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THE VOTER MODEL WITH A SLOW MEMBRANE

XIAOFENG XUE AND LINJIE ZHAO

Abstract. We introduce the voter model on the infinite lattice with a slow membrane and investigate
its hydrodynamic behavior. The model is defined as follows: a voter adopts one of its neighbors’
opinion at rate one except for neighbors crossing the hyperplane {x : x1 = 1/2}, where the rate is
αN−β . Above, α > 0, β ≥ 0 are two parameters and N is the scaling parameter. The hydrodynamic
equation turns out to be heat equation with various boundary conditions depending on the value of
β. The proof is based on duality method.

1. Introduction

One of the main issues in statistical physics is to derive partial differential equations from mi-
croscopic systems. Roughly speaking, for symmetric systems the macroscopic behaviors are usually
governed by diffusive equations, and for asymmetric systems usually by hyperbolic equations. We
refer the readers to [9, 13] for a comprehensive understanding of the above subject. Recently, it has
been a popular topic to establish PDEs with various boundary conditions from interacting particle
systems. For example, Gonçalves, Franco and their collaborators have obtained the heat equation with
Dirichlet/Robin/Neumann boundary conditions from the symmetric simple exclusion processes in one
dimension [1, 5, 6]. The microscopic models they considered are either defined on a ring with a slow
site/slow bond, or defined on a segment with slow boundaries. The results have also been extended to
higher dimensions in [7, 14].

The voter model also plays an important role in the theory of interacting particle systems, and its
hydrodynamic behavior has been considered by Presutti and Spohn in [12]. For each x ∈ Zd, imagine
there is a voter at site x. Each voter has one of two possible opinions on an issue, and the possible
opinions are denoted by 0 or 1. The dynamics is quite simple: a voter adopts one of its neighbors’
opinion at rate one. Although the voter model has the same macroscopic behavior as the symmetric
exclusion process, it differs from the later in essential points: the magnetization of the voter model
is not locally conserved and the static correlations decay slowly. We refer the readers to [12, 11] for
details of the above properties. A natural question is to consider the impact of the slow dynamics
introduced in [1, 5, 6] on the voter model, which is the main aim of this article.

In order to obtain boundary conditions, we let the voters at sites x and x + e1 adopt the other’s
opinion at rate αN−β if x1 = 0. Above, x1 is the first coordinate of site x, and {ei}1≤i≤d is the canonical
basis of Zd. The two parameters α > 0, β ≥ 0 denote the strength of the boundary interaction, and
N ∈ N is a scaling parameter. We consider the voter model in dimensions d ≥ 4, and derive Robin
boundary conditions if β = 1 and Neumann boundary conditions if β > 1. There are no boundary
conditions in the case 0 ≤ β < 1.

The results are not surprising since such boundary conditions have been well understood for the
exclusion process. However, the proof differs a lot from the exclusion process because of the two
properties we addressed above. The standard approach to prove a hydrodynamic limit result is as
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follows: we first write down a martingale formula for the empirical measure of the process by using
Dynkin’s formula, and then prove the so called replacement lemmas to close the equation. To ensure
uniqueness of solution to hydrodynamic equations, an energy estimate is usually also needed. For
exclusion process with boundary dynamics, the replacement lemmas and energy estimates are proved
by investigating the entropy production of the process. This is not a easy task for the voter model with
boundary terms since the invariant measures of the voter model in this case are not explicitly known.
Instead, we adopt the duality method and investigate the correlation functions of the model. It is
well known that the duality of the voter model is coalescing random walks, cf. [11] for example. For
the voter model with boundary dynamics we introduced above, the duality turns out to be coalescing
random walks with slow bonds. Along the proof, we exploit an invariance principle for the random
walk with slow bonds, proved very recently by Erhard et al. in [3]. We also remark that no replacement
lemmas are needed in Presutti and Spohn’s paper [12] since the process is linear.

We believe the results should also hold for dimension d = 3. The main issue is to investigate the
meeting probabilities of two independent random walks with slow bonds in dimension d = 3, which
has long been a hard problem and has its own interest. This case is presently out of our reach and we
leave it open. For dimensions d ≤ 2, we refer the readers to the remark at the end of [12, Section 2].

The rest of the paper is organized as follows. In Section 2, we define the model rigorously and state
our main results. We outline the standard approach to prove hydrodynamic limit results in Section
3. Replacement lemmas are proved in Section 4, and they are crucial to close the martingale formula
as we addressed above. Finally, we prove the tightness and energy estimates for the voter model in
Section 5.

2. Notation and Results

2.1. The voter model. The state space of the voter model is Ωd := {0, 1}Zd , d ≥ 4. We use
x, y (resp. u, v) to denote points in Zd (resp. Rd), and xi (resp. ui), 1 ≤ i ≤ d, to denote the i-th
component of the point x (resp. u). Let {ei}1≤i≤d be the canonical basis of Zd. For a point x ∈ Zd,
denote |x| =

∑d
i=1 |xi|. Fix parameters α > 0, β ≥ 0. We use N ∈ N to denote the scaling parameter.

The generator of the process LN acting on local functions f : Ωd → R is given by

LNf(η) =
∑

x, y∈Zd,
|x−y|=1

ξNx,y
(
f(ηx,y)− f(η)

)
, (2.1)

where ηx,y is the configuration obtained from η by flipping the value of η(x) to η(y), i.e., ηx,y(x) = η(y)

and ηx,y(z) = η(z) for z ̸= x, and the flipping rates ξNx,y = ξNy,x, |x− y| = 1, are given by

ξNx,y =

{
αN−β if x1 = 0, y1 = 1

1 otherwise
(2.2)

We refer the readers to [11] for a construction of the process.

2.2. Hydrodynamic limit. Hereafter, we fix a time horizon T > 0. We first introduce weak solutions
of heat equations with/without boundary conditions.

Definition 2.1 (Hydrodynamic equation for 0 ≤ β < 1). Let ρ0 : Rd → [0, 1] be continuous. A
bounded function ρ : [0, T ]× Rd → R is said to be a weak solution of the heat equation{

∂tρ(t, u) = ∆ρ(t, u), t > 0, u ∈ Rd

ρ(0, u) = ρ0(u), u ∈ Rd
(2.3)
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if for any H ∈ C2
c (Rd) and any t ∈ [0, T ],∫
Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du+

∫ t

0

∫
Rd

ρ(s, u)∆H(u) du ds.

