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Abstract 11 

From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and 12 

keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources 13 

of fatty aldehydes are threatened by qualitative and quantitative variability while traditional 14 

chemical routes are insufficient to answer the society shift toward more sustainable and natural 15 

products. The production of fatty aldehydes using biotechnologies is therefore the most 16 

promising alternative for the flavors and fragrances industry. In this review, after drawing the 17 

portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main 18 

classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely 19 

alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol 20 

oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes 21 

in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic 22 

production of fatty aldehydes, and providing a critical assessment of its potential, we expect 23 

this review to contribute to the development of biotechnology-based solutions in the flavors 24 

and fragrances industry.  25 
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Introduction  63 

Flavors and fragrances (F&F) are found in a wide variety of consumer goods: foods and 64 

beverages, fine fragrances, pharmaceuticals, cosmetics, soap, household products, etc. Today, 65 

more than 3,000 molecules are used to manufacture products that affect our senses of smell and 66 

taste (Zviely, 2012). While F&F usually make up only a minor quantitative fraction of the final 67 

product, they play a major role in its qualitative perception by consumers. In 2019, the value of 68 

the global F&F market reached 31.5 billion U.S. dollars and is predicted to grow by 3.5 % per 69 

year up to 2024 (IAL Consultants, 2020). Current industrial production of F&F relies to a large 70 

extent on chemical synthesis providing large quantities of material at cost-effective prices. 71 

However, chemical synthesis has many drawbacks as (i) it is based on high energy consuming 72 

processes, (ii) it requires the use of metallic or toxic catalysts, (iii) it often relies on fossil 73 

material (Johannsen et al., 2020), and (iv) it generates large amounts of wastes and thus raises 74 

environmental concerns (Braga et al., 2018; Silveira et al., 2019). Chemical processes are 75 

usually poorly regio- and enantio-selective resulting in racemic mixtures that require further 76 

downstream processing (e.g. purification) to avoid unwanted off-flavors (Berger, 2015; Longo 77 

and Sanromán, 2006; Serra et al., 2005). The growing societal environmental concerns go along 78 

with a steadily increasing demand for “natural” products (Román et al., 2017), a feature usually 79 

not satisfied by established chemical routes. Many F&F are directly extracted from natural raw 80 

materials, using empirical processes such as distillation. This approach provides natural 81 

products with complex olfactive profiles but suffers from extremely low production yields. For 82 

instance, vanilla requires the meticulous manual pollination of each flower (Frey, 2005; Gallage 83 

and Møller, 2015). Raw material supply is also vulnerable to environmental (i.e. climate 84 

variability, pathogens expansion, etc.), economic, social and political fluctuations (Braga et al., 85 

2018). Consequently, there is a growing demand to provide alternatives for the production of 86 

natural F&F. Paradoxically, growing demand for food ingredients of natural origin has 87 

occasionally led to shortage of some plant resources such as vanilla or peppermint (Dunkel et 88 

al., 2014; Malik and Rawat, 2021). The tremendous increase of consumer demand over natural, 89 

and sustainable products, combined with the limitations of chemical and extractive routes call 90 

for a middle path, which likely lies in the rise of biotechnologies (Berger, 2009; Check Hayden, 91 

2014; Pessôa et al., 2019; Schwarz and Wydra, 2020; Silveira et al., 2019; Waltz, 2015). 92 

Among F&F compounds, aldehydes constitute a prominent class of molecules broadly 93 

used as food products additives (Tsuzuki, 2019). Aldehydes are also key components of 94 

perfumes (Surburg and Panten, 2016). Most notably, straight chain (C6 to C13) saturated 95 
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aldehydes, henceforth denoted as “fatty aldehydes”, occupy a central role in the F&F field (see 96 

section 1), and will thus be the focus of the present review.  97 

Biotechnological production of aldehydes can be tackled by two approaches: (i) de novo 98 

synthesis, which relies on the metabolization of simple substrates (e.g. glucose) by natural or 99 

engineered organisms to yield the final desired product (this approach will not be covered here 100 

