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Abstract. We prove moderate deviation principles for the tagged particle position and current in
one dimensional symmetric simple exclusion processes. There is at most one particle per site. A
particle jumps to one of its two neighbors at rate 1/2, and the jump is suppressed if there is already
one at the target site. We distinguish one particular particle which is called the tagged particle. We
first establish a variational formula for the moderate deviation rate functions of the tagged particle
positions based on moderate deviation principles from hydrodynamic limit proved by Gao and Quastel
[6]. Then we construct a minimizer of the variational formula and obtain explicit expressions for the
moderate deviation rate functions.

1. Introduction

It has been a long standing problem to investigate the behavior of a tagged particle interacting with
others, which is closely related to the problem of establishing a rigorous physical basis of Brownian
motion. The main difficulty lies in the fact that the tagged particle itself is in general not Markov-
ian. One of the simplest interactions between particles is the exclusion rule, which means that each
site cannot be occupied by more than two particles. The exclusion process was first introduced by
Spitzer [30], and since then it has become one of the most popular models in statistical physics due
to its simple structure but rich behaviors, cf. [19, 20]. The dynamics is as follows: the particle at site
x ∈ Zd, d ≥ 1, waits for an exponential time of parameter one, and then choose a site y ∈ Zd with
probability p(y − x), where p(·) is a probability measure on Zd. If site y is vacant, then the particle
at site x jumps to site y; otherwise the jump is suppressed and the particle at site x waits for a new
exponential time.

Initially, let us put one particle at the origin, and independently put one at every other site with
probability ρ ∈ (0, 1). We distinguish the particle initially at the origin, and call it the tagged particle.
In the one dimensional symmetric nearest neighbor case, Arratia [1] showed that the tagged particle
is sub-diffusive. More precisely, if we denote by Xt the position of the tagged particle at time t, then
Xt/t

1/4 converges in distribution to the normal distribution with variance
√

2/π(1 − ρ)/ρ. Arratia’s
proof investigates negative correlation inequalities, and we refer the readers to [4] for a different proof
of the above central limit theorem (CLT) based on the relation between current and tagged particle
positions. The above CLT was then extended to an invariance principle with respect to the fractional
Brownian motion with hurst index 1/4 in [23]. Recently, Sethuraman and Varadhan [28] established
large deviation principles for the position of the tagged particle.

Inspired by the work in [28], in this article we consider the moderate deviations of the tagged particle
positions, which is the first result in this direction to the best of our knowledge. The proof is based
on the following observation: denote by Jx,x+1(t) the net particle current across the bond (x, x + 1)
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up to time t, then for a > 0,

{Xt > a} =
{
J−1,0(t) ≥

a∑
x=0

ηt(x)
}
,

and similarly for a < 0,

{Xt < a} =
{
J−1,0(t) < −

−1∑
x=a

ηt(x)
}
.

Above, ηt(x) = 1 means there is a particle at site x at time t, and ηt(x) = 0 otherwise. Moreover,
formally we have

Jx,x+1(t) =
∑
y>x

{ηt(y)− η0(y)}.

Then, following the moderate deviation principles from hydrodynamic limit of symmetric exclusion
processes already proved in [6], the moderate deviation rate function for the current and the tagged
particle positions should be given by a variation formula, which is the first main result Theorem 2.4
of the article, and is reminiscent of the contraction principle. We remark that the above strategy has
also been used in many other contexts [8, 11, 12, 28].

The second main contribution of the article is to characterize the moderate deviation rate function
explicitly. The rate functions are quadratic as stated in Theorem 2.5. To this end, we construct a
minimizer of the variational formula, which permits us to calculate the rate function.

Related work. When the process starts from stationary measures, Saada [25] proved law of large
numbers for the tagged particle positions by proving the ergodicity of the environment process as
seen from the tagged particle. Then it is a natural question to consider stationary fluctuation. In the
remaining cases except the one dimensional nearest neighbor case, the tagged particle position has been
proved to be diffusive as expected. In the seminal paper [16], Kipnis and Varadhan have established
a very general result for functional central limit theorems of additive functionals of reversible ergodic
Markov chains, based on which they proved invariance principles for the tagged particle positions in
symmetric exclusion processes in all dimensions except the one-dimensional nearest neighbor case. The
above approach has been extended to other contexts since then, by Varadhan [31] in the asymmetric
mean-zero case , and by Sethuraman, Varadhan and Yau [29] when p(·) has a drift in dimension d ≥ 3.
We refer the readers to the monograph [17] for a comprehensive study of the above method. The
one dimensional nearest neighbor asymmetric case was solved by Kipnis using the mapping between
exclusion and zero range processes in [14]. In dimensions d ≤ 2 when the underlying random walk has
a drift except the one dimensional nearest-neighbor case, we only know the tagged particle is diffusive
as shown by Sethuraman [26], and a full CLT or invariance principle remains open. Non-equilibrium
behaviors of the tagged particle positions have also been investigated in several cases. Law of large
numbers was proved in [24]. For non-equilibrium fluctuations, cf. [11, 12] for the one dimensional
nearest neighbor case with/without bond disorder, and [9] for symmetric exclusion process with long
jumps.

The motion of the tagged particle has also been used to check the validity of the Einstein relation
[18, 21, 22]. Very recently, a heat kernel bound for the tagged particle was proved in [7] for symmetric
exclusion. The behavior of the particle has also been investigated in other interacting particle processes,
such as in zero range processes [10, 13, 27] and in stirring-exclusion processes [3]. Besides on the integer
lattice Zd, the tagged particle was also considered on regular trees [2] and on Galton–Watson trees [5].
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The rest of the paper is organized as follows. In Section 2, we first recall moderate deviations from
hydrodynamic limit in the symmetric exclusion process in Theorem 2.1. As stated above, moderate
deviation principles for the tagged particles positions and currents are presented in Theorem 2.4 in
terms of a variational formula, which is calculated explicitly in Theorem 2.5. We first prove Theorem
2.5 in Section 3, and postpone the proof of Theorem 2.4 to Section 4 since the proof utilizes the
properties of rate functions.