For the case β ≥ 1, we first introduce the notion of Sobolev spaces. For an open set U ∈ Rd, let
H1(U) be the Sobolev space which consists of locally integrable functions with weak derivatives in
L2(U), i.e., for any ϱ ∈ H1(U), there exist d elements in L2(U), denoted by ∂u1

ϱ, . . . , ∂ud
ϱ, such that∫

U

ϱ(u)∂ui
H(u)du = −

∫
U

∂ui
ϱ(u)H(u)du

for any test function H ∈ C∞
c (U) and each 1 ≤ i ≤ d. Denote by L2([0, T ],H1(U)) the space of

measurable functions ρ : [0, T ] → H1(U) such that the norm defined by

||ρ||2L2([0,T ],H1(U)) :=

∫ T

0

∫
U

d∑
i=1

(
∂ui

ρ(t, u)
)2

du dt

is finite. We refer the readers to [4, Chapter 5] for properties of Sobolev spaces.
In this paper we are concerned with the case where U = Rd\{u ∈ Rd : u1 = 0}. For simplicity,

from now on we write {u ∈ Rd : u1 ∈ A} as {u1 ∈ A} for any A ⊆ R. For any f ∈ H1
(
Rd\{u1 = 0}

)
,

we have that f
∣∣
u1>0

∈ H1 ({u1 > 0}) and f
∣∣
u1<0

∈ H1 ({u1 < 0}). Then, we use f(·+) to denote the
trace of f

∣∣
u1>0

on {u1 = 0} and use f(·−) to denote the trace of f
∣∣
u1<0

on {u1 = 0}. The following
property of f(·+) and f(·−) is crucial for this paper. For any bounded D ⊆ {u1 = 0}, according to
the trace theorem (cf. Theorem 1 in [4, Section 5.5]), it is easy to check that

Averε,+f
∣∣
D

→ f(·+)
∣∣
D

and Averε,−f
∣∣
D

→ f(·−)
∣∣
D

(2.4)

in L2(D) as ε → 0, where

Averε,+f(u) =
1

(2ε)d−1ε

∫
−ε<vi<ε for 2≤i≤d,

0<v1<ε

f(u+ v)dv

and
Averε,−f(u) =

1

(2ε)d−1ε

∫
−ε<vi<ε for 2≤i≤d,

−ε<v1<0

f(u+ v)dv

for any u ∈ {u1 = 0}.
To give test functions in definitions of weak solutions to hydrodynamic equations in the cases β ≥ 1,

we use C to denote the set of functions H such that

H(u) = H+(u)1{u1>0} +H−(u)1{u1≤0}

for some H+,H− ∈ C2
c (Rd). Then for any H ∈ C and u ∈ {u1 = 0}, it is reasonable to define

H(u+) = H+(u), H(u−) = H−(u), ∂+
u1
H(u) = ∂u1H

+(u) and ∂−
u1
H(u) = ∂u1H

−(u).

Note that functions in C may be discontinuous at the boundary {u1 = 0}.

Definition 2.2 (Hydrodynamic equation for β = 1). Let ρ0 : Rd → [0, 1] be continuous. A bounded
function ρ : [0, T ] × Rd → R is said to be a weak solution of the heat equation with Robin boundary
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condition 
∂tρ(t, u) = ∆ρ(t, u), t > 0, u ∈ Rd\{u1 = 0}
∂+
u1
ρ(t, u) = ∂−

u1
ρ(t, u) = α(ρ(t, u+)− ρ(t, u−)), u1 = 0,

ρ(0, u) = ρ0(u), u ∈ Rd

(2.5)

if ρ ∈ L2([0, T ],H1(Rd\{u1 = 0})) and for every function H ∈ C, for every t ∈ [0, T ],∫
Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du

+

∫ t

0

∫
Rd

ρ(s, u)

d∑
i=2

∂2
ui
H(u)du ds+

∫ t

0

∫
u1 ̸=0

ρ(s, u)∂2
u1
H(u)du ds

+

∫ t

0

∫
u1=0

ρs(u
+)∂+

u1
H(u)− ρs(u

−)∂−
u1
H(u) + α(ρs(u

−)− ρs(u
+))(H(u+)−H(u−)) dS ds.

Definition 2.3 (Hydrodynamic equation for β > 1). Let ρ0 : Rd → [0, 1] be continuous. A bounded
function ρ : [0, T ]×Rd → R is said to be a weak solution of the heat equation with Neumann boundary
condition 

∂tρ(t, u) = ∆ρ(t, u), t > 0, u ∈ Rd\{u1 = 0}
∂+
u1
ρ(t, u) = ∂−

u1
ρ(t, u) = 0, u1 = 0,

ρ(0, u) = ρ0(u), u ∈ Rd

(2.6)

if ρ ∈ L2([0, T ],H1(Rd\{u1 = 0})) and for every function H ∈ C, for every t ∈ [0, T ],∫
Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du

+

∫ t

0

∫
Rd

ρ(s, u)

d∑
i=2

∂2
ui
H(u)du ds+

∫ t

0

∫
u1 ̸=0

ρ(s, u)∂2
u1
H(u)du ds

+

∫ t

0

∫
u1=0

ρs(u
+)∂+

u1
H(u)− ρs(u

−)∂−
u1
H(u) dS ds.

Remark 2.4 (Uniqueness of weak solutions). It is well known that the weak solution to the heat
equation (2.3) is unique. Following the ideas in [5, Section 7.2], it is easy to prove the weak solutions
to the above PDEs (2.5) and (2.6) are unique. We also refer the readers to [7, Section 7] for the
uniqueness of weak solutions to the above PDEs if the underlying space is the torus Td.

Throughout the paper, we assume the initial distribution, denoted by µN , of the process satisfies
the following condition.

Assumption (A). Fix an initial density profile ρ0 : Rd → [0, 1] such that ρ0 has continuous and
bounded partial derivative with respect to the first coordinate u1. Under µN , {η(x)}x∈Zd are independent
and

µN (η(x) = 1) = ρ0
(

x
N

)
for every x ∈ Zd.

Let ηt be the accelerated process with generator N2LN and with initial condition µN . To make
notations short, we omit the dependence of the process ηt on N . Denote by P the probability measure
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on the path space D([0, T ],Ωd) associated with the process ηt and the initial distribution µN , and by
E the corresponding expectation.

Now we are ready to state the main result of the article.

