€|Mp8]+0<1+/ (\051)\21’—1—102) Vadu>,

R2
for some positive constant C' only depending on m., m,, m, and the data of the problem: N, A and
W. Then we invert the change of variable (2.1) in the integral in the right-hand side of the latter
inequality and apply item (2) in Proposition 2.5. In the end, it yields

2 162|?

A <

2 ‘95|21[V€|MP8] +C.

Consequently, we end up with following differential inequality

d
aH[VE‘MPS}jL IV |Mg] < C,

2 |6°)?

Then we substitute I with H in the latter inequality according to the logarithmic Sobolev inequality
for Gaussian measures which reads as follows (see [16])

2H [V [Mp @07 < T[vf|Mpe],

and we integrate between 0 and ¢ to get
|
€ =€ 1>
/O|06(S)‘2H|:1/|Mp(€)®l/:|d$<H|:V0‘Mp8:|+Ct

Furthermore, according to the explicit formula (2.5) for 6° it holds

1 2
< €
o <16

as long as ¢ is less than 1 and s is greater than T, where T° is given

T = =
2 My

|In(e) | -
Consequently, we obtain

/ H[v(s,x) | Mp@0°(s,x)] ds < 2¢ H[v5(x)] + Ce(t + 1).

Then we substitute the relative entropy with the L' norm according to Csizar-Kullback inequality

HVE—MP(E)(X)DE SQH[VE|MPS®DE],

2
S
and take the supremum over all & in K. After taking the square root, it yields

t
/ |v5(5) — Myz @57 ||, ds < 2vetms + CVE(E+1), Vi >0,
Te x Hu

where my is given in (2.13). To conclude, we notice that since equation (2.6) is conservative, it holds

TE
/ |75(5) — Myz @57 ||, ds < 2T° < C /e
O x u

13



3.2.2. Convergence of g° towards v. As in the example developed at the beginning of this section, we
consider the following re-scaled version g° of v*

V(t,z,v,w) =g (t,x,v,w + 7y (t,x)v),

where ¢ is given by

ae
v (t, z) = 0°(t, x) .
¢, @) () ¢, )
Operating the following change of variable in equation (2.6)
(3.3) (t,v,w)— (t,v,w + 7 v),

and integrating the equation with respect to v, the equation on the marginal §° of ¢° defined as

g (t,x,w) = /gg(t,w,v,w) dv,
R

reads as follows

2

€ €

(34) 0" + a—eaw [/ (Bg (t, =, 0°v, w—~°v) —f—b@ev)gsdv} - <a6> 009 = Ouw[bwig’],
Po R Po

where Bj is defined by (2.3). As in our example, the equation on g° is consistent with the limiting

equation (1.7) as € vanishes, this enables to prove that g° converges towards v

Proposition 3.5. Under assumptions (1.1a)-(1.1b) on the drift N and (1.2) on the interaction kernel
U, consider a sequence of solutions (u)s o to (1.3) with initial conditions satisfying assumption (2.7)-
(2.8b) and the solution U to equation (1.7) with initial condition vq satisfying assumption (2.11). There
exists a positive constant C' independent of € such that for all € less than 1, it holds

1
1550 — 2(0)lzpy < 2V2 155 — Pollfey, + O VE, VieRT.

In this result, the constant C' only depends on m,, m, and m, (see assumptions (2.7)-(2.8b)) and the
data of the problem vy, N, ¥ and Ap.

