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ABSTRACT

In this paper, we propose a novel approach to tackle the problem 
of querying large volume of statistical RDF cubes. Our approach re-
lies on combining pre-aggregation strategies and the performance 
of NoSQL engines to represent and manage statistical RDF data. 
Specifically, we define a conceptual modeling solution to represent 
original RDF data with aggregates in a multidimensional structure. 
We complete the conceptual modeling with a logical design process 
based on well-known multidimensional RDF graph and property-
graph representations. We implement our proposed model in RDF 
triple stores and a property-graph NoSQL database, and we 
compare the querying performance, with and without aggregates. 
Exper-imental results, on real-world datasets containing 81.92 
million triplets, show that pre-aggregation allows reducing query 
runtime in both RDF triple stores and property-graph NoSQL 
databases. Neo4j NoSQL database with aggregates outperforms 
RDF Jena TDB2 and Virtuoso triple stores, speeding up to 99% 
query runtime.
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1 INTRODUCTION

Multidimensional models have been largely studied in the database
community and maturity on optimising multidimensional querying
has been mostly reached. In the Semantic Web, exploiting such
multidimensional views on RDF data has received attention over
the last ten years and a growing number of RDF data sources relying
on such view has being published on the Linked Open Data1. These
data cube models2 answer to the need of analysing statistical RDF
data from different perspectives and levels of granularity [10].

However, querying multidimensional data generates high work-
loads on SPARQL engines. Despite the different efforts on optimis-
ing native RDF triple stores [20, 21, 27], the scalability of SPARQL
engines is still limited owing further development and optimization
[28]. Concurrently, in recent years, a number of new data manage-
ment systems, broadly known as property-graph NoSQL databases,
have offered a performing alternative to SPARQL engines. Such sys-
tems have emerged as an infrastructure for handling large amount
of data outside the RDF space [8].

Different works have addressed the follow-up question on how
the performance of these NoSQL engines perform compared to RDF
engines [3, 8, 14]. While most of the NoSQL engines scale more
gracefully than the RDF stores, the findings in these works also
point out weaknesses of NoSQL engines in dealing with complex
SPARQL queries involving several joins or containing complex
filters on large volume of data [8]. Furthermore, as stated in [14],
NoSQL engines like Neo4j could better isolate queries such that
one poorly performing query does not cause a domino effect and
benefit from better query algorithms.

One raised question is how triple stores performance would com-
pare with that of NoSQL technologies, when exploiting aggregates.
Our hypothesis here is a) aggregating data (i.e. summarised numeric
values with grouping conditions and aggregation functions) and b)
taking advantage of NoSQL performances would better scale than
triple stores when dealing with large amounts of data. Here, differ-
ently from graph summarisation [7, 12, 18, 30], which mostly focus
on structurally grouping vertices or edges, our aggregation strat-
egy is based on creating new vertices whose content results from
the calculating of numeric values from a set of vertices through
aggregation functions. Moreover, while works have studied the

1https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
2https://www.w3.org/TR/vocab-data-cube/



problem of aggregating RDF data in RDF triple stores like [15], to
the best of our knowledge, this problem has not been addressed
using property-graph NoSQL systems. This has been addressed in
other NoSQL engines such as MongoDB [2].

In this paper, (a) we propose a conceptual modeling solution to
represent original RDF data with aggregates according to a multidi-
mensional structure. The proposed conceptual modeling is generic
enough to serves as a basis for representing graph-like multidi-
mensional data with aggregates; (b) we couple this model with a
logical translating process. The translating process takes as input
well-known multidimensional RDF data and produces a conceptual
graph enriched with pre-computed aggregates; (c) we compare the
performance of querying data with and without aggregates. To do
so, we implement the conceptual multidimensional graph in two
RDF triple stores and a property-graph NoSQL system based on a
real-world RDF datasets containing 81.92 millions triples.

To the best of our knowledge, this is the first systematic study
of aggregated graph data including conceptual modeling, map-
ping rules and experimental evaluation on RDF triple stores and
property-graph NoSQL engines. Our empirical results open interest-
ing directions in ontology-based data access (OBDA) with respect to
accessing data on NoSQL instead of relational databases, as mostly
done in the literature [4].

The remainder of the paper is organised as follows. Section 2
summarises the related work. Section 3 introduces our multidimen-
sional model. Section 4 presents the experimental results. Finally,
Section 5 concludes the paper and describes the future work.

2 RELATEDWORK

In this section we describe themain related work on (i) using NoSQL
for managing RDF data, (ii) multidimensional analysis over RDF
data, and (iii) graph summarisation and RDF aggregates.