Theorem 2.5. Assume d ≥ 4. For every t ∈ [0, T ], every ε > 0 and every H ∈ Cc(Rd),

lim
N→∞

P
(∣∣∣ 1

Nd

∑
x∈Zd

ηt(x)H(x/N)−
∫
Rd

ρ(t, u)H(u)du
∣∣∣ > ε

)
= 0,

where ρ(t, u) is the unique weak solution
(i) to the heat equation (2.3) if 0 ≤ β < 1;

(ii) to the heat equation with Robin boundary condition (2.5) if β = 1;
(iii) to the heat equation with Neumann boundary condition (2.6) if β > 1.

3. Proof Outline

In this section we outline the proof of Theorem 2.5. The procedures are quite standard, cf. [9,
Chapter 4], and the main ingredients are the replacement lemmas proved in Section 4.

Denote by M+(Rd) the space of Radon measures on Rd endowed with the vague topology, that is,
for a sequence {νN}N≥1, ν ∈ M+(Rd), νN → ν as N → ∞ if for every f ∈ Cc(Rd),

lim
N→∞

〈
νN , f

〉
=
〈
ν, f
〉
.

For a configuration η ∈ Ωd, define the empirical measure πN (η) ∈ M+(Rd) as

πN (η; du) =
1

Nd

∑
x∈Zd

η(x)δx/N (du).

Put πN
t (du) = πN (ηt; du). Let QN be the distribution on the path space D([0, T ],M+(Rd)) associated

to the process πN
t and the initial measure µN .

By Lemma 5.1, the sequence {QN}N≥1 is tight. Whence, any subsequence of QN further has a
subsequence that converges as N → ∞, whose limit is denoted by Q∗. Moreover, Q∗ is concentrated
on trajectories which are absolutely continuous with respect to the Lebesgue measure. Denote by
ρ(t, u) the corresponding density.

Now we characterize the limit. Fix a test function H : Rd → R which will be specified later
depending on whether β < 1 or β ≥ 1. By Dynkin’s martingale formula,

πN
t (H) = πN

0 (H) +

∫ t

0

N2LN

〈
πN
s ,H

〉
ds+MN

t (H), (3.1)

where MN
t (H) is a martingale, whose quadratic variation is given by∫ t

0

{
N2LN

〈
πN
s ,H

〉2 − 2N2
〈
πN
s ,H

〉
LN

〈
πN
s ,H

〉}
ds.

A simple computation shows that the last line is bounded by CHN2−d for some finite constant CH ,
hence, by Doob’s inequality,

lim
N→∞

E
[

sup
0≤t≤T

(
MN

t (H)
)2]

= 0. (3.2)

A tedious but elementary computation shows that the integrand in Eq. (3.1) is equal to

N−d
∑
x∈Zd

d∑
i=2

ηs(x)∂
2
ui
H
(

x
N

)
+N−d

∑
x1 ̸=0,1

ηs(x)∂
2
u1
H
(

x
N

)
+ oN (1) (3.3)
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+N1−d
∑
x1=1

ηs(x)∂
+
u1
H
(

x
N

)
−N1−d

∑
x1=0

ηs(x)∂
−
u1
H
(

x
N

)
(3.4)

+ αN2−d−β
∑
x1=0

ηs(x)
(
H
(
x+e1
N

)
−H

(
x
N

))
+ αN2−d−β

∑
x1=1

ηs(x)
(
H
(
x−e1
N

)
−H

(
x
N

))
. (3.5)

For a configuration η and a positive integer k ∈ N, define the space average of η over a box of size
k centered at x as

η̄k(x) =
1

(2k + 1)d

∑
|y−x|≤k

η(y).

Similarly, the space averages over the right/left boxes are defined as

η̄k,+(x) =
1

|Λ+
x,k|

∑
y∈Λ+

x,k

η(y), η̄k,−(x) =
1

|Λ−
x,k|

∑
y∈Λ−

x,k

η(y),

where
Λ+
x,k = {y : |y − x| ≤ k, y1 ≥ x1}, Λ−

x,k = {y : |y − x| ≤ k, y1 ≤ x1}.
Next we discuss the three cases respectively.

The case 0 ≤ β < 1. Take H ∈ C2
c (Rd). Whence

∂+
u1
H
(

x
N

)
= ∂−

u1
H
(

x
N

)
.

By Lemma 4.1 (i), we could replace ηs(x) by η̄εNs (x) in (3.4). Note also that if |x− y| = 1, then

|η̄εN (x)− η̄εN (y)| ≤ C

εN

for some finite constant C. Whence, the time integral of the term (3.4) converges in probability to zero
as N → ∞. The term (3.5) vanishes in the limit in the same way. Therefore, the limit Q∗ concentrates
on trajectories whose densities ρ(t, u) satisfy∫

Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du+

∫ t

0

∫
Rd

ρ(s, u)∆H(u)du ds

The case β = 1. Take H ∈ C. By Lemma 4.1 (ii), we could replace the time integral of the term
(3.4) with the time integral of

N1−d
∑
x1=1

η̄εN,+
s (x)∂+

u1
H
(

x
N

)
−N1−d

∑
x1=0

η̄εN,−
s (x)∂−

u1
H
(

x
N

)
.

The term (3.5) is handled in the same way. Observe that

η̄εN,+
s (x) =

〈
πN
s , ι+ε,x/N

〉
+ oN (1), η̄εN,−

s (x) =
〈
πN
s , ι−ε,x/N

〉
+ oN (1),

where

ι+ε,u(v) = 2−d+1ε−d
1{0 ≤ v1 − u1 ≤ ε, |vi − ui| ≤ ε, 2 ≤ i ≤ d},

ι−ε,u(v) = 2−d+1ε−d
1{−ε ≤ v1 − u1 ≤ 0, |vi − ui| ≤ ε, 2 ≤ i ≤ d}.

Therefore, by Eq. (2.4), as N → ∞ and ε → 0, the limit density ρ(t, u) satisfies∫
Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du
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+

∫ t

0

∫
Rd

ρ(s, u)
d∑

i=2

∂2
ui
H(u)du ds+

∫ t

0

∫
u1 ̸=0

ρ(s, u)∂2
u1
H(u)du ds

+

∫ t

0

∫
u1=0

ρs(u
+)∂+

u1
H(u)− ρs(u

−)∂−
u1
H(u) + α(ρs(u

−)− ρs(u
+))(H(u+)−H(u−)) dS ds.