Proof. All along this proof, we choose some « lying in K and some positive ; we omit the dependence
with respect to (¢, ) when the context is clear. Since 7 and g solve respectively equations (1.7) and
(3.4), Lemma 3.1 applies with the following parameters

((di,dy, 6,2) =(0,1,0,ae/p5),

€
by (t, w) = ba (t, w) + / (Bg (t, =, 6°v, —vav)+b9£v)?dv,
R

L b3 (t, w) = —w,
where Bj is given by (2.3). According to (3.1) in Lemma 3.1, it holds

1
1 t 2
15°@) = (&) | my < 2V2 (|g% — 170||21(R) + </ Ri(s) + Ra(s) ds> > , VteRT,
0

where R1 and R9 are given by

1 < P
Rl(t):/ /(Bg(t,w,Gsv,—fygv)—i—b@sv)gdv g°dw,
4 x| /g g°
Rot) = "’5/ 0w [wi)] + 25 |02 7] duw.
Po JR Po
We estimate R; according to Jensen’s inequality
1
Ri(t) = § 1B (t, x, 0°v, —~1°v) + b6°v|* §F dvdw.
R2

Then we bound B§: on the one hand V¢ is uniformly bounded with respect to both (t,z) € Rt x K
and ¢ > 0 according (2) in Proposition 2.5, on the other hand according to assumptions (1.2) and
14



(2.7) on ¥ and p§, ¥, pf is uniformly bounded with respect to both € K and ¢ > 0. Consequently,
applying Young’s inequality, assumption (1.1b) and since N is locally Lipschitz, we obtain

Rift) < 0 [ (1670 4 1070 + |€°) ) g'du
RQ

as long as ¢ is less than 1 to ensure that +¢ given by (3.3) is less than a 6° / m. . We invert the changes
of variable (3.3) and (2.1) and apply items (3) and (4) in Proposition 2.5, this yields
Ri(t) < C ((2*2”5(““)”E + 5) :

Then to estimate Ro, we apply Proposition 3.3 to bound 7 and assumption (2.7) to lower bound pf,
it yields
RQ(t) < C€€2bt .

We gather the former computations and take the supremum over all & in K: it yields the expected
result. O

3.2.3. Convergence of v* towards v. In this section, we gather the result from the last steps to deduce
that o¢ converges towards v .

Proposition 3.6. Under the assumptions of Theorem 2.1, there exists a positive constant C indepen-
dent of € such that for all € less than 1, it holds

t 1
/ 17° = | peops ds < 2V2t | 7§ — Do ||20)s + 2Vetmo + Ce?Ply/e, Vit e RT.
0 @x w @x w

In this result, the constant C' only depends on my, ms, my, and m, (see assumptions (2.7)-(2.8b)) and
the data of the problem vy, N, ¥ and Ag.

Proof. All along this proof, we omit the dependence with respect to (¢,x) when the context is clear.
We consider the following triangular inequality

17% = Vllpger, < A+B,

where A and B are given by
{ A=7" = 3 llpger

B =115 — 7llzs -
We estimate B applying Proposition 3.5, which ensures
1
B <2V2| g5 — oll2,, + Ce Ve,

at all times ¢ in R*. Then we notice that inverting the change of variable (3.3), it holds

_e — —£ = 7 v
136 = Pollpeery, < 1176 — Vollpgery, + /RM(U) H YO T T(vgv) VOHL;"L}H dv.

Therefore, according to the regularity assumption (2.11) on 7g, we obtain for all ¢ < 1.
1
B < 2\/§|| ]7(6) - IjOH[Q/ooLl + C@bt\/ga
To estimate .4, we invert the change of variable (3.3) and apply the triangular inequality. It yields
A S Al + A27

where A; and Ay are defined as follows

Ay

[ Mg & T (y20) 7 = T30y V° HLgOL}‘ ’

to = s [ Mg 15 = 7 oy -

According to Proposition 3.4, it holds for all ¢t > 0

/t.Al(s)ds < 2Vetmg + CVe(t+1).
0

15



To estimate Ay, we apply Proposition 3.2, it yields
Ay, = C \@ €2bt .
We obtain the result gathering the former estimates. O

Theorem 2.1 is obtained taking the sum of the estimates in Propositions 3.6 and 3.4.