2. Notation and Results

The one dimensional symmetric simple exclusion process (SSEP) is a Markov process on Ω = {0, 1}Z

with infinitesimal generator acting on local functions as

Lf(η) = 1

2

∑
x∈Z

{
f(ηx,x+1)− f(η)

}
. (2.1)

Above, a function f : Ω → R is local if it depends on η only through a finite number of sites, and ηx,y
is the configuration obtained from η by exchanging the values of η(x) and η(y), that is,

ηx,y(z) =


η(z), z 6= x, y,

η(y), z = x,

η(x), z = y.

Denote by {ηt}t≥0 the Markov process with generator L. The particles in the SSEP are indistinguish-
able. We distinguish one particular particle, put it initially at the origin, and call it the tagged particle.
Denote by X(t) the position of the tagged particle at time t. Obviously, X(0) = 0.

Let νρ, ρ ∈ (0, 1), be the product measure on Ω with marginals given by

νρ{η : η(x) = 1} = ρ, ∀x ∈ Z.

It is well known that νρ is reversible and ergodic for the SSEP, cf. [19] for example. Since we are
interested in the motion of the tagged particle, we shall start the process from the measure ν∗ρ obtained
from νρ conditioned on having a particle at the origin, i.e.,

ν∗ρ(·) = νρ(·|η(0) = 1).

We shall also investigate the behavior of the current in the SSEP. More precisely, for x ∈ Z, let
Jx,x+1(t) be the net number of particles across the bond (x, x + 1) up to time t, i.e., the number of
particles jumping from x to x+ 1 minus the number of particles jumping from x+ 1 to x during the
time interval [0, t].

Throughout the paper, we use P to denote the measure on D([0,∞),Ω) associated to the exclusion
process ηt and initial measure ν∗ρ , and by E the corresponding expectation.

Recall a function f : R → R is a Schwartz function if it is smooth and supu∈R |umf (n)(u)| < ∞
for all1 m,n ∈ Z+. Let S(R) be the space of all Schwartz functions, and S ′(R) be the dual of S(R).
For m,n ∈ Z+ and A,B ⊂ R, we use Cm,n

c (A × B) to denote the space of functions which are m-th
(resp. n-th) continuously differentiable in the first (resp. second) variable and have compact support
in A×B.

2.1. Moderate deviations from hydrodynamic limit. In this subsection, we recall moderate
deviation principles for the empirical measure of the process already proved by Gao and Quastel [6].

1Here, Z+ = {0, 1, 2, . . .}.
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For each N ≥ 1, define the centered empirical measure µN
t as

µN
t (u) =

1

aN

∑
x∈Z

(
ηtN2(x)− ρ

)
δx/N (u), u ∈ R,

where δv(u) is the Delta function, and {aN}N≥1 is any positive sequence such that

lim
N→∞

aN
N

=

√
N

aN
= 0.

We regard µN
t as an random element in the space S ′(R) of tempered distributions. Fix a time horizon

T > 0. For G ∈ C1,2
c ([0, T ]× R) and µ ∈ D([0, T ],S ′(R)), let

l(µ,G) = 〈µT , GT 〉 − 〈µ0, G0〉 −
∫ T

0

〈µs,
(
∂s + (1/2)∂2u

)
Gs〉ds.

Above, Gs(u) = G(s, u). The rate function Q(µ) := Qdyn(µ) +Q0(µ0) is given by

Qdyn(µ) = sup
G∈C1,2

c ([0,T ]×R)

{
l(µ,G)− ρ(1− ρ)

2

∫ T

0

∫
R
(∂uG)

2(s, u) du ds

}

Q0 (µ0) = sup
ϕ∈Cc(R)

{
〈µ0, ϕ〉 −

ρ(1− ρ)

2

∫
R
ϕ2(u)du

}

Theorem 2.1 (Moderate deviations from hydrodynamic limit [6]). The process {µN
t }0≤t≤T satisfies

moderate deviation principle with decay rate a2N/N and with rate function Q(µ), more precisely, for
any open set O ∈ D([0, T ],S ′(R)),

lim inf
N→∞

N

a2N
P
(
µN
· ∈ O

)
≥ − inf

µ∈O
Q(µ),

and for any closed set C ∈ D([0, T ],S ′(R)),

lim inf
N→∞

N

a2N
P
(
µN
· ∈ C

)
≤ − inf

µ∈C
Q(µ).

Remark 2.2. Although Gao and Quastel [6] proved moderate deviations for the symmetric exclusion
process on the finite ring TN := Z/NZ starting from the measure νρ, their results could be extended
directly to the process evolving on the infinite integer lattice Z with initial measure ν∗ρ by solving some
topological issues and by using a simple coupling argument.

The coupling is defined as follows: for two processes η and ξ, we let them jump as possible as
together. This is called basic coupling in the literature, cf. [19] for example.

Remark 2.3. Gao and Quastel [6] considered the symmetric exclusion processes in all dimensions.
We only state the result for the one dimensional case since it is sufficient for our purpose.

2.2. Moderate deviations for the current and tagged particle. In this subsection, we state
the main results of the article, i.e., moderate deviation principles for the current and tagged particle
positions in the symmetric simple exclusion process.

Since the number of particles is locally conserved, for x ∈ Z,

ηTN2(x)− η0(x) = Jx−1,x(TN
2)− Jx,x+1(TN

2). (2.2)

Summing over x from 0 to +∞ and divided by aN on both hand sides, formally we have
1

aN
J−1,0(TN

2) =
1

aN

∑
x≥0

{(
ηtN2(x)− ρ

)
−

(
η0(x)− ρ

)}
. (2.3)
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Note that the infinite sum on the right-hand side may not be well defined. By Theorem 2.1 and
the contraction principle, a−1

N J−1,0(TN
2) should satisfy the moderate deviation principle with rate

function J(α) given by

J(α) = inf{Q(µ) : µT (χ[0,∞))− µ0(χ[0,∞)) = α}, α ∈ R. (2.4)

Similarly, for the position of the tagged particle, observe that if J−1,0(TN
2) > 0, then

1

aN
J−1,0(TN

2) =
1

aN

X(TN2)−1∑
x=0

ηTN2(x) =
1

aN

X(TN2)−1∑
x=0

(
ηTN2(x)− ρ

)
+

1

aN
ρX(TN2), (2.5)

and if J−1,0(TN
2) < 0 , then

1

aN
J−1,0(TN

2) = − 1

aN

−1∑
x=X(TN2)

ηTN2(x) = − 1

aN

−1∑
x=X(TN2)

(
ηTN2(x)− ρ

)
+

1

aN
ρX(TN2). (2.6)

By large deviation estimates, the sums on the right-hand sides of (2.5) and (2.6) are both negligible
in the limit. Using the contraction principle again, the rate function for the tagged particle positions
should be given by

I(α) = inf{Q(µ) : µT (χ[0,∞))− µ0(χ[0,∞)) = ρα}, α ∈ R. (2.7)

The first main result of the article validates the above formal arguments.