The case β > 1. Take H ∈ C. This case is similar to the case β = 1. The difference is that the
term (3.5) converges in probability to zero as N → ∞ since β > 1. Therefore, the limit density ρ(t, u)

satisfies∫
Rd

ρ(t, u)H(u)du =

∫
Rd

ρ0(u)H(u)du

+

∫ t

0

∫
Rd

ρ(s, u)

d∑
i=2

∂2
ui
H(u)du ds+

∫ t

0

∫
u1 ̸=0

ρ(s, u)∂2
u1
H(u)du ds

+

∫ t

0

∫
u1=0

ρs(u
+)∂+

u1
H(u)− ρs(u

−)∂−
u1
H(u) dS ds.

In Lemma 5.2, we show that any limit Q∗ of the sequence {QN}N≥1 is concentrated on trajectories
whose densities belong to the space L2([0, T ],H1(Rd\{u1 = 0})) if β ≥ 1. Together with the above
observations, Q∗ is concentrated on trajectories whose densities are weak solutions to the corresponding
hydrodynamic equations. Since the weak solution is unique, the limit Q∗ is uniquely determined. This
concludes the proof.

4. Replacement Lemma

The aim of this section is to prove the following replacement lemma.

Lemma 4.1 (Replacement Lemma). For every δ > 0,

(i) if 0 ≤ β < 1, then for every H ∈ C2
c (Rd),

lim
ε→0

lim sup
N→∞

P
(∣∣∣ ∫ t

0

N1−d
∑
x1=1

(
ηs(x)− η̄εNs (x)

)
H
(

x
N

)
ds
∣∣∣ > δ

)
= 0.

The same result holds with the summation over {x1 = 1} replaced by over {x1 = 0}.
(ii) if β ≥ 1, then for every H ∈ C

lim
ε→0

lim sup
N→∞

P
(∣∣∣ ∫ t

0

N1−d
∑
x1=1

(
ηs(x)− η̄εN,+

s (x)
)
H
(

x
N

)
ds
∣∣∣ > δ

)
= 0.

The same result holds with the summation over {x1 = 1} replaced by over {x1 = 0}, and with
η̄εN,+
s (x) replaced by η̄εN,−

s (x).

Before proving the above Lemma, we first recall in Subsection 4.1 the duality relationship between
the voter model and the coalescing random walk introduced in [8], and in Subsection 4.2 an invariance
principle for one dimensional symmetric random walks with slow bond proved recently in [3]. The
proof of the above Lemma is presented in Subsection 4.3.
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4.1. Duality. In this subsection we recall the duality relationship introduced in [8]. Let {Y N
t,β}t≥0 be

the random walk on the one dimensional integer lattice Z with generator ΩN,β given by

ΩN,βf(i) =


f(i+ 1)− f(i) + f(i− 1)− f(i) if i ̸= 0, 1,

αN−β [f(1)− f(0)] + f(−1)− f(0) if i = 0,

αN−β [f(0)− f(1)] + f(2)− f(1) if i = 1

for every f : Z → R. Roughly speaking, the above random walk jumps to its neighbor at rate one
everywhere except across the bond (0, 1), where the rate is αN−β . We further denote by {Ut}t≥0

the usual simple symmetric random walk on Z, i.e., the generator of Ut is given by ΩN,β with (α, β)

replaced by (1, 0). Let {XN
t,β}t≥0 be the random walk on Zd that {{XN

t,β(i)}t≥0}1≤i≤d are independent,
{XN

t,β(1)}t≥0 is a copy of {Y N
t,β}t≥0 and {XN

t,β(i)}t≥0 is a copy of {Ut}t≥0 for i = 2, 3, . . . , d, where
XN

t,β(i) is the i-th coordinate of XN
t,β . We write XN

t,β as XN,x
t,β when XN

0,β = x.
For given s > 0 and x ∈ Zd, we denote by {X̂N,x,s

t,β }t≥0 the frozen random walk on Zd that
X̂N,x,s

u,β = x for u ≤ s and {X̂N,x,s
s+t,β}t≥0 is an independent copy of {XN,x

t,β }t≥0. Intuitively, the random
walk {X̂N,x,s

t,β }t≥0 stays frozen at site x until time s, and then performs the random walk as {XN,x
t,β }t≥0

after time s. For given x, y ∈ Zd, s > 0 and {XN,x
t,β }t≥0, {X̂N,y,s

t,β }t≥0 which are independent, we define

τN,β,s
x,y = inf{u ≥ s : XN,x

u,β = X̂N,y,s
u,β } − s,

i.e., τN,β,s
x,y is the time it takes for XN,x

·,β and X̂N,y,s
·,β to meet after X̂N,y,s

·,β is unfrozen from y.
For given x, y ∈ Zd and s > 0, we denote by {X̃N,y,s

t,β,x }t≥0 the random walk on Zd that

X̃N,y,s
t,β,x =

{
X̂N,y,s

t,β if t ≤ s+ τN,β,s
x,y ,

XN,x
t,β if t > s+ τN,β,s

x,y .

Note that {X̃N,y,s
t,β,x }t≥0 and {X̂N,y,s

t,β }t≥0 have the same distribution but {X̃N,y,s
t,β,x }t≥0 is not independent

of {XN,x
t,β }t≥0. The process

{(
XN,x

t,β , X̃N,y,s
t,β,x

)}
t≥0

is the so-called coalescing random walk.
To distinguish from the accelerated voter model, let {η̃t}t≥0 be the process with generator given by

LN . According to the duality-relationship between the voter model and the coalescing random walk
given in [8], for given x, y ∈ Zd and t > s,

P (η̃t(x) = 1) =
∑
u∈Zd

P
(
XN,x

t,β = u
)
P(η̃0(u) = 1), (4.1)

and

P (η̃t(x) = η̃s(y) = 1) =
∑
u∈Zd

∑
v∈Zd

P
(
XN,x

t,β = u, X̃N,y,t−s
t,β,x = v

)
P(η̃0(u) = η̃0(v) = 1)

=
∑
u∈Zd

P
(
XN,x

t,β = u, τN,β,t−s
x,y ≤ s

)
P (η̃0(u) = 1)

+
∑
u∈Zd

∑
v ̸=u

P
(
XN,x

t,β = u, X̂N,y,t−s
t,β = v, τN,β,t−s

x,y > s
)
P(η̃0(u) = η̃0(v) = 1). (4.2)

Above, we also use P to denote the law of the process {η̃t}t≥0 and the random walks since this will
not cause confusion. We refer the readers to [8] or [11, Section 3.4] for proofs of the above duality
relations.