4. CONVERGENCE ANALYSIS IN WEIGHTED L? SPACES

In this section, we derive convergence estimates for ;€ in a weighted L? functional framework. We
take advantage of the variational structure of L? spaces in order to derive uniform regularity estimates
for uf. These key estimates are the object of the following section

4.1. A priori estimates. The main purpose of this section is to propagate the #*-norms along the
trajectories of equation (2.6) uniformly with respect to e. We outline the strategy in the case of the
#%-norm. Its time derivative along the trajectories of equation (2.6) is obtained multiplying (2.6) by
v®*m® and integrating with respect to u

1d 9 1 .
5& H Ve HLQ(mE) = (ea)Q <-Fp8 [VE] ) Ve >L2(me) - <d1Vu [bé Va] 3 Ve >L2(m5) .

We first point out that according to the following lemma, the term associated to the Fokker-Planck
operator is dissipative and is consequently a helping term in the upcoming analysis

Lemma 4.1. For all x in K, it holds
<~Fp6(a:) [V] y V
for allv € H' (mS), where the dissipation D is given by
Dogor v = [ 100 (v ) (ml)™ du > 0.

Proof. The Fokker-Planck operator rewrites as follows

Fostay (V] = 0 | (m3) ™" 0, (vm5)

= Dy v =0,

>L2<m;>

Consequently, the result is obtained integrating by part Fps () [v] against v m® with respect to u.
O

Therefore, the main challenge is to control the contribution of the transport operator div,, by with
the dissipation D, brought by the Fokker-Planck operator, which is done in the following lemma.

Lemma 4.2. Under assumptions (1.1a)-(1.1b) and (2.17) on the drift N, (1.2) on the interaction
kernel W, consider a sequence of solutions (uf)e~o to (1.3) with initial conditions satisfying assump-
tions (2.7)-(2.8b). Then, there exists a constant C > 0 such that for all e > 0 and any o greater than
1/(2bk), we have

. (0%
— (dlvu [b(a)l/] ) V>L2(m;) < (06)2 ng(m) [V] + CH V”%Q(mi)’

forall (t,x) € RY x K and all v € H (m5).

Before getting into the heart of the proof, we point out that as long as the latter lemma holds with
some « less than 1, we have
1d
2dt
which ensures that the #’-norm is propagated along the curves of (2.6) uniformly with respect to
e. We follow the exact same strategy in order to propagate the .#*-norms when k is not 0: see
Proposition 4.5 for more details. On top of that, we emphasize that the constraint (2.18) on & in
Theorem 2.3 arises from the lower bound on « in Lemma 4.2.

el P

Remark 4.3. Due to the structure of the space L? (m?), we added the confining assumption (2.17)
on the drift N to Theorem 2.3. Our proof of Lemma 4.2 crucially relies on this assumption ; it is the
only time that we use it as well.
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Proof. All along this proof, we consider some ¢ > 0 and some (¢, ) in Ry X K; we omit the dependence
with respect to  when the context is clear. Furthermore, we choose some v in H! (mg,). Since b is
given by (2.3), we have

— (divy [byv] , v >L2ma Ai + Az + A3,

where
Ay = la Oy [wv] vm®du — Ow [Ap (0°v, w)v] vm® du,
0 R2 R2
Ay = =1 [ o LNV +070) — NV ) v du,
RQ
A3z = / Oy |:(U\I/>l<r po + E(1°) (05)71>1/} vm®du.
RQ

To estimate A1, we take advantage of the confining properties of A. When it comes to A3, the estimate
relies on the confining properties of the non-linear drift N. The last term As gathers the lower order
terms and adds no difficulty.

We start with Ay, which rewrites as follows after exact computations and an integration by part,

A== [ o ) Loy (v ) du [ (g 80, w) - 00 A) of? e due,
R2 e 2 R2

According to the definition of Ay and applying Young’s inequality, we obtain

1 c 2 N2 — bk 9 9 )
S S g Do — 6" ¢ 5 cd C )
A < 21 (95)2 Po[l/] + /R2 <771 |6°v|” + ( n + > )w > lv]” m®du + HVHL?(m)

for all positive 1 and 72 and for some positive constant C. We set a— = (a + 1/(2bk))/2, 12 =
1/(2a—~) and m1 = (bk — 12) /(2C) which is positive according to the condition on « in Lemma 4.2.
With this choice, we have Cn; + (n2 — bk)/2 = 0 and consequently, we obtain

(4.1 A s 5P+ C L, 10 o du + Clelages.
for some positive constant C' only depending on Ay, k and «.