NoSQL databases and RDF triple stores. Various works have
investigated different aspects on using NoSQL databases to man-
age RDF data. In [8], the performance of NoSQL bases (HBase,
Couchbase and Cassandra) is evaluated on two RDF benchmarks
(Berlin SPARQL Benchmark and DBpedia SPARQL Benchmark).
While most NoSQL systems scale more gracefully than RDF stores,
complex SPARQL queries involving several joins, on large volumes
of data, or containing complex filters perform poorly on NoSQL
systems. In [14], the authors compare the performance of triple
stores, relational and graph databases for querying Wikidata. Two
SPARQL triple stores (Virtuoso and Blazegraph), one relational
database (PostgreSQL), and one graph database (Neo4J) have been
evaluated. They show that NoSQL could better isolate queries such
that one poorly performing query does not cause a domino effect
and benefit from better query algorithms. In [25], the Gremlinator
system translates SPARQL queries to path traversals for executing
graph pattern matching over graph databases. It provides the foun-
dation for a hybrid use of RDF triple stores and property graph such
as Neo4J, Sparksee and OrientDB. Finally, in [19], they address the
problem of data integration by considering NoSQL MongoDB. A set
of transformation rules is applied to translate MongoDB documents
to SPARQL. A SPARQL query is transformed into a pivot abstract
query based on the xR2RML mapping of the target database to RDF.
As [8, 14] we address the evaluation of NoSQL systems as Neo4j

(differently from [19]) for storing RDF data, but here we focus on a
specific kind of data (multidimensional statistical data). While they
have pointed out some weakness of these systems, we argue here
that materialising aggregates can provide better querying perfor-
mance. As [25], we consider both storage supports (triple stores
and NoSQL databases) but do not combine them together.

Multidimensional analysis over RDF data. Researches on
this topic mainly address different aspects of analytical queries over
RDF data. In [28], the proposal maps typical OLAP operations to
SPARQL and a tool named ASPG automatically generates OLAP
queries from real-world Linked Data. The works in [13, 22] focus on
generating SPARQL queries based on OLAP analysis, requiring data
sets described in QB or QB4OLAP vocabularies. In [11], a high-level
query language (COL) that operates over cubes is proposed. Using
the metadata provided by QB4OLAP, COL queries are translated
into SPARQL, exploiting SPARQL query optimisation techniques.

Close to ours, [15] compare the performance of SPARQL and of
ROLAP SQL queries and measure the gain of RDF aggregate views
that materialise parts of the RDF data cube. In that experiment,
while RDF aggregate views show the capability to optimise query
execution, yet, overall still take six times longer for pre-processing
and not nearly reach the performance gain of aggregate tables in
ROLAP. Here, we could observe that globally the aggregates can
have a positive impact in the querying performance. It is important
to note, however, that our experiments compared to [15] have not
been executed on the same basis. On one hand, we propose a new
conceptual modeling solution to include pre-computed aggregates
in a multidimensional graph. On the other hand, we base our ex-
periments on a new technical environment including both triple
stores and a property-graph NoSQL database.

To address also performance, the approach in [23] is based on
a refactoring of analytical queries expressed in the relational-like
SPARQL algebra based on a set of logical operators. This refac-
toring enables parallel evaluation of groupings and aggregations,
particularly beneficial for scale-out processing on distributed cloud
systems. Contrary to these works, we address the performance of
analytical queries exploiting materialisation of aggregates.

Graph summarisation and aggregates in RDF. Graph sum-
marisation has been extensively studied in the literature [18]. Two
main categories of approaches can be distinguished: (1) aggregation
approaches [26, 29], which rely on strategies for grouping the graph
nodes into groups based on diverse functions (e.g., similarity of
values of attributes, relationships to adjacent nodes, application
of aggregation functions); and (2) structural approaches [5, 6, 31]
which rely on extracting a schema representing a summary of the
graph, in general, based on equivalence relations of nodes. The
approach we propose here falls into the former. This is the same
for the work in [26], which produces a summary graph of K-groups
by grouping nodes based on user-selected node attributes and rela-
tionships. This approach however is limited to graphs describing
entities characterised by the same set of attributes. Our approach
is not limited to this kind of graphs, given that RDF graphs are
heterogeneous by nature. In the second category, [31] summarise
graphs following a top-K approximate RDF graph pattern strategy,
aiming at guiding the user in the formulation of his queries. A
similar approach is adopted in [5], where sumarisation relies on a