THE VOTER MODEL WITH A SLOW MEMBRANE 9

4.2. Invariance principle. In this subsection we recall the invariance principle given in [3] of the
random walk {Y N

t,β}t≥0 on Z with slow bond (0, 1). We denote by {Bt}t≥0 the 1-dimensional standard
Brownian motion and write Bt as Bu

t when B0 = u. For any β ≥ 0, we define {Bt,β}t≥0 as follows. If
0 ≤ β < 1, then Bt,β = Bt, i.e., the standard Brownian motion. When β > 1, then Bt,β = |Bu

t | when
B0,β = u ∈ [0+,∞) and Bt,β = −|Bu

t | when B0,β = u ∈ (−∞, 0−], i.e., Bt,β is the reflected Brownian
motion. When β = 1, then Bt,β is the snapping out Brownian motion with parameter 2α introduced
in [10]. More precisely, for every u ∈ (−∞, 0−] ∪ [0+,+∞) and f ∈ Cb ((−∞, 0−] ∪ [0+,+∞)),

Eu[f(Bt,β)] = E
[(

1 + e−2αLt

2

)
f (sgn(u)|Bu

t |) +
(
1− e−2αLt

2

)
f (−sgn(u)|Bu

t |)
]
,

where Lt is the local time of {Bt}t≥0 at point 0. We write Bt,β (resp. Y N
t,β) as Bu

t,β (resp. Y N,u
t,β ) when

B0,β = u (resp. Y N
0,β = u). The following invariance principle is proved by Erhard et al. in [3].

Theorem 4.2 ([3, Theorem 2.2]). The following invariance principle holds for the one dimensional
symmetric random walk {Y N

t,β}t≥0 with a slow bond (0, 1),

(i) for every u ̸= 0 and t ≥ 0,
Y

N,⌊uN⌋
tN2,β

N converges weakly to Bu
2t,β as N → +∞;

(ii) for every x ∈ {1, 2, . . .} and t ≥ 0,
Y N,x

tN2,β

N converges weakly to B0+

2t,β as N → +∞;

(iii) for every x ∈ {−1,−2, . . .} and t ≥ 0,
Y N,x

tN2,β

N converges weakly to B0−

2t,β as N → +∞.

Note that although statements (ii) and (iii) in the above theorem are not listed in the main theorem
of [3], they are direct corollaries of Lemma 5.2 and Eq. (5.11) of [3].

4.3. Proof of Lemma 4.1. Now we are ready to prove Lemma 4.1. We only prove statement (ii)

since (i) could be handled with in the same way.

Proof of Lemma 4.1, (ii). By Chebyshev’s inequality, we only need to show that

lim
ε→0

lim sup
N→+∞

E

(N1−d

∫ t

0

∑
x1=1

(
ηs(x)− η̄εN,+

s (x)
)
H
(

x
N

)
ds

)2
 = 0. (4.3)

We start with writing the expectation above as I2 + II, where

I = E

[
N1−d

∫ t

0

∑
x1=1

(
ηs(x)− η̄εN,+

s (x)
)
H
(

x
N

)
ds

]
and

II = Var

(
N1−d

∫ t

0

∑
x1=1

(
ηs(x)− η̄εN,+

s (x)
)
H
(

x
N

)
ds

)
.

Then, Eq. (4.3) holds if we can check that

lim
ε→0

lim sup
N→+∞

I = 0 (4.4)

and
lim

N→+∞
II = 0 (4.5)

for every ε > 0.

To check Eq. (4.4), we define

Wt,β = (Wt,β(1),Wt,β(2), . . . ,Wt,β(d)) ,
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as the ((−∞, 0−] ∪ [0+,+∞))× Rd−1-valued stochastic process, where {{Wt,β(i)}t≥0}1≤i≤d are inde-
pendent, {Wt,β(1)}t≥0 is an independent copy of B2t,β introduced in the last subsection, and Wt,β(i)

is an independent copy of {B2t}t≥0 for 2 ≤ i ≤ d. We write Wt,β as Wu
t,β when W0,β = u. By Eq.

(4.1) and Assumption (A),

E[ηs(x)] = E
[
ρ0

(
XN,x

sN2,β

N

)]
and E[η̄εN,+

s (x)] =
1

|Λ+
x,εN |

∑
y∈Λ+

x,εN

E
[
ρ0

(
XN,y

sN2,β

N

)]

for every x ∈ Zd. Hence, by Theorem 4.2,

lim sup
N→+∞

I =

∫ t

0

∫
u∈Rd−1

H(0, u)E
[
ρ0

(
W

(0+,u)
s,β

)]
duds

−
∫ t

0

∫
u∈Rd−1

H(0, u)

{
1

ε(2ε)d−1

∫
v∈[0,ε]×[−ε,ε]d−1

E
[
ρ0

(
W

(0+,u)+v
s,β

)]
dv

}
du ds,

According to the definition of Wt,β ,

lim
v1↓0,

vi→0 for 2≤i≤d

E
[
ρ0

(
W

(0+,u)+v
s,β

)]
= E

[
ρ0

(
W

(0+,u)
s,β

)]
for every u ∈ Rd−1 and hence Eq. (4.4) holds.

Now we check Eq. (4.5). According to the fact that the covariance operator is bilinear and ηt = η̃tN2 ,
it is easy to check that Eq. (4.5) is a direct corollary of the following claim.

Claim. For every s > 0,

lim
t→+∞

sup
N≥1,x,y∈Zd

Cov (η̃t(x), η̃s(y)) = 0. (4.6)

Now we prove the claim. By Eq. (4.1) and Assumption (A), for s < t,

P (η̃t(x) = 1)P (η̃s(y) = 1) =
∑
u∈Zd

∑
v∈Zd

P
(
XN,x

t,β = u
)
P
(
XN,y

s,β = v
)
ρ0
(
u
N

)
ρ0
(

v
N

)
=
∑
u∈Zd

∑
v∈Zd

P
(
XN,x

t,β = u
)
P
(
X̂N,y,t−s

t,β = v
)
ρ0
(
u
N

)
ρ0
(

v
N

)
=
∑
u∈Zd

∑
v∈Zd

P
(
XN,x

t,β = u, X̂N,y,t−s
t,β = v

)
ρ0
(
u
N

)
ρ0
(

v
N

)
.

Then, by Eq. (4.2),
Cov (η̃t(x), η̃s(y)) = III + IV + V,

where
III =

∑
u∈Zd

P
(
XN,x

t,β = u, τN,β,t−s
x,y ≤ s

)
ρ0
(
u
N

)
,

IV = −
∑
u∈Zd

∑
v ̸=u

P
(
XN,x

t,β = u, X̂N,y,t−s
t,β = v, τN,β,t−s

x,y ≤ s
)
ρ0
(
u
N

)
ρ0
(

v
N

)
,

and
V = −

∑
u∈Zd

P
(
XN,x

t,β = X̂N,y,t−s
t,β = u

)
ρ20
(
u
N

)
.