To estimate Ay, we take advantage of the super-linear decay of N (see assumption (1.1a)) in order
to control the terms growing at most linearly. We emphasize that the decaying property of N is
prescribed at infinity. Consequently, it may not have confining property on bounded sets. Hence, the
main point here consists in isolating the domain where N decays super linearly.

After some exact computations and an integration by part, Ay rewrites

1 ()
Ay = 2/ [gov (NOV* +67) — N(V9)) — N'(V° +6%) | [v]* m* du.
R2

We consider some R > 0 and split the former expression in three different parts

Ao = Ao + Axp + Aog,

where
( £
Aot = 45 [ g no (N +60) = NOF) of? m du.
1 Pe / 2
=5 [ ﬂ|eav|<3[6 0 (NOF +070) — NOF)) = N (VF +0%0) | [v]? m* du,
1
A = =5 [ Do V' 0+ 0%0) of? .

The first term Ag; corresponds to the the contribution of N on the domain where it decays super-
linearly. Consequently, As1 is non positive for R great enough. We take advantage of the helping
term As; to control Ass, which corresponds to the contribution of N on bounded sets. We estimate
As taking advantage of the confining term A2; coupled with the confining assumption (2.17) on N.
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Let us estimate A;. According to item (2) in Proposition 2.5, V¢ is uniformly bounded with respect
to both (¢, ) € R x K and e. Furthermore, since N is continuous, we obtain

6cv

]l‘@efu' >R9€’U (N(VE + 96’0) - N(Vs)) S ]1‘9514 >R (|V€ + GEU‘QW(VE + OE'U) m

+C ]9€v|) ,
where w is given by assumption (1.1a) and where the constant C' depends on both N and the uniform
upper bound on V. Hence, since §° < 1, we obtain a radius R only depending on N and the uniform
bound on |V| such that

Am<:/ (B Tpgeags IV 4+ 0502wV +0%0) + C16°0] ) ol o du,
R2

where m, is the lower bound of p{j given by assumption (2.7). From now on, we fix R such that the
latter estimate holds. Furthermore, we introduce the following notation

N = / Tigeo| > R Ve 4+ 0P w(VE +6°0) [v)* m®du < 0 when R > 1.
R2

The term N corresponds to the contribution of N on the domain where it has super-linear decaying
properties and according to assumption (1.1a), it is non positive for R sufficiently large. Therefore,
we use N to control the contribution of the other terms. With this notation, the estimate on A
rewrites

Ty

4
where C' and R only depend on N and the uniform bound on |V*|.

Ao < C/ 05| |v]* m® du + N,
R2

We turn to Aso. Since N has € regularity and relying item (2) in Proposition 2.5 , which ensures
that V¢ stays uniformly bounded, we obtain

()
Ay < OB [ o of? e du + Cloagey
R2

where C' is a positive constant which may depend on m,, N and the uniform bound on |[V¢|. We
estimate the quadratic term in the latter inequality thanks to the following relation

1
2/11&2 (p§ |v)* — 1) > mfdu = /RZUI/aU (vm®) du.

It is obtained after exact computations and an integration by part in the right hand side of the latter
equality. We apply Young’s inequality to the former relation and in the end it yields

n 1
dr < Do+ € (5 [ 0708 Wt )

for all positive 7 and for some positive constant C' depending on m,, N and the uniform bound on
Ve

We estimate the last term As3 taking advantage of the confining properties corresponding to N.
Indeed we have

* * 1
Aoy TN = [ Mo (5 Il = 5N (@) ) ol
R

8 8
where we used the shorthand notation v" = V° + 6°v. Hence, according to assumption (2.17), we
deduce
Ty
Aaz + 3 N < C”V||%2(ms)a

for some positive constant C' depending on m, and N. Gathering these computations, we obtain