but has been reviewed elsewhere (Gounaris, 2010; Kunjapur and Prather, 2015)), or by (ii) 101 

biotransformation/bioconversion, which consist in biocatalytic chemical modification of a 102 

precursor structurally related to the product through one or several step(s) catalyzed by 103 

enzyme(s) (Braga et al., 2018; Pessôa et al., 2019). In the first section of this review, we briefly 104 

draw the portrait of aldehydes as key aroma and fragrance molecules. In the second section, we 105 

review the main enzymes of interest for oxidation of fatty alcohols, namely: alcohol 106 

dehydrogenases (ADHs - EC 1.1.1.1), flavin-dependent alcohol oxidases (FAD-AOXs - EC 107 

1.1.3.13) and copper radical alcohol oxidases (CRO-AlcOx - EC 1.1.3.13).  We then discuss 108 

the available resources to find new biocatalysts and the critical enzymatic and process criteria 109 

to consider for implementation of efficient bioprocesses. In the last section, we discuss some 110 

problematics regarding transfer from lab-scale to industrial F&F exploitation.  111 

 112 

1. Aldehydes in the flavors and fragrances industry 113 

1.1. A brief history of fragrant aldehydes. 114 

First recorded uses of fragrant substances date back to the Antiquity. In that time, odorants 115 

materials (e.g. tree barks, aromatic plants, resins…) were usually burnt to release and spread 116 

their scent. Ancient Egyptians (3150-30 BC) used to prepare cedarwood oil for the embalming 117 

process to protect mummies from insects and microbial attacks (Balasubramanian, 2015; 118 

Sawamura, 2011). During most of the Human history, essential oils have been the main source 119 

of fragrant materials and were often reserved to an elite and/or dedicated to specific usages (e.g. 120 

religious practices). Essential oils are still today of great importance for perfumers and 121 

flavorists. From late 19th century and over the 20th century, a modern era for F&F, marked by 122 

the democratization of their use opened up, notably thanks to the advent of both analytical and 123 

organic chemistry (Brenna and Parmeggiani, 2017; Sell, 2015; Taylor, 2002).  124 

Aldehydes are intimately linked to the early days of fragrance chemistry. 125 

Cinnamaldehyde (Chiozza, 1856; Richmond, 1950) and benzaldehyde were some of the first 126 
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isolated and characterized chemical compounds. The latter being the first perfumery molecule 127 

isolated from nature and synthetically produced in 1832 (Wöhler and Liebig, 1832). Natural 128 

benzaldehyde from bitter almond, pits of apricots, peaches or plums is recovered in low yields 129 

by enzymatic hydrolysis of amygdalin (a cyanogenic glycoside), a process that must be 130 

conducted carefully to get rid of the poisonous cyanide (Clark, 1995). (Bio)catalytic production 131 

processes yielding simpler and safer product profiles are therefore of obvious interest. In 1874, 132 

Tiemann and Haarmann reported the first isolation and chemical synthesis of vanillin (Tiemann 133 

and Haarmann, 1874). In 1921, the introduction of a combination at high dosage of the C10, 134 

C11 and C12 saturated fatty aldehydes and of 2-methylundecanal, allowed the design of the 135 

landmark famous perfume “Chanel N°5”. This perfume truly popularized the use of synthetic 136 

ingredients in modern perfumery.  137 

1.2. Characteristics and origin of commonly used fatty aldehydes 138 

Despite their importance as reactive intermediates in various chemical routes (Zhou et al., 139 

2020), the valorization of aldehydes per se is rare. Exceptions to this are some low molecular 140 

weight aldehydes (e.g. acetaldehyde, formaldehyde) and aldehydes used as perfumes, 141 

fragrances ingredients and flavoring agents in the F&F industry. In this domain, aldehydes are 142 

a staple, ubiquitous in food (Parker, 2015; Tsuzuki, 2019), and necessary for the elaboration of 143 

most perfumes (Kohlpaintner et al., 2013), illustrated by a dedicated odor descriptive term – 144 

i.e. “aldehydic” (Surburg and Panten, 2016). Aldehydes used in F&F are very odorant 145 

compounds with a low odor threshold and are therefore highly diluted in final products (Pessôa 146 

et al., 2019; Tsuzuki, 2019). 147 

Among the short-chain aliphatic aldehydes, acetaldehyde is a key compound in fruity 148 

flavoring (Rowe, 2011). Fatty aldehydes ≥ C6 display a dual “citrus-like/fatty” character. Their 149 

industrial relevance is mainly restricted to C6, & C8-C13 aldehydes (Kohlpaintner et al., 2013; 150 