Since η̃t(x), η̃s(y) are positive correlated under Assumption (A) and IV,V ≤ 0,

0 ≤ Cov (η̃t(x), η̃s(y)) ≤ III ≤ P
(
τN,β,t−s
x,y < +∞

)
.
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According to Markov property,

P
(
τN,β,t−s
x,y < +∞

)
=
∑
u∈Zd

P
(
XN,x

t−s,β = u
)
P
(
τN,β,0
u,y < +∞

)
.

For any x = (x1, x2, . . . , xd) ∈ Zd, we define x⊥ = (x2, . . . , xd) ∈ Zd−1. Denote by {Vt}t≥0 the
symmetric simple random walk on Zd−1. For ω,ϖ ∈ Zd−1, let

pt(ω,ϖ) = P
(
Vt = ϖ

∣∣V0 = ω
)
, Γ(ω) = P

(
Vt = 0 for some t ≥ 0

∣∣V0 = ω
)
.

According to the definition of {XN,x
t,β }t≥0,

{(
XN,x

t,β − X̂N,y,0
t,β

)⊥}
t≥0

is a copy of {V2t}t≥0 with V0 =

(x− y)⊥. As a result, P
(
τN,β,0
u,y < +∞

)
≤ Γ

(
(u− y)⊥

)
and hence

P
(
τN,β,t−s
x,y < +∞

)
≤
∑
u∈Zd

P
(
XN,x

t−s,β = u
)
Γ
(
(u− y)⊥

)
.

Without confusion, we also use | · | to denote the l1-norm on Rd−1. Then lim|ω|→+∞ Γ(ω) = 0 since
d − 1 ≥ 3. Therefore, for every δ > 0, there exists M = M(δ) such that Γ(ω) ≤ δ if |ω| > M . As a
result,

P
(
τN,β,t−s
x,y < +∞

)
≤ δ +

∑
u:|(u−y)⊥|≤M

P
(
XN,x

t−s,β = u
)
.

Since
{(

XN,x
t,β

)⊥}
t≥0

is a copy of {Vt}t≥0 with V0 = x⊥,

P
(
τN,β,t−s
x,y < +∞

)
≤ δ + P

(
|Vt−s − y⊥| ≤ M

∣∣V0 = x⊥) ≤ δ + (2M + 1)d−1pt−s(0, 0).

As a result,

lim sup
t→+∞

sup
N≥1,x,y∈Zd

Cov (η̃t(x), η̃s(y)) ≤ δ + (2M + 1)d−1 lim
t→+∞

pt−s(0, 0) = δ.

Since δ is arbitrary, Eq. (4.6) holds. As we have pointed out above, Eq. (4.6) implies Eq. (4.5) and
the proof is completed. □

5. Tightness and Energy Estimates

In this section, we prove tightness of the sequence {QN}N≥1 and an energy estimate for the densities
of the limit points. The energy estimate is crucial to ensure the uniqueness of weak solutions to the
hydrodynamic equations.

5.1. Tightness. The aim of this subsection is to prove the following tightness result.

Lemma 5.1 (Tightness). The sequence {QN}N≥1 is tight. Moreover, any limit point of QN is
concentrated on trajectories which are absolutely continuous with respect to the Lebesgue measure.

Proof. The proof of tightness is standard, and so we only sketch the proof. The second statement in
the lemma follows directly from the fact that |η(x)| ≤ 1 for all x. To prove tightness, by [9, Chapter
4], we only need to prove for any H ∈ C2

c (Rd),

lim
M→∞

lim sup
N→∞

P
(

sup
0≤t≤T

|
〈
πN
t ,H

〉
| ≥ M

)
= 0 (5.1)

and for every ε > 0,

lim
δ→0

lim sup
N→∞

P
(

sup
0≤t−s≤δ

∣∣∣ ∫ t

s

〈
πN
s ,H

〉
ds
∣∣∣ ≥ ε

)
= 0. (5.2)
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Eq. (5.1) follows from Chebyshev’s inequality and the fact that |
〈
πN
t ,H

〉
| ≤ CH for some finite constant

CH . To prove Eq. (5.2), we only need to prove it separately for the martingale MN
t (H) defined in Eq.

(3.1) and the terms (3.3)-(3.5). The martingale term satisfies (5.2) by Cauchy-Schwarz inequality and
Eq. (3.2). Observe that all the terms (3.3)-(3.5) are bounded by CH for some finite constant CH ,
whence satisfy Eq. (5.2). This completes the proof. □

5.2. Energy estimates. In this subsection, we shall prove the following result.

Lemma 5.2 (Energy estimate). Fix β ≥ 1. Any limit Q∗ of the sequence {QN}N≥1 is concentrated
on paths πt(du) = ρ(t, u)du such that ρ(t, u) ∈ L2([0, T ],H1(Rd\{u1 = 0})).

By Lemma 5.1,
Q∗(πt(du) = ρ(t, u) du for all 0 ≤ t ≤ T ) = 1.

By [7, Section 5.3], to prove Lemma 5.2, we only need to prove the following result.

Lemma 5.3. For any M > 1, there exists a constant K = K(M) < +∞ such that

EQ∗

[
sup
H

(∫ T

0

∫
Rd

(∂u1
H)(s, u)ρ(s, u)duds− 1

2

∫ T

0

∫
Rd

H2(s, u)duds

)]
≤ K,

where the supremum is carried over all functions H ∈ C0,1([0, T ]×Rd) with compact support contained
in [0, T ]× ([−M,M ]d\{|u1| ≤ 1

M }).

Based on the above lemma, the proof of Lemma 5.2 follows from the same analysis as that given in
the proof of [7, Lemma 5.7], where a crucial step is the utilization of Riesz’s representation theorem,
the details of which we omit here.

To prove Lemma 5.3, we need the following lemma.

Lemma 5.4.
Q∗ (ρ(t, u) = EQ∗ [ρ(t, u)] for all 0 ≤ t ≤ T ) = 1.