generic graph model defining the notion of node collections i.e., set
of nodes sharing similar characteristics. In [16], graphs from the
LOD cloud are summarised, focusing on the distribution of classes
and properties across LOD sources. The summaries are based on a
mechanism that combines text labels and bisimulation contractions.
The labels assigned to RDF graphs are hierarchical, enabling sum-
marisation at different granularities. In [9] ‘interesting insights’ in
(generic) RDF graph are automatically identified by the systems as
RDF aggregate queries. The system ranks such insights and plots
the most interesting ones as bar charts, and shows them to the user.
Finally, hybrid approaches are proposed in [29, 30], which take into
account both attribute aggregation and structure summarisation
of graphs. These works rather focus on topological summarisation
of graph aiming at helping users to extract and understand main
characteristics of a graph. Unlike these works, our approach differs
from those by nature, since it works on aggregating numeric values
within vertices. Other works on RDF summarization include LODeX
[1], ABSTAT [24] and SchemEX [17]. LODeX is a tool that produces
a representative summary of a LOD source. Similarly to [16], the
summary reports statistical and structural information regarding
the LOD Dataset (number of instances of classes and attributes).
Contrary to us, we apply aggregation on the values of properties.
Under a different view, SchemEX extracts a concise LOD schema
with a structure to be used as an index, where schema extraction
means to abstract RDF instances to RDF schema concepts that rep-
resent instances with the same properties. Finally, ABSTAT takes
the RDF data summarisation problem as to provide a compact but
complete representation of a data set, where every relation between
concepts that is not in the summary can be inferred. It adopts a
minimalization mechanism based on minimal type patterns. Here,
we do not exploited the inferences in our computations.

3 CONCEPTUAL MODELING OF
MULTIDIMENSIONAL GRAPHWITH
AGGREGATES

Here, we introduce a conceptual model based on the concept of
graphs to generically represent multidimensional RDF data with
their associated aggregates. This model aims to be independent of
a specific storage structure (e.g. triple store, DBMS, etc.) First, we
present the model and illustrate it with an example. Second, we
present a logical translating process to illustrate how to build our
proposed model from statistical RDF data and how the resulted
model can be managed by different implementation environments.

3.1 Multidimensional Graph

A multidimensional graph enriches classical conceptual graph mod-
eling with pre-computed aggregates. It contains individuals (ABox)
organised according to three multidimensional concepts (TBox),
namely numeric indicators (measures), descriptive properties (at-
tributes) and summarised numeric indicators with grouping condi-
tions and an aggregate function (aggregates).

Definition 3.1. Amultidimensional graph is a bipartite graph
composed of measures, attributes and aggregates. It is defined as
(V ,E) where

• V is a set of vertices such that V = M ∪ A ∪ G, where M is a set
of vertices corresponding to measures, A is a set of vertices
corresponding to attributes (parameters) and G is a set of
vertices corresponding to aggregates. M = {eMi }1≤i≤ |M | is the

set of measure values, A = {eAj }1≤j≤ |A | is the set of attribute

values, G = {eG
k
}1≤k≤ |A | is the set of aggregates

• E ⊆ V×V is a set of edges such that E = EMA ∪EAA ∪EMG ∪

EAG ∪EGG . EMA is an edge between a measure value eMi and

an attribute value eAj , EAA is an edge between two attribute

values eAi and eAj , EMG is an edge between a measure value

eMi and an aggregate eGi , EAG is an edge between an attribute

value eAj and an aggregate eGi , EGG is an edge between two

aggregates eGi and eGj

The relationships between different types of vertices and edges
are presented in Figure 1.

Figure 1: Relationships between different types of vertices

and edges

Example. Figure 2 gives an example of a multidimensional
graph. It is composed of one measure denoted cost, and one geo-
graphical analysis axis. Themeasure contains 3 values (i.e. eM

1
, eM

2
, eM

3
),

while the analysis axis is composed of 4 attributes (city, region,
country and Geography) with 7 instances (i.e. eA
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3
, eA

4
, eA
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, eA
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,

eA
7
). The last attribute Geography represents the maximal (the most

general) granularity, called ALL. The aggregates of the measure
according to different attributes are stored into one measure de-
noted cost_sum. The formal representation of this multidimensional
graph is as follows:

• V = M∪A∪Gwhere M = {eM
1
, eM

2
, eM

3
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• E = EMA ∪ EAA ∪ EAG where EMA = {(eM
1
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)}.

Let {41, . . . 4d } a set of binary relations over A. Each 4i is a
binary relation over Di

AA
⊆ A defining an ordered set. The subsets

Di
AA

are disjoints; ∀i ∈ [1..d], j , i ∈ [1..d], Di
AA

∩ D
j
AA
= ∅.

Attributes within a multidimensional graph can be organised
according to analysis axes (i.e. dimensions) :

Definition 3.2. A dimension is defined by (Di
AA
,4i ) where

• Di
AA

⊆ A is a set of attributes,

• 4i is an ordered set over Di
AA

satisfying

– irreflexivity: ∄eAj , e
A
j 4i e

A
j ;



Figure 2: Example of multidimensional graph

– transitivity: if eAj1 4i e
A
j2 and e

A
j2 4i e

A
j3, then eAj1 4i e

A
j3

– asymmetry: if eAj1 4i e
A
j2 then not eAj2 4i e

A
j1.