Surburg and Panten, 2016). Indeed, increase of the alkyl chain length entails the predominance 151 

of the “fatty”, unpleasant, character, rendering the use of compounds > C13 inappropriate for 152 

most applications as F&F.  153 

Hexanal (C6) releases a “green-note” odor, reminiscent of a “cut-grass” (Table 1). Fatty 154 

aldehydes with even number (C8, C10, C12) occur naturally in the oil glands of citrus peel (i.e. 155 

in the flavedo) yielding “green”, “fresh” and “citrus-like” notes. In these oils, C8 and C10 156 

aldehydes usually provide the “fresh/citrus” character while C12 gives the floral note (Truong 157 

et al., 2017). Octanal (C8) is also of importance in orange juice, being one of the main 158 
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contributors of its flavor (Averbeck and Schieberle, 2009; Porat et al., 2016), Overall, citrus 159 

aromas represent the most important tonality of the flavoring market (20 % of the demand) 160 

(IAL Consultants, 2020).  161 

Table 1: Overview of main fatty aldehydes used as flavors and fragrances. 162 

Names 

Number 

of C atoms 

Chemical 

structure Scent   
Main natural 

sources 

Hexanal, 

Caproaldehyde 
6  Green, grassy fruity  Occurs in many 

plants and fruits 

Octanal, 

Caprylaldehyde 
8  

Green, citrus-like 

fruity, floral, lemon, 

green grassy 

 Sweet orange peel 

oil 

Nonanal, 

Pelargonaldehyde 
9 

 

Soapy, citrus-like, 

rose-like, floral 
 Orange and rose oils 

Decanal 

Caprinaldehyde 
10  Green, citrus-like, 

fatty, peelly 
 

Large occurrence in 

various essential 

oils:  citrus peel 

oils, neroli oil… 

Dodecanal 

Lauric aldehyde 
12  Waxy, fatty, soapy, 

reminiscent of violets 

 

Citrus and Pinus 

oils 

 163 

Traditional extraction of citrus essential oil is performed by “cold press” extraction (also 164 

referred to as “expression”), by applying physical means to shatter the oil gland and recover the 165 

so-called “peel-oil”, which is the most widely produced essential oil worldwide. Production of 166 

citrus peel oil is usually conducted concomitantly with production of citrus juice. Most of the 167 

global production of these juices relies on Brazilian and Florida citrus crops (Berger, 2007; 168 

Diaz et al., 2005; Porat et al., 2016; Sell, 2015) and the emergence of the citrus greening disease 169 

– Huánglóngbìng disease (lit. “Yellow dragon disease”) – raises concern about our dependency 170 

on this major source of natural molecules. The bacteria Candidatus Liberibacter spp. are the 171 

causal agent of this severe disease that affects fruit flavor and causes premature death of the 172 

infected trees (Baldwin et al., 2010; Dala-Paula et al., 2019). 173 

Overall, socio-environmental concerns together with the urge for a renewal of supply 174 

sources call for the development of alternative, greener routes for the production of fragrant 175 

aldehydes. Biotechnology and more specifically biocatalysis, offers promising perspectives to 176 
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tackle this challenge. In the following sections, we present some of the major available 177 

oxidative enzymes for the production of fatty aldehydes. 178 

 179 

2. Overview of bio-oxidative catalysts 180 

The use of enzymes to produce F&F molecules has been for a long time restricted to a 181 

small set of reactions. However, over the past decades, considerable improvements have been 182 

made in the development of biotechnological solutions and the relevance of the enzymatic 183 

approach is now widely recognized (Fasim et al., 2021; Musa and Phillips, 2011). Powerful 184 

tools have been developed to improve biocatalysts and their use including computer-assisted 185 

evolution of enzymes (Arnold, 2019), immobilization techniques, biphasic systems, 186 

thermostability engineering, large-scale recombinant enzyme production and isolation of highly 187 

enantio- and regio-selective enzymes (see section 3. and 4.) (Cao et al., 2021; Wu et al., 2020).  188 