Proof of Lemma 5.4. Since Q∗ is concentrated on càdlàg paths, we only need to show that

Q∗ (πt(H) = EQ∗ [πt(H)]) = 1 (5.3)

for every 0 < t ≤ T and H ∈ Cc(Rd). To prove Eq. (5.3), we claim that

lim
N→+∞

Var
(
πN
t (H)

)
= 0 (5.4)

for every 0 < t ≤ T and H ∈ Cc(Rd).
We first use Eq. (5.4) to prove Eq. (5.3) and then check Eq. (5.4). Note that π· is the weak limit

of a subsequence of {πN
· }N≥1 but we still write this subsequence as {πN}N≥1 for simplicity. Since

ηt(x) ≤ 1,
|πN

t (H)| ≤ C∥H∥∞
for every N ≥ 1, where ∥H∥∞ = supu∈Zd |H(u)| and C < +∞ is a constant only depending on the
compact support of H. As a result, by dominated convergence theorem,

lim
N→+∞

E[πN
t (H)] = EQ∗ [πt(H)]. (5.5)

Then, Fatou’s lemma and Eq. (5.4) imply that

VarQ∗ (πt(H)) ≤ lim inf
N→+∞

E
[(
πN
t (H)

)2]− (EQ∗ [πt(H)])
2
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= lim
N→+∞

(
E
[(
πN
t (H)

)2]− (E[πN
t (H)]

)2)
= lim

N→+∞
Var(πN

t (H)) = 0

and hence Eq. (5.3) holds.
Now we check Eq. (5.4). According to an analysis similar with that leading to Eq. (4.6),

Var
(
πN
t (H)

)
≤ 1

N2d

∑
x∈Zd

∑
y∈Zd

∣∣∣H ( x

N

)∣∣∣ ∣∣∣H ( y

N

)∣∣∣Cov(ηt(x), ηt(y))
≤ 1

N2d

∑
x∈Zd

∑
y∈Zd

∣∣∣H ( x

N

)∣∣∣ ∣∣∣H ( y

N

)∣∣∣P (τN,β,0
x,y < +∞

)
≤ 1

N2d

∑
x∈Zd

∑
y∈Zd

∣∣∣H ( x

N

)∣∣∣ ∣∣∣H ( y

N

)∣∣∣Γ ((y − x)⊥
)
.

Since d− 1 ≥ 3, for any ε > 0, there exists M = M(ε) < +∞ that Γ(u) < ε when |u| > M . Since H is
with compact support, there exists C = C(H) ∈ [1,+∞) that H(u) = 0 when |u1| > C. As a result,
for sufficiently large N , the last formula is bounded by

ε

N2d

∑
x∈Zd

∑
y:|(y−x)⊥|>M

∣∣∣H ( x

N

)∣∣∣ ∣∣∣H ( y

N

)∣∣∣+ 1

N2d

∑
x∈Zd

∑
y:|(y−x)⊥|≤M,∥y1∥≤CN

∣∣∣H ( x

N

)∣∣∣ ∣∣∣H ( y

N

)∣∣∣
≤ CHε+ CH(2M + 1)d−1N1−d.

This is enough to prove Eq. (5.4). □

At last, we prove Lemma 5.3.

Proof of Lemma 5.3. By Lemma 5.4, we only need to show that

sup
H

(∫ T

0

∫
Rd

(∂u1
H)(s, u)EQ∗ [ρ(s, u)]duds− 1

2

∫ T

0

∫
Rd

H2(s, u)duds

)
< +∞ (5.6)

for each M > 0, where the supremum is carried over all functions H ∈ C0,1([0, T ]×Rd) with compact
support contained in [0, T ]× ([−M,M ]d\{|u1| ≤ 1

M }).
Since Q∗ is any weak limit of the sequence {QN}N≥1 along some subsequence, which we still denote

by {QN}N≥1 for simplicity,∫ T

0

∫
Rd

(∂u1
H)(s, u)EQ∗ [ρ(s, u)]duds = lim

δ→0
lim

N→+∞

∫ T

0

1

Nd

∑
x∈Zd

H
(
s, x

N + δe1
)
−H

(
s, x

N

)
δ

E[ηs(x)]ds

= lim
δ→0

lim
N→+∞

∫ T

0

1

Nd

∑
x∈Zd

H
(
s, x

N

) E[ηs(x−Nδe1)]− E[ηs(x)]
δ

ds,

where e1 = (1, 0, . . . , 0). Above, the first identify follows from Eq. (5.5) and the second from summation
by parts. By Eq. (4.1),

E[ηs(x)] = E
[
ρ0

(
XN,x

sN2,β

N

)]
.

By Theorem 4.2,∫ T

0

∫
Rd

(∂u1
H)(s, u)EQ∗ [ρ(s, u)]duds = lim

δ→0

∫ T

0

∫
Rd

H(s, u)
E[ρ0(Wu−δe1

s,β )]− E[ρ0(Wu
s,β)]

δ
duds, (5.7)

where Ws,β is defined as in the proof of Lemma 4.1.
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For all β ≥ 1, we claim that there exists C = C(β, ρ0,M) < +∞ that∣∣∣∣∣E[ρ0(W
u−δe1
s,β )]− E[ρ0(Wu

s,β)]

δ

∣∣∣∣∣ ≤ C (5.8)

for every (u, s, δ) satisfying |u1| ∈
[

1
M ,M

]
, 0 ≤ s ≤ T and δ < 1

2M . This is enough to prove Eq. (5.6)
since by Cauchy-Schwarz inequality, we may bound the right-hand side of (5.7) by

1

2

∫ T

0

∫
Rd

H2(s, u)duds+
C2

2
T (2M)d.

It remains to prove Eq. (5.8). Without loss of generality, we assume that u1 ∈
[

1
M ,M

]
since the

other part can be checked in the same way. If β > 1, since u1, u1 − δ > 0 when δ < 1
2M ,

Wu
s,β = (|Bu1

2s (1)|, B
u2
2s (2), . . . , B

ud
2s (d)) , Wu−δe1

s,β =
(
|Bu1−δ

2s (1)|, Bu2
2s (2), . . . , B

ud
2s (d)

)
according to the definition of Ws,β given in Section 4, where {Bt(i) : t ≥ 0}1≤i≤d are independent
copies of standard Brownian motions and Ba

t (i) means B0(i) = a for 1 ≤ i ≤ d. By translation
invariance,

Bu1
2s (1) =d B0

2s(1) + u1, Bu1−δ
2s (1) =d B0

2s(1) + u1 − δ.