™
7_/\/"

Ui 1
(4.2) A2 < —= Dy [v] + C (77 + 1) /Rz 050% [u]?> m® du + C||V||%2(m5) + 3

(6)°
for all » > 0 and where C' is a positive constant which may depend on m,, R, N and the uniform
bound on |VE|.
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We turn to Az, which gathers terms of lower-order. We integrate by part and apply Young’s
inequality. It yields

Ui 1 2 2,12 2 2
A < s Pilv] + 5 (|wpa| [ el ol u  Ge°) ||v||Lz(ms>),

for all positive 7. According to item (4) in Proposition 2.5 , £(u®) is uniformly bounded with respect
to both (t,z) € RT x K and ¢ > 0. On top of that, according to assumptions (1.2) and (2.7) on ¥
and pg, ¥ *, pg is uniformly bounded with respect to both € K and € > 0. Consequently, we obtain

n ¢ 20,12 2
4.3 < ——5 D, — 0° °d o s
(@3) Ay = Do+ o ([ el e+ ol
for some positive constant C' which may depend on m, (see assumption (2.7)), m, and m, (see as-
sumptions (2.8a) and (2.8b)) and the data of our problem N, ¥ and Aj.

Gathering estimates (4.1), (4.2) and (4.3), it yields

. a_ + 2n 1 / 9 9 My
—(divg [biv],v) < L= p . c(1+= (95 1) fdu + N,
(divy, [bgr],v) < (95)2 pO[V]+ <+77> - |0%v|" + lv[* m®du + A
for all positive n. Hence, we choose 2 = « — a_. Therefore, replacing N by its definition, the former
estimate rewrites
. o m
— <d1V'u, [b(€) V} , V> < prg [I/] + / (C (|¢95@‘2 + 1) + ]].|96v‘>R ?* |U/‘2u_)(v/)) ‘y‘2m€du,
R2
where we used the shorthand notation v" = V* 4+ §°v. To conclude, we estimate the right-hand side
in the latter inequality applying assumption (1.1a) on N. Since V¢ is uniformly bounded, we obtain
- 2
me) < prg [v] + CHVHLQ(mE) J
for some constant C' only depending on «, &, m., m,, m, and the data of the problem: N, Ag and V.
O

— (dive [bov], )2

We also mention the following general result, which may be interpreted as a Poincaré inequality in
the functional space L? (m?)

Lemma 4.4. For all x € K and all function v in H) (m%,), holds the following estimates

1 2
12 1l L2 ey < ﬁ”awlfﬂm(ma) and w2y <~ 10w llp2gme) -

Proof. The proof relies on the following relation

1

/ (1 + rkw?) v |? mE(u) du = —/ wv (Oyv) my(u)du,
2 R2 R2

which is obtained by an integration by part in the left-hand side of the equality. From the latter
relation we obtain the result applying Young’s inequality in the right-hand side for the first estimate
and Cauchy-Schwarz inequality for the second one.

O

From Lemma 4.2, we deduce regularity estimates for the solution v* to equation (2.6). The main
challenge consists in propagating the #°-norm. Then we easily adapt our analysis to the case of
the #%-norms, when k is greater than 0. Indeed, the w-derivatives of v solve equation (2.6) with
additional source terms which we are able to control with the dissipation brought by the Fokker-Planck
operator. More precisely, equation (2.6) on v° reads as follows

v + A [V°] =0,

where the operator /¢ is given by

: 1
(4.4) o/ [V°] = divy [bgv°] — w}_ﬂg[ua].
With this notation, the equations on the w-derivatives read as follows
1
(4.5) O h® + F°[h°] = ﬁ&,us+bha,
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where h® = 0, 1%, and
2
(4.6) 8tgs+$zfs[g€]:0—€8vhs+2bg€,

where ¢° is given by 92 v°.