Attributes associated together through binary relations form one
or several aggregation paths (i.e. hierarchies) within a dimension.
A measure can be summarised along a hierarchy by zooming in
(drilling down) or zooming out (rolling up).

Example. In the previous example, the multidimensional data-
base is composed of one dimension with one hierarchy of four
granularities (city, region, country and ALL_GEO), such as

• D
Geoдraphy
AA

= {eA
1
, eA

2
, eA

3
, eA

4
, eA

5
, eA

6
, eA

7
},

• 4Geoдraphy is an ordered set such as eA
1
4Geoдraphy eA

4
;

eA
2
4Geoдraphy eA

4
; eA

3
4Geoдraphy eA

5
; eA

4
4Geoдraphy eA

6
;

eA
5
4Geoдraphy eA

6
; eA

6
4Geoдraphy eA

7
.

3.2 Designing a Multidimensional Graph from
statistical RDF data

Based on the conceptual modeling of a multidimensional graph,
we propose a designing process to pre-compute and materialise
aggregates from statistical RDF data (cf. Figure 3). First, we con-
vert statistical RDF data without aggregates at the physical level
into the conceptual Multidimensional Graph (arrow 1). During this
step, aggregates are computed and combined with original data
in a conceptual Multidimensional Graph. Second, we convert a
conceptual Multidimensional Graph into well-known RDF models
and the property-graph model at the logical level (arrow 2). At last,
based on the logical representation, original statistical RDF as well
as pre-computed aggregates can be implemented in triple stores
and property-graph NoSQL databases (arrow 3). In this section,
we focus on the first and second steps of our proposed designing
process. The last step will be discussed in Section 4.

Step 1. The first objective is to converting original RDF data into
a conceptual Multidimensional Graph and enrich original data with
all possible aggregates. To do so, we depict an algorithm which
(a) takes a statistical RDF dataset in QB or QB4OLAP vocabulary
as input and (b) produces a conceptual Multidimensional Graph
including original data and aggregates at output (cf. algorithm 1).

The algorithm 1 first identifies attributes on each dimension
according to QB (lines 3 and 4) and QB4OLAOP (line 6) vocabular-
ies and creates attribute vertices in the Multidimensional Graph
accordingly (lines 8-10). Then, it creates edges EAA between at-
tributes linked together through standardized (skos:narrower) or

Algorithm 1: Designing a Multidimensional Graph based
on original statistical RDF data

input :Original RDF data
output :Conceptual aggregate multidimensional graph

1 foreach dimension ?dim in original RDF data, such as ?dim

a qb:DimensionProperty. do

2 create a dimension Di in the multidimensional graph;

3 if there exists ?dim qb:codeList ?lst then

4 identify each attribute ?att within ?dim , such as

• ?lst skos:hasTopConcept ?att. or
• ?lst qb:hierarchyRoot ?att.

5 else

6 identify each attribute ?att within?dim (?level a

qb4o:LevelProery. ?level qb4o:inDimension

?dim), such as ?att qb4o:inLevel ?level ;

7 end

8 foreach identified attribute ?att in original RDF data do

9 create an attribute vertex ai such as ai ∈ A, A ⊆ V ;

10 end

11 create an edge EAA between ?att and ?attUp, such as

• ?attUp skos:inSchema ?lst;

skos:narrower ?att. or
• ?lst a qb:HierarchicalCodeList;

qb:parentChildProperty ?p2c.

?attUp skos:inSchema ?lst; ?p2c ?att.

12 end

13 foreach measure ?m in original RDF data, such as ?m a

qb:Observation do

14 create an measure vertexmi such asmi ∈ M ,M ⊆ V ;

15 identify attribute ?att on dimension ?dim (?dim a

qb:DimensionProperty) associated with ?m, such as

• ?m ?dim ?att. or
• ?level a qb4o:LevelPropery;

qb4o:inDimension ?dim.

?att qb4o:inLevel ?level. ?m ?dim ?att.

create an edge EMA between ?att and ?m ;

16 end

17 foreach measuremi ∈ M do

18 calculate aggregated values ofmi according to the related

attributes on each dimension 2
AD1

×...×ADn , where ADi

⊆ A is the set of related attribute vertices on Di , such as

∀aj ∈ ADi
, aj is associated withmi through one EMA

edge or through a set of EAA edges and one EMA edge ;

19 create an aggregate vertex дi such as дi ∈ G,G ⊆ V ;

20 create an edge EMG betweenmi and дi . ;

21 create an edge EAG between each attribute aдi in the

grouping conditions and дi . ;

22 create an edge EGG between related aggregate vertices дi
and дj , such as there exists an attribute aдi associated

with дi and an attribute aдj , aдi 4Dk
aдj ;

23 end



Figure 3: Designing process of Multidimensional Graph at

the conceptual, logical and physical levels

customized (?p2c3) relations (line 11). Next, the algorithm creates
measure vertices in the Multidimensional Graph (lines 13-16). At
last, it calculates measure values according to attributes of different
granularities on each dimension and adds pre-computed aggregates
in the Multidimensional Graph (lines 17-22).