Theorem 2.4. The sequence of the currents {J−1,0(TN
2)/aN}N≥1, respectively of the tagged particle

positions {X(TN2)/aN}N≥1, satisfies moderate deviation principles with decay rate a2N/N and with
rate function J(α), respectively with I(α). To be precise, for any open set O ∈ R,

lim inf
N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ∈ O
)
≥ − inf

α∈O
J(α),

lim inf
N→∞

N

a2N
logP

( 1

aN
X(TN2) ∈ O

)
≥ − inf

α∈O
I(α),

and for any closed set C ∈ R,

lim sup
N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ∈ C
)
≤ − inf

α∈C
J(α),

lim sup
N→∞

N

a2N
logP

( 1

aN
X(TN2) ∈ C

)
≤ − inf

α∈C
I(α).

Next, we state an explicit formula for the rate functions J(α) and I(α). It was proved in [1, 4] the
following central limit theorems for the current and tagged particle,

lim
t→∞

J−1,0(t)

t1/4
= N (0, σ2

J), lim
t→∞

X(t)

t1/4
= N (0, σ2

X)

in distribution, where N (0, σ2) is the normal distribution with mean zero and variance σ2, and

σ2
X =

√
2

π

1− ρ

ρ
, σ2

J =

√
2

π
ρ(1− ρ).

We also remark that the corresponding invariance principle was proved in [23] with respect to the
fractional Brownian motion with parameter 1/4. Then, a heuristic argument shows that the rate
functions for the current and tagged particle positions should be α2/(2σ2

J

√
T ) and α2/(2σ2

X

√
T ).
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Indeed, for any α ∈ R, formally,

P
( 1

aN
J−1,0(TN

2) = α
)
= P

(J−1,0(TN
2)

N1/2T 1/4
=

αaN
N1/2T 1/4

)
≈ 1√

2πσ2
J

exp
{
− 1

2σ2
J

α2a2N
N
√
T

}
.

Therefore,
N

a2N
logP

( 1

aN
J−1,0(TN

2) = α
)
≈ − α2

2σ2
J

√
T
.

The same argument is also true for the tagged particle positions. The following result verifies that this
is indeed the case, which is the second main result of the article.

Theorem 2.5. For the rate functions, we have

J(α) =
√
2πα2

4ρ(1− ρ)
√
T
, I(α) =

√
2πρα2

4(1− ρ)
√
T
.

3. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. Comparing (2.7) with (2.4), we have I(α) = J(ρα). Therefore,
we only need to prove Theorem 2.5 for the rate function J(α).

Proof of Theorem 2.5. By the definition of J(α) in (2.4), we only need to consider the family of tem-
pered distributions µ such that Q(µ) < ∞. By Riesz’s representation theorem, if Q0(µ0) < ∞, then
there exists ψ ∈ L2(R) such that〈

µ0, ϕ
〉
=

∫
R
ψ(u)ϕ(u)du, Q0(µ0) =

||ψ||2L2(R)

2ρ(1− ρ).
(3.1)

For H,G ∈ C1,2
c ([0, T ]× R), define

[H,G] =

∫ T

0

∫
R
∂uH(t, u)∂uG(t, u) du dt.

We say H ∼ G if [H − G,H − G] = 0. Let H1 be the Hilbert space obtained as the completion
of C1,2

c ([0, T ] × R))/ ∼ with respect to the inner product [·, ·]. By [6, Lemma 5.1] and Eq. (3.1), if
Q(µ) <∞, then there exist some H ∈ H1 and ψ ∈ L2(R) such that µ is the unique solution of{

∂tµ(t, u) = (1/2)∂2uµ(t, u)− ρ(1− ρ)∂2uH(t, u)

µ0(u) = ψ(u).
(3.2)

Moreover,

Qdyn(µ) =
ρ(1− ρ)

2

∫ T

0

∫
R
(∂uH)2(t, u) du dt. (3.3)

To sum up, for any µ such that Q(µ) <∞, we could find Hn ∈ C1,2
c ([0, T ]×R)) and ψn ∈ C2

c (R) such
that the corresponding µn satisfies Q(µn) → Q(µ) as n→ ∞. Denote

A =
{
µ : there exist H ∈ C1,2

c ([0, T ]× R)) and ψ ∈ C2
c (R) such that µ satisfies Eq. (3.2)

}
.

Then
J(α) = inf{Q(µ) : µ ∈ A, µT (χ[0,∞))− µ0(χ[0,∞)) = α}, α ∈ R. (3.4)
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Now take µ ∈ A such that µT (χ[0,∞))− µ0(χ[0,∞)) = α. Note that in this case µ actually satisfies
µ ∈ C1,2

c ([0, T ]× R). Denote
J = −1

2
∂uµ+ ρ(1− ρ)∂uH.

Then by (3.2),
∂tµ+ ∂uJ = 0.

Replacing ∂uH in (3.3) with [ρ(1− ρ)]−1(J + (1/2)∂uµ), we may rewrite Qdyn as

Qdyn(µ) =
1

ρ(1− ρ)

∫ T

0

∫
R

{1

2
J2(t, u) +

1

8
(∂uµ)

2(t, u) +
1

2
J(t, u)∂uµ(t, u)

}
du dt. (3.5)

Using the integration by parts formula,∫ T

0

∫
R

1

2
J(t, u)∂uµ(t, u) du dt = −

∫ T

0

∫
R

1

2
µ(t, u)∂uJ(t, u) du dt

=

∫ T

0

∫
R

1

2
µ(t, u)∂tµ(t, u) du dt =

1

4

∫
R

{
µ2(T, u)− µ2

0(u)
}
du.

Therefore,

ρ(1− ρ)Qdyn(µ) =

∫ T

0

∫
R

{1

2
J2(t, u) +

1

8
(∂uµ)

2(t, u)
}
du dt+

1

4

∫
R

{
µ2(T, u)− µ2

0(u)
}
du.