Using enzymes, aldehydes can be obtained through either an oxidative or a reductive 189 

route, starting from an alcohol or a carboxylic acid as precursor substrate, respectively. 190 

Carboxylic acid reductases perform the reduction of carboxylic acid to aldehydes at the expense 191 

of ATP and NADPH as co-factors. Such expensive organic co-factors constrain their use in 192 

whole cell systems. Yet, aldehydes are often toxic for the cells and thus, are further reduced to 193 

alcohols or reoxidized to carboxylic acids by endogenous enzymes. The reductive route will 194 

not be further discussed here, and readers are directed to some recent reviews on this topic 195 

(Derrington et al., 2019; Maurer et al., 2019; Winkler, 2018). 196 

Three main classes of enzymes are used for alcohol oxidation and will be discussed 197 

hereinafter: ADHs, FAD-AOXs and CRO-AlcOx. On the one hand, ADHs are broadly 198 

available, deeply studied and catalyze a reversible reaction using expensive organic 199 

nicotinamide cofactor as electron acceptor (commonly NAD(P)+). On the other hand, despite 200 

being less studied and available, FAD-AOXs and CRO-AlcOx use only molecular O2 as 201 

inorganic final electron acceptor to catalyze the irreversible oxidation of the alcohol into the 202 

corresponding aldehyde. Such characteristics entail significant practical differences in the 203 

implementation of the biocatalytic systems, as discussed hereinafter. An overview of the main 204 

advantages and drawbacks of each biocatalytic system is presented in Figure 1. In Table S1, we 205 

provide the reader with more information on the enzymes discussed hereafter, including notably 206 

their origin, biochemical properties, 3D structures, kinetic parameters and conversion 207 

efficiencies. 208 
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 209 

Figure 1. Comparative overview of (A) the main advantages and drawbacks for each enzyme class 210 
discussed in this review and of (B) catalytic efficiencies of some CRO-AlcOx (blue bar), FAD-AOXs 211 
(yellow bars) and ADHs (pink bars) toward a range of fatty alcohols (C6-C12). For each enzyme, the 212 
kcat/KM values are shown with a different symbol depending on the substrate chain length (C6 to C12, 213 
see legend key in the figure). For illustrative purposes, we show a colored bar in the background that 214 
corresponds to the highest kcat/KM value measured for each enzyme. An asterisk (*) indicates when an 215 
X-ray crystallographic structure of the enzyme is available. See Table S1 for more details on properties 216 
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and kinetic parameters of the displayed enzymes Note that on the Y-axis (kcat/KM) is displayed in 217 
logarithmic scale. 218 

 219 

2.1. Alcohol dehydrogenases (ADHs) 220 

2.1.1. Source of ADHs  221 

ADHs are ubiquitous in living organisms (Thompson et al., 2018). ADHs, which are 222 

mostly intracellular, are involved in various metabolic pathways. In anaerobic bacteria and 223 

yeast, ADHs reduce acetaldehyde to ethanol, whose toxicity inhibits the growth of other 224 

microorganisms (Hernández-Tobías et al., 2011) while recycling NAD(P)+ (Reid and Fewson, 225 

1994). In humans, ADHs promote the opposite reaction to detoxify deleterious ethanol 226 

(Edenberg, 2007).  227 

 228 

2.1.2. Structure and catalytic mechanism of ADHs 229 

In terms of 3D structure, ADHs share a conserved Rossmann fold for cofactor binding, 230 

but otherwise display a high structural diversity. The three main classes of ADHs are 231 

distinguished according to sequence length and structural/mechanistic features: short-chain 232 

dehydrogenases (SDRs) encompass small ADHs condensed in a single domain while medium-233 

chain dehydrogenases (MDRs), and long-chain dehydrogenases (LDRs), both harbor a co-234 

factor binding domain and a catalytic domain (An et al., 2019). SDRs are metal-free enzymes 235 

while MDRs usually make use of two Zn co-factors (one involved in catalysis and the second 236 

one playing a structural role – see Figure 2A). LDRs – a more heterogenous class – can require 237 

either Zn and/or Fe as co-factor, or sometime no metal ion at all (Sellés Vidal et al., 2018). The 238 