Step 2. The second objective is to transform a conceptual Multi-
dimensional Graph including both original data and aggregates into
RDF and property-graph models at the logical level. In the case of
an RDF model, we have defined an underlying RDF vocabulary sup-
porting the translation of our Multidimensional Graph model into
the corresponding RDF representation. Note that a pre-computed
aggregate can be represented as a qb:Observation and its related
edges can be represented through predicates (e.g., figure 4).

Figure 4: An example of aggregate in RDF model

To transform a conceptualMultidimensional Graph into a property-
graph representation, we define the following set of mapping rules.

(1) A dimension vertex dim is transformed into
(dim) - [:a] -> (:‘qb:DimensionProperty‘)

(2) An attribute vertex att is transformed into
(a) (lst) - [:a] -> (:‘skos:ConceptSchema‘),

(lst) - [:‘skos:hasTopConcept‘] -> (att) or
(b) (lst) - [:a] -> (:‘qb:HierarchicalCodeList‘),

(lst) - [:‘qb:hierarchyRoot‘] -> (att) or
(c) (level) - [:a] -> (:‘qb4o:LevelProery‘),

(level) - [:‘qb4o:inDimension‘] -> (dim),

(att) - [:‘qb4o:inLevel‘] -> (level)

3?lst a qb:HierarchicalCodeList; qb:parentChildProperty ?p2c.

(3) An edge EAA is transformed into a standard relationship
[:‘skos:narrower‘] or a customized relationship [:‘e_aa‘]
such as: (lst) - [:a] -> (:‘qb:HierarchicalCodeList‘),

(lst) - [:‘qb:parentChildProperty‘] -> (e_aa)

(4) An edge EMA is transformed into a relationship [:dim]

whose label corresponds to the identifier of a dimension,
such as:

(a) (dim) - [:a] -> (:‘qb:DimensionProperty‘),

(m) - [:a] -> (:‘qb:Observation‘),

(m) - [ :dim] -> (att) or
(b) (dim) - [:a] -> (:‘qb:DimensionProperty‘),

(level) - [:a] -> (:‘qb4o:LevelProery‘),

(level) - [:‘qb4o:inDimension‘] -> (dim),

(att) - [:‘qb4o:inLevel‘] -> (level),

(m) - [:a] -> (:‘qb:Observation‘),

(m) - [:dim] -> (att)

(5) An aggregate vertex aддi is transformed into
(aддi :‘qb:Observation‘ { ‘MDGraph:value‘ : value,

‘MDGraph:dim1Name‘ : ’att1Name’, . . . ,

‘MDGraph:dimNName‘ : ’attNName’}),

(aддi) <- [‘aggDim1‘ : ‘MDGraph:dim1‘] - (att1),

. . .

(aддi) <- [‘aggDimN‘ : ‘MDGraph:dimN‘] - (attN),

(aддi) - [:‘MDGraph:GG‘] -> (aддj)

. . .

(aддi) - [:‘MDGraph:MG‘] -> (mi : ‘qb:Observation‘)

3.3 A Use Case

To illustrate the feasibility of our proposed translating process, in
this section we describe a use case based on a real-world dataset
named QBOAirbase4. QBOAirbase corresponds to an RDF Cube

representation including 5.07 × 10
6 RDF triples describing the Eu-

ropean air quality database on air pollution and climate change
mitigation 5. The graphical multidimensional representation of the
QBAirbase dataset is shown in Figure 5(a).

First, we execute the algorithm 1 to build a conceptual Multidi-
mensional Graph. The obtained Multidimensional Graph includes a
set ofMeasures M composed of 1.6×10

6 measure vertices. Each mea-
sure vertices eMi corresponds to an observation (qb:Observation)
in the source. Each measure vertex describe one air pollution in-
dicator such as SO2, Pb, O3 (cf. Figure 5(a)), and it can be analyzed
according to three dimensions, namely s:year, s:station and s:sensor.
The set of attributes A is composed of 2.43 × 10

5 attribute vertices.
Each attribute vertex represent an instance from the source, and it
describes one granularity within a dimension. 4.8 × 10

6EMA edges
are created to associate an attribute vertex eAj with a measure ver-

tex eMi . Relationships between attribute vertices are represented

through 2.43 × 10
5 EAA edges.