By Eq. (3.1),
Q0(µ0) =

1

2ρ(1− ρ)

∫
R
µ2
0(u) du.

Therefore,

ρ(1− ρ)Q(µ) =

∫ T

0

∫
R

{1

2
J2(t, u) +

1

8
(∂uµ)

2(t, u)
}
du dt+

1

4

∫
R

{
µ2(T, u) + µ2

0(u)
}
du. (3.6)

Define K : R+ × R → R as

K(t, u) =

∫ t

0

J(s, u)ds.

Direct calculations yield that

∂tK(t, u) = J(t, u),

∂uK(t, u) =

∫ t

0

∂uJ(s, u)du = −
∫ t

0

∂sµ(s, u)ds = µ0(u)− µ(t, u), (3.7)

∂2uK(t, u) = ∂uµ0(u)− ∂uµ(t, u).

Replacing J(t, u), ∂uµ(t, u) and µ(T, u) in Eq. (3.6) by functional of K(t, u) and µ0(u), we may rewrite
the rate function Q(µ) as

ρ(1− ρ)Q(µ) =

∫ T

0

∫
R

{1

2
(∂tK)2(t, u) +

1

8
(∂2uK)2(t, u)

}
du dt+

∫
R

1

4
(∂uK)2(T, u) du

+

∫ T

0

∫
R

{1

8
(∂uµ0)

2(u)− 1

4
∂uµ0(u)∂

2
uK(t, u)

}
du dt+

∫
R

1

2
µ2
0(u)−

1

2
µ0(u)∂uK(T, u) du. (3.8)

Moreover, the constraint µT (χ[0,∞))− µ0(χ[0,∞)) = α reduces to that

K(T, 0) =

∫ T

0

J(s, 0)ds = −
∫ T

0

∫ ∞

0

∂uJ(s, u)duds =

∫ ∞

0

µ(T, u)− µ0(u)du = α.
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Obviously, K(0, u) = 0 for all u ∈ R. Observe that the expression of Eq. (3.8) is similar to that of K
in [28, Page 1493], except that we need to consider the effect of the initial conditions. To obtain the
infimum of (3.8) over the above constraints, we first state a lemma without proof.

Lemma 3.1 ([28, Proposition 4.4]). For M ∈ C1,2([0, 1]× R), define

M =
1

4

∫
|∂uM(1, u)|2 du+

1

2

∫ 1

0

∫
|∂tM(t, u)|2 dudt+ 1

8

∫ 1

0

∫ ∣∣∂2uM(t, u)
∣∣2 dudt.

Then
inf{M :M(0, u) ≡ 0,M(1, 0) = 1} =

√
π

2
.

Moreover, the infimum is obtained in M such that
1

4
∂4uM(t, u) = ∂2tM(t, u), ∂2uM(1, u) = 0, ∂tM(1, u) = 0.

For K ∈ C1,2([0, T ]× R), denote by FT (K) the first line on the right-hand side of (3.8), i.e.

FT (K) =

∫ T

0

∫
R

{1

2
(∂tK)2(t, u) +

1

8
(∂2uK)2(t, u)

}
du dt+

∫
R

1

4
(∂uK)2(T, u) du.

Let M(t, u) = α−1K(tT, u
√
T ). Then we could rewrite FT (K) as

FT (K) =
α2

√
T
M,

where M is given in Lemma 3.1. Moreover, the constraints on K reduces to that M(0, u) ≡ 0 and
that M(1, 0) = 1. Therefore, using Lemma 3.1,

inf{FT (K) : K(T, 0) = α, K(0, u) = 0} =

√
πα2

2
√
T
,

and the infimum is attained at the point Kα,T such that
1

4
∂4uKα,T (t, u) = ∂2tKα,T (t, u), ∂2uKα,T (T, u) ≡ 0, ∂tKα,T (T, u) ≡ 0. (3.9)

Next, we shall construct the point (K̃α,T , µ̃α,T (0, ·)) at which the infimum of (3.8) is attained
from the above observations. Denote by µα,T the corresponding density associated to Kα,T with
initial condition µα,T (0, u) = 0. More precisely, by (3.7), µα,T (t, u) = −∂uKα,T (t, u). Note that the
parameter α could be interpreted as the flux from the left of the origin to the right up to time T . The
main idea is to construct µ̃α,T associated to K̃α,T in such a way that the flux from the left of the origin
to the right is α/2 during the time intervals [0, T/2] and [T/2, T ], and that µ̃α,T (T/2, u) = 0 for all u.

To this aim, define

µ̃α,T (t, u) =

{
−µα/2,T/2

(
T
2 − t, u

)
if 0 ≤ t ≤ T/2,

µα/2,T/2

(
t− T

2 , u
)

if T/2 ≤ t ≤ T.
(3.10)

Then µ̃α,T (0, u) = −µα/2,T/2

(
T
2 , u

)
. By (3.7), the corresponding K̃α,T is given by

K̃α,T (t, u) =

{
Kα/2,T/2

(
T
2 , u

)
−Kα/2,T/2

(
T
2 − t, u

)
if 0 ≤ t ≤ T/2,

Kα/2,T/2

(
T
2 , u

)
+Kα/2,T/2

(
t− T

2 , u
)

if T/2 ≤ t ≤ T.
(3.11)

Note also that
µ̃α,T (0, u) = ∂uKα/2,T/2

(
T
2 , u

)
.
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We claim that the infimum of ρ(1 − ρ)Q(µ) as in (3.8) is attained at the point (K̃α,T , µ̃α,T (0, ·)). To
simplify notations, we write K = Kα/2,T/2 when there is no ambiguity. A direct calculation shows
that the infimum is given by∫ T/2

0

∫
R

{1

2

(
∂tK(T2 − t, u)

)2

+
1

8

(
∂2uK(T2 , u)− ∂2uK(T2 − t, u)

)2

+
1

8

(
∂2uK(T2 , u)

)2

− 1

4
∂2uK(T2 , u)

(
∂2uK(T2 , u)− ∂2uK(T2 − t, u)

)}
du dt (3.12)

+

∫ T

T/2

∫
R

{1

2

(
∂tK(t− T

2 , u)
)2

+
1

8

(
∂2uK(T2 , u) + ∂2uK(t− T

2 , u)
)2

+
1

8

(
∂2uK(T2 , u)

)2

− 1

4
∂2uK(T2 , u)

(
∂2uK(T2 , u) + ∂2uK(t− T

2 , u)
)}
du dt (3.13)

+

∫
R

1

4

(
2∂uK(T2 , u)

)2

+
1

2

(
∂uK(T2 , u)

)2

− 1

2
∂uK(T2 , u)

(
2∂uK(T2 , u)

)
du. (3.14)

The sum of (3.12) and (3.13) is

2

∫ T/2

0

∫
R

1

2

(
∂tK(t, u)

)2

+
1

8

(
∂2uK(t, u)

)2

du dt,

and (3.14) equals
2

∫
R

1

4

(
∂uK(T2 , u)

)2

du.