Zn-containing ADHs are generally found as dimers (mostly in higher plants and mammals) or 239 

tetramers (in bacteria and yeasts) (An et al., 2019). ADHs operate through a hydride transfer 240 

from the substrate to the NAD(P)+ co-factor with concomitant release of a proton (Figure 2B) 241 

(Crichton, 2012). The reaction they catalyze is reversible. These enzymes can both oxidize 242 

alcohol or reduce carbonyl compounds (note that some ADHs are also called ketone reductases 243 

- KRED), depending on the enzyme and substrate, the oxidation or reduction route can be 244 

preferred and the pH of the medium can influence the direction of the reaction (D’Auria, 2002). 245 

Yet, from a thermodynamic standpoint, ADH-catalyzed reductive reaction is usually strongly 246 

favored over alcohol oxidation (Hollmann et al., 2012). 247 
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 248 

Figure 2. Example of an ADH structure and overview of ADHs catalytic cycle. (A) Cartoon 249 
representation of one HADH monomer in complex with NADH (PDB 2OHX (Al‐Karadaghi et al., 250 
1994)). NADH is displayed as yellow sticks. Zinc (Zn) ions are displayed as blue spheres; the Zn ion 251 
close to NADH plays a role in catalysis, the second Zn ion is structural. Note that HADH structure is 252 
used for illustrative purposes and is not meant to represent the entire, diverse class of ADHs. (B) 253 
Catalytic mechanism of ADH dehydrogenation of primary alcohols (pink arrows) (and reverse 254 
reduction reaction of aldehydes, shown in blue arrows) coupled to in situ NAD(P)H regeneration. In the 255 
NAD(P)+/NAD(P)H chemical structure only the nicotinamide group is shown (R corresponds to the 256 
adenine (monophosphate) dinucleotide chain)  257 

 258 

2.1.3. Substrate specificity of ADHs 259 

ADHs are the most intensively studied group of oxidoreductases. Among well-studied 260 

ADHs, the prominent horse liver ADH (HADH) was shown to accept 1-octanol as substrate 261 

(kcat/KM = 5.8×104 M-1.s-1
;
 Cea et al., 2009; Tani et al., 2000; Whitaker et al., 2002). Yeast ADHs 262 

(YADHs) from S. cerevisiae YADH1 and YADH2 were also found active on C2 to C10 263 

alcohols (de Smidt et al., 2008; Dickinson and Dack, 2001; Leskovac et al., 2002; Ottone et al., 264 

2018; Pal et al., 2009; Schöpp and Aurich, 1976). YADHs are known to be unstable enzymes 265 

(Trivedi et al., 2005). – Of note, both HADH and YADH exist through multiple isoforms. The 266 

isoform will be specified hereinafter when possible. No specification means that the enzyme is 267 

either a mixture of isoforms or that no clear identification was provided in the original reference. 268 

Comparison between HADH, human liver ADH and YADH on a wide range of substrates, was 269 

studied in the 1970s (Pietruszko et al., 1973): HADH exhibited ca. 10-fold higher catalytic 270 

efficiency than both human liver ADH and YADH. Overall, a multitude of studies reported 271 

expression and characterization of new ADHs with observed activity on fatty alcohols (from 272 
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C6 to C8) often among other substrates included in the initial specificity screening. 273 

Unfortunately, most of these studies are restricted to spectrophotometric monitoring of 274 

NAD(P)+ reduction/NAD(P)H oxidation, and thus lack direct analysis of product formation. 275 