Besides converting original data, the algorithm 1 also creates
aggregates G by rolling up on different dimensions at different gran-
ularities. Figure 5(b) shows 24 types of aggregates at different gran-
ularities identified by the algorithm 1. Note that the first type of
aggregate Station, Sensor, Year corresponds to the original data,

4http://qweb.cs.aau.dk/qboairbase/
5https://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-2



Figure 5: QBOAribase dataset

while the 16th types of aggregate compute measure values accord-
ing to three distinct granularities, namely City, ALL_SE and ALL_Y
(1.62 × 10

6 vertices and 3.23 × 10
6 edges). Consequently, the ob-

tained Multidimensional Graph contains pre-computed aggregates
represented by 3.57 × 10

10 aggregate vertices, 1.045 × 10
11 EAG

edges, 7.63 × 10
10 EMG edges and 3.57 × 10

10 EGG edges.
At last, we apply our proposed mapping rules to build an RDF

and a property-graph model at the logical level for the conceptual
Multidimensional Graph. In the next section, we base the experi-
mental evaluation on the implemented Multidimensional Graph in
RDF triple stores and graph-oriented NoSQL database.

4 EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation on querying
statistical RDF data using the aggregate-based model described
above. We aim at studying the benefits of graph aggregation for
querying efficiency according to four different scenarios :

(1) queryingmultidimensional graphswithout aggregates, using
Jena TDB2 and Virtuoso triple stores;

(2) querying multidimensional graphs with pre-computed ag-

gregates, using Jena TDB2 and Virtuoso triple stores;
(3) querying multidimensional graphs without aggregates, in

Neo4j database;
(4) querying multidimensional graphs with pre-computed ag-

gregates, in Neo4j database;

All the resources used in these experiments together with the
technical documentation are available at https://iblid.weebly.com/
blog/sac-2019.

4.1 Material and methods

Datasets. Webuilt five datasets based on theQBOAirbase dataset.
Each dataset includes data related to one or several European coun-
tries and weights from 0.7GB (about 4.14 million RDF triples) to
15GB (over 81.92 million RDF triples). (cf. Table 1).

The obtained logical representations are implemented at the
physical level in three different data stores: Jena TDB2 (v.3.6.0),
Virtuoso (v.7.2.4.2) and Neo4j (v.3.3.5). Table 2 describes different
implementations of the five datasets. Note that Orig. implementa-
tions include only original data, while Ag. implementations contain

Table 1: QBOAirbase datasets of different volumes

Dataset Included countries Size(GB)
DS1 England 0.7
DS2 England, France 2.5
DS3 England, France, Spain 4.6
DS4 England, France, Spain, Germany 7.7
DS5 All countries 15

both original data and pre-computed aggregates. For instance, in
Jena TDB2 and Virtuoso dataset DS1 contains 4.14 million and 4.16
million triples in Orig. and Ag. implementations respectively, while
in Neo4j dataset DS1 includes 1.029 million nodes with 1.88 million
relationships and 1.03 million nodes with 1.89 million relationships
in Orig. and Ag. implementations respectively. Finally, our experi-
ments are carried out in 30 datasets of different data volumes with
and without aggregates in the different data stores.

Table 2: Datasets and their size in GB after implementation

Jena-TDB2 Virtuoso Neo4j
Orig. Ag. Orig. Ag. Orig. Ag.

DS1 0.83 0.85 0.14 0.14 0.68 0.69
DS2 2.39 2.54 0.29 0.29 1.26 1.28
DS3 4.26 4.56 0.48 0.48 2.15 2.20
DS4 6.91 7.39 0.74 0.74 7.07 7.15
DS5 13.08 13.93 1.29 1.29 13.52 13.67

Comparing the size of the original dataset (cf. Table 1) and the
size of the dataset implemented in data stores (cf. Table 2), we can
observe that datasets are compressed after being implemented in
a data store, according to their storage optimisation strategies. In
Jena and Neo4j, data are mildly compressed with a compression
ratio no greater than 10% from DS1 to DS5. On the contrary, the
compression ratio in Virtuoso is high; it ranges from 80% (dataset
DS1) to 91.4% (dataset DS5).

Benchmark queries. We propose 24 queries covering a large
range of operations during statistical RDF analyses. (cf. Figure 6).
Specifically, the first 12 queries involve all data ranging from the



Figure 6: Benchmark Queries

most detailed granularity to the most general granularity, while
the last 12 queries extract a sub-set of data according to a selection
criteria on different vertex of different granularities. Specifically,
queries Q1 and Q13 involve only original data without computing
aggregated measure values. It takes the same form in both orig. and
ag. datasets. Queries Q2-Q12 (without selection conditions) andQ14-
Q24 (with selection conditions) involve aggregated measures values
upon different granularities on different analysis axes. They (i)
compute aggregated values on-the-fly according to some grouping
conditions and an aggregation function in orig. datasets and (ii)
directly extract pre-computed and materialized aggregates in ag.

datasets. Each query is written with SPARQL and Cypher to be
executed in triple stores and Neo4j NoSQL database, respectively.