Therefore,

J(α) =
2

ρ(1− ρ)
FT/2

(
Kα/2,T/2

)
=

√
2πα2

4ρ(1− ρ)
√
T
.

It remains to prove the claim. It is easy to see that K̃α,T satisfies the constraints

K̃α,T (0, u) ≡ 0, K̃α,T (T, 0) = α.

Denote by G(K,µ0) the formula on the right-hand side of (3.8). Then we only need to prove that for
any K ∈ C1,2([0, T ]× R) such that K(T, 0) = 0 and K(0, u) ≡ 0, and for any µ0 ∈ C2

c (R), we have

G(K + K̃α,T , µ0 + µ̃α,T (0, ·)) ≥ G(K̃α,T , µ̃α,T (0, ·)).

To make notations short, below we write K̃ = K̃α,T and µ̃0(·) = µ̃α,T (0, ·). Direct calculations show
that

G(K + K̃, µ0 + µ̃0)−G(K̃, µ̃0)

≥
∫ T

0

∫
R
∂tK(t, u)∂tK̃(t, u) +

1

8

(
∂2uK(t, u)

)2
+

1

4
∂2uK̃(t, u)∂2uK(t, u) du dt (3.15)

+

∫
R

1

4

(
∂uK(T, u)

)2
+

1

2
∂uK̃(T, u)∂uK(T, u) du (3.16)

+

∫ T

0

∫
R

{1

8

(
∂uµ0(u)

)2
+

1

4
∂uµ̃0(u)∂uµ0(u)

− 1

4
∂uµ0(u)∂

2
uK(t, u)− 1

4
∂uµ0(u)∂

2
uK̃(t, u)− 1

4
∂uµ̃0(u)∂

2
uK(t, u)

}
du dt (3.17)

+

∫
R

1

2
µ0(u)

2 + µ̃0(u)µ0(u)−
1

2
µ0(u)∂uK(T, u)− 1

2
µ̃0(u)∂uK(T, u)− 1

2
µ0(u)∂uK̃(T, u)du. (3.18)
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Next we shall deal with the above four terms respectively. To treat the term (3.15), using the
integration by parts formula, we have∫ T

0

∫
R
∂tK(t, u)∂tK̃(t, u) +

1

4
∂2uK̃(t, u)∂2uK(t, u) du dt

=

∫ T

0

∫
R

(
− ∂2t K̃(t, u) +

1

4
∂4uK̃(t, u)

)
K(t, u) du dt+

∫
R
K(T, u)∂tK̃(T, u)du.

Recall the definition of K̃ in (3.11). By (3.9),

∂2t K̃(t, u) =
1

4
∂4uK̃(t, u), ∂tK̃(T, u) = ∂tKα/2,T/2(

T
2 , u) ≡ 0. (3.19)

Therefore, the term (3.15) reduces to∫ T

0

∫
R

1

8

(
∂2uK(t, u)

)2
du dt.

Note also that for all u ∈ R,

∂2uK̃(T, u) = 2∂2uKα/2,T/2(
T
2 , u) = 0, ∂uµ̃0(u) = ∂2uKα/2,T/2(

T
2 , u) = 0. (3.20)

The integration by parts formula implies that the integral of the second integrand in (3.16) is zero.
This reduces (3.16) to ∫

R

1

4

(
∂uK(T, u)

)2
du.

By (3.20), the term (3.17) equals∫ T

0

∫
R

{1

8

(
∂uµ0(u)

)2 − 1

4
∂uµ0(u)∂

2
uK(t, u)− 1

4
∂uµ0(u)∂

2
uK̃(t, u)

}
du dt.

Since for all u ∈ R,∫ T

0

∂2uK̃(t, u)dt = −
∫ T/2

0

∂2uKα/2,T/2

(
T
2 − t, u

)
dt+

∫ T

T/2

∂2uKα/2,T/2

(
t− T

2 , u
)
dt = 0,

we finally write (3.17) as ∫ T

0

∫
R

{1

8

(
∂uµ0(u)

)2 − 1

4
∂uµ0(u)∂

2
uK(t, u)

}
du dt.

For the last term (3.18), first note that the integral of the fourth integrand is zero by integration by
parts and (3.20). Since ∂uK̃(T, u) = 2µ̃0(0), the second and the last integrands cancel out. Therefore,
(3.18) is equal to ∫

R

1

2
µ0(u)

2 − 1

2
µ0(u)∂uK(T, u) du.

To sum up, we have shown that

G(K + K̃, µ0 + µ̃0)−G(K̃, µ̃0) ≥
1

8

∫ T

0

∫
R

(
∂2uK(t, u)− ∂uµ0(u)

)2

du dt

+

∫
R

1

4
µ0(u)

2 +
1

4

(
µ0(u)− ∂uK(T, u)

)2

du ≥ 0.

This proves the claim and then concludes the proof of the theorem. □
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4. Proof of Theorem 2.4

In this section, we prove Theorem 2.4. We prove exponential tightness in Lemma 4.2. In subsections
4.3 and 4.4, we prove weak moderate deviation upper and lower bounds respectively.

In order to make (2.3) rigorous, we need to introduce an approximation function. For n ≥ 1, let

Gn(u) = χ{u>0}(1− u/n)+, u ∈ R.

Multiplying by Gn(x/N) on both hand sides of (2.2), and summing over x, we have

〈
µN
T , Gn

〉
−
〈
µN
0 , Gn

〉
= − 1

nNaN

nN−1∑
x=0

Jx,x+1(TN
2) +

1

aN
J−1,0(TN

2). (4.1)

The above formula permits us to derive moderate deviations for the current once we show the first
term on the right-hand side is super-exponentially small, cf. Lemma 4.1. Then we prove moderate
deviations for tagged particle positions based on (2.5) and (2.6).

