Large coupling in a FitzHugh-Nagumo neural network: quantitative and strong convergence results - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Large coupling in a FitzHugh-Nagumo neural network: quantitative and strong convergence results

Résumé

We consider a mesoscopic model for a spatially extended FitzHugh-Nagumo neural network and prove that in the regime where short-range interactions dominate, the probability density of the potential throughout the network concentrates into a Dirac distribution whose center of mass solves the classical non-local reaction-diffusion FitzHugh-Nagumo system. In order to refine our comprehension of this regime, we focus on the blow-up profile of this concentration phenomenon. Our main purpose here consists in deriving two quantitative and strong convergence estimates proving that the profile is Gaussian: the first one in a L1 functional framework and the second in a weighted L2 functional setting. We develop original relative entropy techniques to prove the first result whereas our second result relies on propagation of regularity.
Fichier principal
Vignette du fichier
FHN_strong_3.pdf (468.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03619446 , version 1 (25-03-2022)
hal-03619446 , version 2 (07-04-2022)
hal-03619446 , version 3 (12-10-2022)
hal-03619446 , version 4 (11-06-2023)

Identifiants

Citer

Alain Blaustein. Large coupling in a FitzHugh-Nagumo neural network: quantitative and strong convergence results. 2023. ⟨hal-03619446v4⟩
185 Consultations
171 Téléchargements

Altmetric

Partager

More