Technical environment and evaluation metrics. The hard-
ware configuration is as follows: OS MAC OS 10.12.5, 2 x 2,4 GHz
Quad-Core Intel Xeon, 48 GB 1066 MHz DDR3, 1TB SATA Disk.
For each query, we record its execution time (in millisecond) in
both implementations, for ten runs. We clear the querying engine’s
cache before each execution, so that a previously executed query
does not serve as warm-up run for the following one. The final
execution time of a query corresponds to the mean time of all runs.

4.2 Results and discussion

Querying without summarising data. As the graph aggre-
gation brings additional triples (i.e. materialized aggregates) in a
dataset, we first study if queries extracting original data without
computing aggregated value require longer runtime. To do so, we
execute the query Q1 (without grouping condition or selection con-
dition) and Q13 (including selection condition without grouping
condition) in both orig. and ag. implementations.

Figure 7 presents the difference of runtime for the same queries
executed in a orig. dataset and an ag. dataset. The difference is a

positive number, which means the execution time of queries Q1
and Q13 takes more time in ag. datasets than in orig. datasets.

For query Q1 which contains neither grouping condition nor
selection condition, pre-computed aggregates have remarkable im-
pacts over query runtime in Jena TDB2 and Virtuoso. We can also
notice that the impact of pre-computed aggregate over Q1 becomes
greater as the data volume increases: from DS1 to DS5, the gap is
widened 16.62 times in Jena TDB2 and 15.16 times in Virtuoso. The
greatest gap (up to 3557ms) of Q1’s runtime is found in dataset
DS5 of Jena TDB (with an absolute runtime of 58790ms in orig. DS5
dataset and 62347ms in ag. DS5 dataset).

For query Q13 which contains only selection conditions without
any grouping condition, its execution is greatly influenced by pre-
computed aggregates in Jena TDB2 and Virtuoso. Notably, from
DS1 to DS5, the gap is widened nearly 40 times in Virtuoso. The
greatest gap (up to 2913 ms) of Q13’s runtime is found in dataset
DS5 of Virtuoso (with an absolute runtime of 7492ms in orig. DS5
dataset and 10405ms in ag. DS5 dataset).

Neo4j is the least affected by the materialization of aggregates.
There is practically no difference (max. 45 ms) while querying
without summarising data before and after adding pre-computed
aggregates, with or without selection condition.

Querying aggregatednumeric valueswithout selection con-

dition. The second part of the experiments focuses on the impact
of graph aggregation over queries Q2 - Q12 which summarise data
according to different grouping conditions without selection.

As a similar trend is found within different implementations and
due to limited space available, in Figure 8, we focus only on query ex-
ecution time in the smallest and largest datasets (i.e. DS1 andDS5). A
complete description of our experimental assessment can be found
on the following website https://iblid.weebly.com/blog/sac-2019.
We can see that pre-computed aggregates allow reducing query



Figure 7: Gap of execution time of queries Q1 and Q13 with and without pre-computed aggregates

execution time in all data stores. Specifically, in the dataset DS1 (cf.
Figure 8 (a)), the average execution time in Jena TDB2 decreases
from 1837 ms to 617 ms; the gain after aggregation is about 66%. The
average execution time in Virtuoso decreases from 565 ms without
aggregates to 281 ms with aggregates; the gain is about 50%. Mean-
while, Neo4j benefits greatly from aggregates: the query execution
time decreases of 88% in datasets with aggregates comparing to
datasets without aggregates We can see from Figures 8 (b) that
the similar trend is found in the largest dataset. The same query
requires less execution time in the aggregate implementations than
the orig. implementation of the same dataset in all data stores. The
gain of query execution time in Virtuoso becomes less important
in a larger dataset (i.e. DS5): about 19.6%. We notice that the gain
in Jena TDB2 and Neo4j with pre-computed aggregates becomes
greater as the data volume increases; it reaches up to 83% and 99%
respectively in the dataset DS5.

In Figure 9, we can see that the average execution time in most
data stores increases as the dataset size becomes larger. Specifi-
cally, among the orig. implementations, the execution time in all
three data stores increases in a quadratic polynomial manner (with
R2 close to 0.99). From DS1 to DS5, the execution time multiplies
increases by 8.87 times and 10 times in Jena TDB2 and Neo4j, respec-
tively. Comparing to Jena TDB2 and Neo4j, Virtuoso is less affected
by the increasing data volume of datasets without aggregates: about
3.8 times. Among the ag. implementations, the average query run-
time still increase in a quadratic polynomial manner in Jena TDB2
(with R2 = 0.99); in Virtuoso, the increase of query execution time
is linear (with R2 close to 0.99); the execution time in Neo4j remains
almost the same, even though the data volume has increased over
21 times from DS1 to DS5. The average execution time in Neo4j is
about 350ms with pre-computed aggregates, corresponding to the
shortest execution time among all three data stores.