4.1. A super-exponential estimate. In this subsection, We show that the first term on the right
hand side of (4.1) is super-exponentially small by exploiting the exponential martingale associated to
the currents as in [28, Proposition 3.1] and based on a standard estimation on the largest eigenvalue
of the perturbation of the generator.

Lemma 4.1. For any δ > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logP

(∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN
2)
∣∣ > δ

)
= −∞.

Proof. For any K > 0, by Markov inequality, we bound the expression in the lemma by

− δK +
N

a2N
logE

[
exp

{∣∣aNK
nN2

nN−1∑
x=0

Jx,x+1(tN
2)
∣∣}]. (4.2)

Since e|x| ≤ ex+e−x and log(a+b) ≤ 2max{log a, log b} for any a, b > 0, we could remove the absolute
value above. We start with the observation that

exp
{2aNK

nN2

nN−1∑
x=0

Jx,x+1(tN
2)− 2ΓN

n,K(t; η·)
}

is a mean one martingale, where

ΓN
n,K(t; η·) = (1/4)

(
e2aNK/(nN2) − 1

) nN−1∑
x=0

∫ tN2

0

ηs(x)(1− ηs(x+ 1))ds

+ (1/4)
(
e−2aNK/(nN2) − 1

) nN−1∑
x=0

∫ tN2

0

ηs(x+ 1)(1− ηs(x))ds.

The above martingale comes from the fact that {J±
x,x+1(t)}x∈Z are mutually independent compound

Poisson processes since there are no jumps occurring at the same time, and that the intensity for
J+
x,x+1(t) (resp. for J−

x,x+1(t)) is (1/2)ηt(x)(1 − ηt(x + 1)) (resp. (1/2)ηt(x + 1)(1 − ηt(x))). Above,
J+
x,x+1(t) (resp. J−

x,x+1(t)) is the number of jumps of particles from x (resp. x + 1) to x + 1 (resp. x)
up to time t, and therefore Jx,x+1 = J+

x,x+1 − J−
x,x+1.
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Using the basic inequality E[eX ] ≤ (E[e2(X−Y )])1/2(E[e2Y ])1/2 for any two random variables X,Y ,
we may bound the second term in (4.2) by

N

2a2N
logE

[
e2Γ

N
n,K(t;η·)

]
.

We further write ΓN
n,K(t; η·) = ΓN,1

n,K(t; η·) + ΓN,2
n,K(t; η·), where

ΓN,1
n,K(t; η·) = (1/4)

(
e2aNK/(nN2) − 1− 2aNK/(nN

2)
) nN−1∑

x=0

∫ tN2

0

ηs(x)(1− ηs(x+ 1))ds

+ (1/4)
(
e−2aNK/(nN2) − 1 + 2aNK/(nN

2)
) nN−1∑

x=0

∫ tN2

0

ηs(x+ 1)(1− ηs(x))ds,

and

ΓN,2
n,K(t; η·) =

1

2

aNK

nN2

nN−1∑
x=0

∫ tN2

0

(
ηs(x)− ηs(x+ 1)

)
ds.

Then, we have
N

2a2N
logE

[
e2Γ

N
n,K(t;η·)

]
≤ N

4a2N
logE

[
e4Γ

N,1
n,K(t;η·)

]
+

N

4a2N
logE

[
e4Γ

N,2
n,K(t;η·)

]
. (4.3)

Using the basic inequality ex − 1− x ≤ (1/2)x2e|x|, there exists a finite constant C so that we may
bound ΓN,1

n,K(t; η·) from above by Cta2NK
2/(nN). Whence, the first term on the right-hand side in

(4.3) is bounded by CtK2/n, which converges to zero as n → ∞. By Feynman-Kac formula (cf. [15,
Lemma A.1.7.2]), we may bound the second term in (4.3) by

tN3

4a2N
sup

f :νρ−density

{∫
2aNK

nN2

nN−1∑
x=0

(
η(x)− η(x+ 1)

)
f(η)νρ(dη)−

〈
− L

√
f,

√
f
〉
ρ

}
.

Above, f is a νρ−density if f ≥ 0 and
∫
fdνρ = 1, and for two local functions f, g : Ω → R,〈

f, g
〉
ρ
=

∫
f(η)g(η) νρ(dη).

We remark that although the initial distribution associated to the measure P is ν∗ρ , by the basic
coupling stated in Remark 2.2, there is no difference if we regard the initial measure as the equilibrium
measure νρ. Therefore, in the following argument, we will not distinguish processes with the above
two initial measures. Then, direct calculations yield that〈

− L
√
f,

√
f
〉
ρ
=

1

4

∑
x∈Z

∫ (√
f(ηx,x+1)−

√
f(η)

)2
νρ(dη).

Making the change of variables η 7→ ηx,x+1 and using the Cauchy-Schwarz inequality, for any A > 0,
we bound the first term in the above brace by

aNK

nN2

nN−1∑
x=0

∫ (
η(x)− η(x+ 1)

)(
f(η)− f(ηx,x+1)

)
νρ(dη)

≤ 1

2

aNK

nN2

nN−1∑
x=0

{
A

∫ (√
f(ηx,x+1)−

√
f(η)

)2
νρ(dη) +

1

A

∫ (√
f(ηx,x+1) +

√
f(η)

)2
νρ(dη)

}
≤ aNKA

2nN2

〈
− L

√
f,

√
f
〉
ρ
+

2aNK

NA
.
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Taking A = 2nN2/(aNK), the second term in (4.3) is bounded from above by
tN3

4a2N
× 2aNK

N
× aNK

2nN2
=
tK2

4n
,

which converges to zero as n→ ∞.
In conclusion, we have shown that for any K > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logP

(∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN
2)
∣∣ > δ

)
≤ −δK.

We conclude the proof by letting K → ∞. □

4.2. Exponential tightness. In this subsection, we show the rescaled current and tagged particle
positions are exponentially tight.