Among the characterized ADHs, potent catalysts for oxidation of fatty alcohols very likely 276 

exist, but are still untapped as studies for applicability of these enzymes in biocatalysis are 277 

predominantly focused on their use for asymmetric reduction processes and for their 278 

enantioselective oxidation of secondary alcohols (Dong et al., 2018; Matsuda et al., 2009; 279 

Turner, 2011). In particular, the production of ketones using ADHs is of interest for other F&F 280 

applications such as the synthesis of carvone (de Carvalho and da Fonseca, 2006; Werf et al., 281 

1999). 282 

 283 

2.1.4. ADHs from extremophiles  284 

In this paragraph, we focus on some ADHs from extremophiles with interesting traits. 285 

Indeed, while many ADHs from extremophiles have been described, some encompass activity 286 

on fatty alcohols (Hirano et al., 2005; Holt et al., 2000; Inoue et al., 2005; Ma et al., 1994; Ma 287 

and Adams, 1999; Yanai et al., 2009) and can exhibit attractive biochemical characteristics such 288 

as high thermostability and tolerance to solvent, two assets for the oxidation of poorly soluble 289 

substrates. A recombinant ADH from Bacillus stearothermophilus was used in an amination 290 

cascade reaction to convert fatty alcohols to aldehydes and was able to convert 50 mM C6 291 

alcohol with a yield > 99%. The enzyme was also able to convert partially C8 (50 % yield) and 292 

C10 (2% yield) alcohols, and addition of 1,2-dimethoxyethane (10% (v/v)) as co-solvent 293 

improved the conversion of C10 up to 25 % (Sattler et al., 2012). Thermococcus hydrothermalis 294 

ADH can be driven preferentially toward reductive or oxidative reaction by adjusting the pH of 295 

the reaction with pH 10.5 for an optimal alcohol oxidation vs pH 7.5 for an optimal reductive 296 

reaction. Interestingly, this enzyme found as a dimer at pH 7.5 forms a tetramer at pH 10.5. 297 

This ADH showed best activity on hexanol (>C6 not assayed) and was also able to oxidize 298 

some aromatic alcohols (i.e. benzyl alcohol) and monoterpenes (i.e. geraniol and nerol) 299 

(Antoine et al., 1999). The ADH from Aeropyrum pernix K1 showed kinetic constants that 300 

increased with the alkyl chain length (tested up to C6 with a kcat/KM of 2.5 mM–1.s–1) and strong 301 

thermostability with 24% residual activity after 30 min incubation at 98°C (Hirakawa et al., 302 

2004). A thermostable enzyme from the psychrotolerant Flavobacterium frigidimaris KUC-1 303 

showed increasing activity from C6 to C10, with high temperature resilience, being active from 304 
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0 to 85°C (optimum at 70°C) (Kazuoka et al., 2007). However, no heterologous production of 305 

the latter enzyme has been described. Alkanes/alkanols-degrading microorganisms can be a 306 

source of ADHs active on fatty alcohols as demonstrated by several studies (Álvarez et al., 307 

2011; Barth and Künkel, 2007; Fox et al., 1992; Nagashima et al., 1996; Tassin and 308 

Vandecasteele, 1972; Ueda and Tanaka, 1990; Weimer et al., 1993; Yamada et al., 1980). 309 

Noteworthily, two ADHs from long-chain alkane-degrading strain Geobacillus 310 

thermodenitrificans NG80-2 exhibited activity toward fatty alcohols including C6-C10 (Liu et 311 

al., 2009).  312 

 313 
2.1.5. Heterologous production of ADHs 314 

Commercial ADHs (Hummel and Hummel, 1999) mainly originate from either animal 315 

tissues (horse liver), S. cerevisiae or other recombinant hosts, and can encompass multiple 316 

isoenzymes when purified from native host. Despite potential issues pertaining to the generation 317 

of aggregated proteins (Utekal et al., 2014), E. coli is predominantly used for the heterologous 318 

production of ADHs (Höllrigl et al., 2008; Holt et al., 2000; Kim et al., 2019; Liu et al., 2009) 319 

in the cytosolic compartment. For instance, the well-studied HADH (EE isoenzyme) has been 320 

recombinantly produced in E. coli (Huang et al., 2018; Park and Plapp, 1991; Quaglia et al., 321 