Querying aggregated numeric values with selection condi-

tion. In the third part of our experiments, we study if queries with
selection conditions are efficiently computed in datasets with ag-
gregates. We analyse the runtime of queries Q14-Q24 in all datasets
with and without aggregates. Due to limited space, in this section
we only show results of the largest dataset (DS5). The other results
are available on our website https://iblid.weebly.com/blog/sac-2019.

From Figure 10, we can see in Jena TDB2, queries including se-
lection conditions of different types do not always benefit from

pre-computed aggregates. However, pre-computed aggregates al-
ways allow decreasing the execution time of queries with selection
conditions in Virtuoso and Neo4j data stores.

In Jena TDB2, queries with selection conditions on attributes
(Q14-Q21) are always more efficiently computed in datasets with
pre-computed aggregates. Queries with a single selection condition
on measures (Q22 and Q23), however, are slightly more efficiently
computed in datasets without aggregates. Query with two selection
conditions on two measures benefit the most from pre-computed
aggregate: its runtime in the dataset with aggregates is reduced to
1.79% of the runtime in the dataset without aggregates.

In Virtuoso and Neo4j, queries with selection conditions on
attributes and measures (Q14-Q24) always take less time in dataset
with aggregates than without aggregate. Especially, in Virtuoso,
the runtime of query Q24 including several selection conditions on
different measures decreases by 99.4% in dataset with aggregates.
Among all three data stores, the lowest average runtime is recorded
in Neo4j with aggregates: 393 ms. Moreover, comparing to Jena
TDB2 with aggregates which has difficulty in processing selection
conditions onmeasures, Neo4j with aggregates efficiently computes
all queries with different types of selection conditions (on attribute
and/or measures); comparing to Virtuoso, in Neo4j with aggregates
the execution of queries with different selection conditions takes
only 30.8% of the runtime in Virtuoso with aggregates.

Lessons learned. The results of our experiments are opposite to
what the authors of [15] have observed: provided that aggregates
are properly modeled in an RDF dataset, pre-computed aggregates
can reduce query execution time in triple stores (Jena TDB2 and
Virtuoso) and Neo4j NoSQL database. More importantly, we saw
that even though data volume increases rapidly (by 21 times) from
DS1 to DS5, the average query runtime in all three data stores with
aggregates does not increase exponentially (cf. Figure 9). We can
conclude that pre-computing aggregates is a promising approach
to improving querying performance in large RDF datasets. We also
notice that the execution of the same query does not take the same
time in different data stores. Thus, the choice of data stores impacts
the querying efficiency. Among the three data stores studied in this
paper, Jena TDB2 performs poorly for computing aggregates on-the-
fly or managing pre-computed aggregates. If summarised measure
values must be calculated on-the-fly during querying, Virtuoso may
consist of one efficient solution. Yet, we do not recommend Virtuoso



Figure 8: Query execution time with and without aggregates

Figure 9: Average execution time of queries Q2-Q12 with and without aggregates in datasets of different volumes

Figure 10: Execution time of queries with selection conditions in the largest dataset (DS5)

for computing complex queries with multiple selection conditions
on multiple measures. The most recommended approach is to use
Neo4j with pre-computed aggregates for queries with and without

selection conditions. Moreover, the larger the dataset is the greater
the gain of queries on aggregates becomes in Neo4j. Overall, with
81.92 million triples, queries on pre-computed aggregates in Neo4j



takes no more than 0.4 second. It provides an efficient and scalable
solution to managing graph aggregation.

5 CONCLUSIONS AND FUTUREWORK

This paper presented an approach for querying large volume of sta-
tistical RDF data. The approach relies on combining pre-aggregation
strategies and the performance of NoSQL engines in order to rep-
resent and manage RDF data, respectively. We have defined a con-
ceptual model that combines original data with aggregates. We
have coupled the conceptual modeling with a logical translating
process based on well-known multidimensional RDF graph and
property-graph representations. We have conducted experiments
on a real-world RDF dataset containing 81.92 million triples. We
have compared the performance of querying data on both RDF
triple stores and Neo4j NoSQL database, with and without aggre-
gates, with and without selection conditions. Our experimental
results corroborate our hypothesis showing that (i) pre-computed
aggregates can reduce query execution time in both triple stores and
property-graph NoSQL database and (ii) the performance of analyt-
ical queries on Neo4j NoSQL database with aggregates outperforms
RDF Jena TDB2 and Virtuoso triple stores.

As future work, we intend to improve the RDF modeling vocab-
ulary of our Multidimensional Graph model. In the line of the work
of [4], the objective is to support ontology-based data access to
enable SPARQL querying over Neo4j NoSQL database. For that, we
will propose R2RML mappings for translating the original schemes
to our ontology. Another research direction consists of comparing
the performance of aggregate querying in other data stores, such
as relational databases, column-oriented databases, and so on. We
will base our new experimental evaluation on data of larger scales
(e.g., exceeding memory limits).
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