Proposition 4.5. Under assumptions (1.1a)-(1.1b) and (2.17) on the drift N, (1.2) on the interaction
kernel W, consider a sequence of smooth solutions (u)eo to (1.3) with initial conditions satisfying
assumptions (2.7)-(2.8b) and (2.19) with an exponent r greater than 1/(2b). Then, there exists a
constant C > 0, such that, for all € > 0, we have

, V(t,z) € R" x K,
L2 (mg,)

’8{; ve(t, x) HL2(m;) < et H oF Ve (x) ’

for all integer k less than or equal to 2

Proof. We start with £ = 0. We compute the time derivative of || v ||%2(m5) multiplying equation (2.6)
by v* m and integrating with respect to u. After integrating by part the stiffer term, we obtain

1d 1 .

S H Ve ||%2(m5) + (QT)QDPS [VE] = — <d1Vu [bg ys] , Ve >L2(m5) 7
for all e > 0 and all (¢, ) € Ry x K. Since & is greater than 1/(2b), we apply Lemma 4.2 with
« = 1. This leads to the following inequality

d €112 €112

a | v HLZ(ms) < Cllv HL2(me)v
for some constant C' only depending on &, ms, m,, M, and on the data of the problem: N, Ay and
P. According to Gronwall’s lemma, it yields

15 @) p2gme) < € 150, ®) [l p2gng) » Y (E®) € RT X K.
Let us now treat the case k = 1. We write h° = 0, v°. We compute the derivative of || h® H%z(mg)
multiplying equation (4.5) by h°m® and integrating with respect to u. After integrating by part the
stiffer term, we obtain

1d 1

o¥T HhaH%Q(ma) + @DPS (1] = = (dive, [BG ], h%) f2(pney + DIIAS !\%2(,”6) + B,
for all e > 0 and all (¢, ) € Ry x K, where B is given by
1
B=— Oy VEREmfdu.
0 Joo

We estimate B integrating by part and applying Young’s inequality. It yields
¢ €112 n €
B < gHV 122 (mey + prg[h -
for some positive constant C' and for all positive . Then we apply Lemma 4.4, which yields
c €112 n €
B < g“h ||L2(m5)+ @DPE [A°],

and conclude this step following the same method as in the former step of the proof.

The last case k = 2 relies on the same arguments as the former step. Indeed, equation (4.6) on
02, ¢ is the same as equation (4.5) on 0y, v° up to a constant. Consequently, we skip the details and
conclude this proof.

O

Due to the cross terms between the v and w variables in equation (1.3), we are led to estimate
mixed quantities of the form w*! 8£2 v°. These estimates are easily obtained from Proposition 4.5 and
Lemma 4.4
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Corollary 4.6. Under the assumptions of Proposition 4.5, we consider (k, ki, ko) in N3 such that
ki1 4+ ke = k and k < 2. there exists a constant C > 0, such that, for all e > 0, we have

2\ ™
[(t208) 001y = (3) < 08600
Proof. We consider (k, ki, k2) in N3 such that k1 + k2 = k and k£ < 2 and point out that according

to Lemma 4.4, we have
2\ ™
< (2)
L2(mg) K

(w40 o)
Consequently, we obtain the result applying Proposition 4.5.

, V(t,z) € R" x K,
L% (mg,)

‘Gulf ve(t, x)‘

L2(mg)

O

We conclude this section with providing regularity estimates for the limiting distribution 7 with
respect to the adaptation variable, which solves (1.7). The proof for this result is mainly computational
since we have an explicit formula for the solutions to equation (1.7).

Lemma 4.7. Consider some index k lying in {0, 1} and some vq lying in A% (m). The solution v
to equation (1.7) with initial condition vy verifies

1D() |k (my < exp ((k + ;) bt) 170 Lsprmy » VtERT.
Proof. Since ¥ solves (1.7), it is given by the following formula
Ui, e(w) = €bt170,:c (ebtw) , V(t,xz) € RT x K.
Consequently, we easily obtain the expected result. O

4.2. Proof of Theorem 2.3. In the forthcoming analysis we quantify the convergence of v towards
the asymptotic profile v given by

in the functional spaces J#* (m®). We introduce the ort