2012) but its expression at large scale is still challenging (Hummel et al., 2003; Ottone et al., 322 

2018). Yet, successful recombinant expression of other ADHs in E. coli (Wolberg et al., 2001) 323 

and utilization at commercial scale have been reported for other applications (Davis et al., 2005; 324 

Patel, 2009), after having conducted protein engineering (see section 4.1). 325 

2.2. Flavin-dependent alcohol oxidases (FAD-AOXs) 326 

FAD-AOXs are found in both the large superfamily of glucose–methanol–choline (GMC) 327 

oxidoreductases and the superfamily of Vanillyl Alcohol Oxidase/p-cresol methylhydroxylase 328 

(VAO/PCMH). Some FAD-AOXs are also classified into the Carbohydrate-Active enZymes 329 

database (CAZy, www.cazy.org ; Levasseur et al., 2013; Lombard et al., 2014) in the Auxiliary 330 

Activity 3 (AA3) and AA4 families. The AA3 CAZy family, initially built for carbohydrate 331 

oxidoreductases (e.g., cellobiose dehydrogenase, glucose 1-oxidase), contains 332 

phylogenetically-related enzymes active on either aryl alcohols (AA3_2 sub-family) or on small 333 

primary alcohols (e.g., methanol, ethanol; AA3_3 sub-family) (Sützl et al., 2018). The AA4 334 

family contains VAO that belong to subgroup 4 of the VAO/PCMH superfamily (Ewing et al., 335 

2017). AA4 will not be further discussed in this review because they are specifically active on 336 

para-substituted phenolic compounds and not active on aliphatic substrates. Yet, these enzymes 337 

http://www.cazy.org/
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have been harnessed for other major F&F applications such as the production of vanillin 338 

(Lambert et al., 2013, 2014).  339 

 340 

2.2.1. Source of FAD-AOXs 341 

FAD-AOXs are widespread (Ewing et al., 2015), and some of the best-known FAD-342 

AOXs originate from peroxisomes of methylotrophic yeasts, such as Pichia pastoris 343 

(Komagataella phaffii), Candida boidinii or Hansenula sp. where they play a key role in 344 

methanol metabolism (Ozimek et al., 2005; Zavec et al., 2021). Alternatively, a number of 345 

“long-chain alcohol oxidases” (LCAOs) also called “fatty-alcohol oxidases” (FAO) 346 

(EC:1.1.3.20) have been described (Ewing et al., 2015). Owing to heterogenous nomenclature, 347 

these enzymes will hereinafter be referred to as “FAD-FAOX”. FAD-FAOXs have been mostly 348 

isolated from “alkane-growing” yeasts (Fukuda and Ohta, 2017), fungi (Alvarado-Caudillo et 349 

al., 2002; Kumar and Goswami, 2006; Pickl et al., 2015; Savitha and Ratledge, 1991; Silva-350 

Jiménez et al., 2009) and plants (Banthorpe et al., 1976; Cheng et al., 2004; Moreau and Huang, 351 

1979; Zhao et al., 2008). Early studies described interesting activities on fatty alcohols, albeit 352 

individual enzymes were not isolated/characterized. First evidences of FAD-FAOX enzymes 353 

(from yeasts) were described in the 80-90’s (Blasig et al., 1988; Il’chenko, 1984; Il’chenko and 354 

Tsfasman, 1988; Krauzova et al., 1986, 1985), followed by studies on the microsomal fractions 355 

of Aspergillus flavipes, Candida bombicola, C. maltose, C. apicola, C. tropicalis and Yarrowia 356 

lipolytica (Hommel and Ratledge, 1990; Hommel et al., 1994; Kemp et al., 1991, 1990, 1988; 357 

Mauersberger et al., 1992).  358 

 359 

2.2.2. Structure and catalytic mechanism of FAD-AOXs 360 

GMC-type FAD-AOXs are multimeric enzymes usually found as homooctamers 361 

(Ozimek et al., 2005; Silva-Jiménez et al., 2009) or sometimes as homodimers (Dickinson and 362 