Lemma 4.2 (Exponential tightness). We have the following estimates,

lim sup
M→∞

lim sup
N→∞

N

a2N
logP

(∣∣∣ 1

aN
J−1,0(TN

2)
∣∣∣ > M

)
= −∞, (4.4)

lim sup
M→∞

lim sup
N→∞

N

a2N
logP

(∣∣∣ 1

aN
X(TN2)

∣∣∣ > M
)
= −∞. (4.5)

Proof. We first prove (4.4). By Markov inequality, the expression in (4.4) is bounded by

−M +
N

a2N
logE

[
exp

{aN
N

∣∣J−1,0(TN
2)
∣∣}].

We shall prove the second term above is bounded uniformly for N large enough. As in the proof of
Lemma 4.1, we could remove the absolute value inside the exponential. Recall Eq. (4.1). Then for
any n > 0, we may rewrite the second term above as

N

a2N
logE

[
exp

{a2N
N

〈
µN
T , Gn

〉
− a2N

N

〈
µN
0 , Gn

〉
+

aN
nN2

nN−1∑
x=0

Jx,x+1(TN
2)
}]
.

By Cauchy-Schwarz inequality, the last formula is bounded by

N

3a2N
logE

[
exp

{3a2N
N

〈
µN
T , Gn

〉}]
+

N

3a2N
logE

[
exp

{
− 3a2N

N

〈
µN
0 , Gn

〉}]
+

N

3a2N
logE

[
exp

{ 3aN
nN2

nN−1∑
x=0

Jx,x+1(TN
2)
}]
.

Taking K = 3 in the proof of Lemma 4.1, the third term above is bounded by CT/n for some finite
constant C. Next, we only deal with the first term above since the second one could be handled in the
same way. Using the basic inequality ex ≤ 1+ x+ (x2/2)e|x|, we could bound the the first term above
by

CN

a2N

∑
x∈Z

a2N
N2

G2
n(

x
N )e3aN/N ≤ Cn

for N large enough. This proves (4.4) by letting M → ∞.

Now we use (4.4) to prove (4.5). According to the spatial homogeneity of our process,

P
(∣∣∣ 1

aN
X(TN2)

∣∣∣ > M
)
= 2P

( 1

aN
X(TN2) > M

)
.
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Therefore, we could remove the absolute value inside the probability in (4.5) and only need to consider
the case J−1,0(TN

2) > 0. Using the identity (2.5), for any θ > 0,{ 1

aN
X(TN2) > M

}⋂{ 1

aN
J−1,0(TN

2) ≤ θM
}
⊆

{ 1

aN

MaN∑
x=0

ηTN2(x) ≤ θM
}

Hence, for 0 < θ < ρ,

P
( 1

aN
X(TN2) > M

)
≤ P

( 1

aN
J−1,0(TN

2) ≥ θM
)
+ P

( 1

aN

MaN∑
x=0

ηTN2(x) ≤ θM
)
. (4.6)

Since νρ is an invariant distribution of the SSEP and θ < ρ, according to the classic large deviation
theory of the sum of i.i.d. random variables,

lim sup
N→+∞

1

aN
logP

( 1

aN

MaN∑
x=0

ηTN2(x) ≤ θM
)
< 0.

In particular,

lim sup
N→+∞

N

a2N
logP

( 1

aN

MaN∑
x=0

ηTN2(x) ≤ θM
)
= −∞. (4.7)

Equations (4.4), (4.6) and (4.7) imply that

lim sup
M→∞

lim sup
N→∞

N

a2N
logP

( 1

aN
X(TN2) > M

)
= −∞.

This concludes the proof. □

4.3. Weak MDP upper bound. In this subsection, we prove Theorem 2.4 for the upper bound. By
the exponential tightness in Lemma 4.2, we only need to prove the upper bound over closed intervals.

We first prove the upper bound for the currents. For any closed interval [a, b], a < b, let [ck, ck+1], 1 ≤
k ≤ m be a partition of the interval. By (4.1),

lim sup
N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ∈ [a, b]
)

≤ max
1≤k≤m

lim sup
N→∞

N

a2N
logP

(〈
µN
T , Gn

〉
−
〈
µN
0 , Gn

〉
+

1

nNaN

nN−1∑
x=0

Jx,x+1(TN
2) ∈ [ck, ck+1]

)
.

Using Lemma 4.1, the last line is bounded by

lim sup
m→∞

lim sup
δ→0

lim sup
n→∞

max
1≤k≤m

lim sup
N→∞

N

a2N
logP

(〈
µN
T , Gn

〉
−

〈
µN
0 , Gn

〉
∈ [ck − δ, ck+1 + δ]

)
.

By Theorem 2.1, we bound the last formula by

lim sup
m→∞

lim sup
δ→0

lim sup
n→∞

max
1≤k≤m

− inf{Q(µ) :
〈
µT , Gn

〉
−

〈
µ0, Gn

〉
∈ [ck − δ, ck+1 + δ]}. (4.8)

For any ε > 0, we could find a µk,n,δ
ε such that〈

µk,n,δ
ε (T, ·), Gn

〉
−
〈
µk,n,δ
ε (0, ·), Gn

〉
∈ [ck − δ, ck+1 + δ]

and that the infimum in (4.8) is bounded from below by Q(µk,n,δ
ε ) − ε. We claim that there exists a

constant C0 such that for any δ, k and n large enough,

Q(µk,n,δ
ε ) ≤ C0 + ε. (4.9)
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This permits us to extract a subsequence on which the limsup of −Q(µk,n,δ
ε ) is attained as n ↑ ∞,

δ ↓ 0 and m ↑ ∞ and on which also µk,n,δ
ε → µ∗

ε in D([0, T ],S ′(R)) for some µ∗
ε. We could also choose

the subsequence such that ck → α ∈ [a, b] for some α since [a, b] is compact. Moreover,〈
µ∗
ε(T, ·), χ[0,∞)

〉
−

〈
µ∗
ε(T, ·), χ[0,∞)

〉
= α.

Therefore, (4.8) is bounded from above by

sup
α∈[a,b]

−{Q(µ∗
ε),

〈
µ∗
ε(T, ·), χ[0,∞)

〉
−
〈
µ∗
ε(T, ·), χ[0,∞)

〉
= α}+ ε ≤ − inf

α∈[a,b]
J(α) + ε.

Letting ε→ 0, we conclude the proof for the upper bound for the currents over closed intervals.
It remains to prove (4.9). Recall µ̃α,T defined in (3.10) and that∫ T

0

J̃α,T (t, 0)dt =

∫ ∞

0

µ̃α,T (T, u)− µ̃α,T (0, u)du = α.