By Lagrange’s mean value theorem,∣∣∣∣∣E[ρ0(W
u−δe1
s,β )]− E[ρ0(Wu

s,β)]

δ

∣∣∣∣∣ ≤ ∥∂u1
ρ0∥∞

and hence Eq. (5.8) holds for β > 1.
When β = 1,

Wu
s,β =

(
Bu1

2s,1, B
u2
2s (2), . . . , B

ud
2s (d)

)
, Wu−δe1

s,β =
(
Bu1−δ

2s,1 , Bu2
2s (2), . . . , B

ud
2s (d)

)
,

where {Bt,1}t≥0 is the snapping out Browning motion with parameter 2α. For any u ∈ Rd, v ∈ Rd−1,
let fu⊥(t, v) be the density function of (Bu2

t (2), Bu3
t (3), . . . , Bud

t (d)) at v, then

E[ρ0(Wu−δe1
s,β )]− E[ρ0(Wu

s,β)]

δ
=

∫
Rd−1

E
[
ρ0

(
Bu1−δ

2s,1 , v
)]

− E
[
ρ0
(
Bu1

2s,1, v
)]

δ
fu⊥(2s, v)dv. (5.9)

As we have recalled in Section 4,

E[ρ0(Bu1
2s,1, v)] = E

[(
1 + e−2αL2s

2

)
ρ0 (|Bu1

2s |, v) +
(
1− e−2αL2s

2

)
ρ0 (−|Bu1

2s |, v)
]

= E
[(

1 + e−2αL2s(−u1)

2

)
ρ0
(
|B0

2s + u1|, v
)
+

(
1− e−2αL2s(−u1)

2

)
ρ0
(
−|B0

2s + u1|, v
)]

where Lt is the local time of {Bt}t≥0 at point 0 and Lt(a) is the local time of {Bt}t≥0 at point a. Note
that in the above equations we utilize the fact that Ba

t hits 0 if and only if B0
t hits −a when we write

Ba
t as B0

t + a in the sense of coupling. Similarly, we may write E[ρ0(Bu1−δ
2s,1 , v)] as

E

[(
1 + e−2αL2s(−u1+δ)

2

)
ρ0
(
|B0

2s + u1 − δ|, v
)
+

(
1− e−2αL2s(−u1+δ)

2

)
ρ0
(
−|B0

2s + u1 − δ|, v
) ]

.

Hence,
E
[
ρ0

(
Bu1−δ

2s,1 , v
)]

− E
[
ρ0
(
Bu1

2s,1, v
)]

= I + II,
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where

I = −E
[(

1 + e−2αL2s(−u1)

2

)
ρ0
(
|B0

2s + u1|, v
)]

+ E
[(

1 + e−2αL2s(−u1+δ)

2

)
ρ0
(
|B0

2s + u1 − δ|, v
)]

and

II = −E
[(

1− e−2αL2s(−u1)

2

)
ρ0
(
−|B0

2s + u1|, v
)]
+E

[(
1− e−2αL2s(−u1+δ)

2

)
ρ0
(
−|B0

2s + u1 − δ|, v
)]

.

We only calculate I since II can be calculated in the same way. For any a ̸= 0, we define τa =

inf{t : B0
t = a}. Let p(t, a) be the density function of τa, then by strong Markov property,

E
[(

1 + e−2αL2s(−u1)

2

)
ρ0
(
|B0

2s + u1|, v
)]

= E
[(

1 + e−2αL2s(−u1)

2

)
ρ0
(
|B0

2s + u1|, v
)
1{τ−u1

≤2s}

]
+ E

[(
1 + e−2αL2s(−u1)

2

)
ρ0
(
|B0

2s + u1|, v
)
1{τ−u1

>2s}

]
=

∫ 2s

0

p(θ,−u1)E
[(

1 + e−2αL2s−θ

2

)
ρ0
(
|B0

2s−θ|, v
)]

dθ + E
[
ρ0
(
|B0

2s + u1|, v
)
1{τ−u1

>2s}

]
,

where we utilize the facts that Lt(a) = 0 when t < τa and that (Lt(−a), B−a
t + a) and (Lt, B

0
t ) have

the same distribution. As a result,
I = III + IV,

where
III =

∫ 2s

0

(p(θ,−u1 + δ)− p(θ,−u1))E
[(

1 + e−2αL2s−θ

2

)
ρ0
(
|B0

2s−θ|, v
)]

dθ

and
IV = E

[
ρ0
(
|B0

2s + u1 − δ|, v
)
1{τ−u1+δ>2s}

]
− E

[
ρ0
(
|B0

2s + u1|, v
)
1{τ−u1>2s}

]
.

It is shown in [2, Chapter 8] that
p(θ, a) =

a√
2π

e−
a2

2θ θ−
3
2 .

As a result, there exists C1 = C1(M) < +∞ independent of 0 ≤ s ≤ T that∫ r

0

∣∣∣∣ ddap(θ, a)
∣∣∣∣ dθ < C1

for any 0 ≤ r ≤ 2T and 1
2M ≤ a ≤ M . Then, by Lagrange’s mean value theorem, for δ < 1

2M ,
|III|
δ

≤ C1∥ρ0∥∞

Now we deal with IV. Since τ−u1+δ < τ−u1
for {B0

t }t≥0,

IV = V+VI,

where
V = −E

[
ρ0
(
|B0

2s + u1 − δ|, v
)
1{τ−u1>2s>τ−u1+δ}

]
and

VI = E
[(
ρ0
(
|B0

2s + u1 − δ|, v
)
− ρ0

(
|B0

2s + u1|, v
))

1{τ−u1+δ>2s}

]
.

According to the expression of V and the definition of p(t, a),

|V| ≤ ∥ρ0∥∞
∫ 2s

0

|p(θ,−u1 + δ)− p(θ,−u1)| dθ
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and hence |V|
δ ≤ C1∥ρ0∥∞ when δ < 1

2M by Lagrange’s mean value theorem. Since ||x| − |y|| ≤ |x−y|,
by Lagrange’s mean value theorem,

|VI|
δ

≤ ∥∂u1
ρ0∥∞.

As a result,
|I|
δ

≤ |III|+ |IV|
δ

≤ 2C1∥ρ0∥∞ + ∥∂u1
ρ0∥∞ (5.10)

when δ < 1
2M . Note that Eq. (5.10) still holds when |I| is replaced by |II| according to the same

analysis. Therefore,∣∣∣∣∣∣
E
[
ρ0

(
Bu1−δ

2s,1 , v
) ]

− E
[
ρ0
(
Bu1

2s,1, v
) ]

δ

∣∣∣∣∣∣ ≤ 2
(
2C1∥ρ0∥∞ + ∥∂u1

ρ0∥∞
)

when δ < 1
2M and hence Eq. (5.8) follows from Eq. (5.9) when β = 1. This completes the proof. □
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