Then〈
µ̃α,T (T, ·), Gn

〉
−
〈
µ̃α,T (0, ·), Gn

〉
=

∫ T

0

∫
R
∂tµ̃α,T (t, u)Gn(u)dudt

= −
∫ T

0

∫
R
∂uJ̃α,T (t, u)Gn(u)dudt =

∫ T

0

J̃α,T (t, 0)dt−
1

n

∫ T

0

∫ n

0

J̃α,T (t, u)dudt

= α+
1

n

∫ T

0

∫ n

0

1

2
∂uµ̃α,T (t, u)− ρ(1− ρ)∂uH̃α,T (t, u) du dt. (4.10)

Since ∂uµ̃α,T , ∂uH̃α,T ∈ L2([0, T ] × R), by Cauchy-Schwarz inequality, the second term on the right-
hand side is bounded by Cn−1/2 for some finite constant C. Therefore, for any α ∈ [a, b] and for any
n large enough, 〈

µ̃α,T (T, ·), Gn

〉
−

〈
µ̃α,T (0, ·), Gn

〉
∈ [α− δ, α+ δ].

Therefore, the infimum in (4.8) is bounded from above by

sup
α∈[a,b]

Q(µα) = sup
α∈[a,b]

J(α) =: C0.

This proves the claim (4.9).

Now we prove the upper bound for the tagged particle positions. We only prove the upper bound
for closed positive intervals [a, b], 0 < a < b < +∞, and the other cases could be handled in the same
way. For sufficiently small δ and sufficiently large N , let DN,a,b,δ be the event that

sup
j∈[aaN−1,baN ]

1

aN

∣∣∣ j∑
x=0

(
ηTN2(x)− ρ

)∣∣∣ < δ.

Then, the identity (2.5) implies that{ 1

aN
X(TN2) ∈ [a, b]

}⋂
DN,a,b,δ ⊆

{ 1

aN
J−1,0(TN

2) ≥ ρa− δ
}
.

By standard large deviation theory, for any 0 ≤ c < +∞ and δ > 0,

lim sup
N→+∞

1

aN
logP

(
sup

j∈[0,caN ]

∣∣∣ 1

aN

j∑
x=0

(ηTN2(x)− ρ)
∣∣∣ > δ

)
< 0.
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In particular,
lim sup
N→+∞

N

a2N
logP

(
Dc

N,a,b,δ

)
= −∞.

Then, according to Theorem 2.5 and moderate deviation upper bounds for the current,

lim sup
N→+∞

N

a2N
logP

( 1

aN
X(TN2) ∈ [a, b]

)
= lim sup

N→+∞

N

a2N
logP

( 1

aN
X(TN2) ∈ [a, b], DN,a,b,δ

)
≤ lim sup

N→+∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ≥ ρa− δ
)
≤ − inf

u≥ρa−δ
J(u) = −

√
2π

(
ρa− δ

)2
4ρ(1− ρ)

√
T
.

Since δ is arbitrary, let δ → 0, then by Theorem 2.5

lim sup
N→+∞

N

a2N
logP

( 1

aN
X(TN2) ∈ [a, b]

)
≤ −

√
2πρa2

4(1− ρ)
√
T

= − inf
u∈[a,b]

I(u).

This concludes the proof of the weak upper bound for the tagged particle positions.

4.4. Lower bound. In this section, we prove Theorem 2.4 for the lower bound. As before, we first
investigate the current. Let O ⊂ R be a nonempty open set. Let α ∈ O and ε > 0 such that
(α− ε, α+ ε) ⊂ O. By (4.1),

lim inf
N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ∈ O
)

≥ lim sup
N→∞

N

a2N
logP

(〈
µN
T , Gn

〉
−

〈
µN
0 , Gn

〉
+

1

nNaN

nN−1∑
x=0

Jx,x+1(TN
2) ∈ (α− ε, α+ ε)

)
.

By Lemma 4.1, taking δ = ε/2, we bound the last line from below by

lim inf
n→∞

lim inf
N→∞

N

a2N
logP

(〈
µN
T , Gn

〉
−

〈
µN
0 , Gn

〉
∈ [α− ε/2, α+ ε/2]

)
.

By Theorem 2.1, the last formula is bounded by

lim inf
n→∞

− inf{Q(µ) :
〈
µT , Gn

〉
−
〈
µ0, Gn

〉
∈ [α− ε/2, α+ ε/2]}

Taking µ = µ̃α,T defined in (3.10) and by (4.10), the last line is bounded below by −Q(µ̃α,T ) = −J(α).
Taking the supremum over α ∈ O, we have

lim inf
N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) ∈ O
)
≥ − inf

α∈O
J(α).

Now we prove the lower bound of the tagged particle positions. By Theorem 2.5, the rate function
I is even and increasing in [0,+∞). Hence we only need to check the lower bound for open set O with
forms (a,+∞) or (−∞,−a) for any a > 0. According to the spatial homogeneity of the process, we
only need to deal with the first case. For a, δ > 0, let BN,a,δ be the event that

sup
j∈[0,aaN ]

1

aN

∣∣∣ j∑
x=0

(
ηTN2(x)− ρ

)∣∣∣ < δ,

then we have shown in the last subsection that

lim sup
N→+∞

N

a2N
logP

(
Bc

N,a,δ

)
= −∞.
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Moreover, (2.5) implies that{ 1

aN
J−1,0(TN

2) > ρa+ 2δ
}⋂

BN,a,δ ⊆
{ 1

aN
X(TN2) > a

}
.

According to Theorem 2.5 and moderate deviation lower bounds of the current,

lim inf
N→+∞

N

a2N
logP

( 1

aN
X(TN2) > a

)
≥ lim inf

N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) > ρa+ 2δ,BN,a,δ

)
= lim inf

N→∞

N

a2N
logP

( 1

aN
J−1,0(TN

2) > ρa+ 2δ
)

≥ − inf
u>ρa+2δ

J(u) = −
√
2π

(
ρa+ 2δ

)2
4ρ(1− ρ)

√
T

.

Since δ is arbitrary, let δ → 0, then by Theorem 2.5

lim inf
N→+∞

N

a2N
logP

( 1

aN
X(TN2) > a

)
≥ −

√
2πρa2

4(1− ρ)
√
T

= − inf
u>a

I(u).

This concludes the proof of the lower bound.
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