Wadforth, 1992; Heath et al., 2019) in yeasts while fungal enzymes, which are less investigated, 363 

can be found as heterodimers (Kumar and Goswami, 2009). Overall, all FAD-AOXs share a 364 

conserved FAD binding domain displaying both the sequence motif GxGxxG/A and a 365 

Rossmann fold (Dijkman et al., 2013). The flavin co-factor is usually non-covalently bound to 366 

the enzymes of the GMC superfamily in contrast to the members of the VAO/PCMH 367 

superfamily (Ewing et al., 2020, 2017; Romero et al., 2018). The C-terminal substrate binding 368 
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domain is more variable, allowing accommodation of different types of substrates (Sützl et al., 369 

2019). Although several crystallographic structures of FAD-AOXs from methylotrophic yeasts 370 

have been resolved (see Figure 3A), equivalent information for FAD-FAOXs is still lacking 371 

(Cheng et al., 2005). Intriguingly FAD-FAOXs of Candida sp. and Arabidospsis thaliana were 372 

reported to possess a heme binding motif “CXXC” and a possible covalently bound heme 373 

(Cheng et al., 2005, 2004; Vanhanen et al., 2000), the function of which remains to be 374 

elucidated. The general catalytic cycle of FAD-AOXs can be divided in two half reactions, 375 

where FAD plays the role of an electron shuttle. In the reductive half reaction, two electrons 376 

are transferred from the substrate to the oxidized flavin via a hydride transfer mechanism 377 

(Wongnate and Chaiyen, 2013). Then, FADH2 is regenerated to FAD during the oxidative half 378 

reaction via the two electrons reduction of O2 into H2O2 (Figure 3B). As stated before, the 379 

oxidation of the alcohol is strictly irreversible.  380 

 381 

 382 

Figure 3. Example of a FAD-AOX structure and overview of FAD-AOXs catalytic cycle.  (A) 383 
Cartoon representation of a FAD-AOX monomer from P. pastoris in complex with FAD (shown 384 
as yellow stick) (PDB 5HSA). This enzyme is shown as an example and is not not meant to represent 385 
the entire, diverse class of FAD-AOXs. (B) Generic catalytic mechanism of AOX-catalyzed 386 
oxidation of primary alcohols and H2O2 removal by catalase.  387 

  388 
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2.2.3. Substrate specificity of FAD-AOXs 389 

The substrate scope of FAD-AOXs is broad with enzymes active on aliphatic alcohols, 390 

aromatic alcohols, carbohydrates, steroids, etc. (Ewing et al., 2020). Only enzymes that fit in 391 

the focus of this review will be described here. We nevertheless underscore that aryl alcohol 392 

oxidases from the AA3_2 subfamily exhibit some activity on unsaturated fatty alcohols 393 

(Urlacher and Koschorreck, 2021). Among the FAD-AOXs active on saturated aliphatic 394 

alcohols, some of the most prominent members are from methylotrophic yeasts, which are 395 

efficient at oxidizing methanol and other short-chain alcohols, while their activity gradually 396 

decreases with extension of the alkyl-chain (Ozimek et al., 2005). In aqueous medium, FAD-397 

AOX from P. pastoris is found as an homooctamer where the subunits interact via their 398 

substrate binding domain (Koch et al., 2016). As a result, the active site appears buried into the 399 

octameric structure. These FAD-AOXs are thus not competent catalysts for fatty-alcohols 400 

oxidation in aqueous conditions, although their substrate scope can be extended by protein 401 

engineering (see section 4.1) or by carrying out reactions in biphasic system (see section 4.3). 402 

In contrast, FAD-FAOXs are more efficient on fatty alcohols. Indeed, yeast FAD-FAOX from 403 

Candida tropicalis exhibited activity on C12 and longer alcohols (but not on C8 and C10) 404 

(Cheng et al., 2005). A FAD-FAOXs from another strain of C. tropicalis (ATCC 20336) 405 

showed activity over C6-C16 primary alcohols, with highest specific activity on C8, followed 406 

by C12 alcohols and low KM on both substrates (Table S1) (Eirich et al., 2004; Eirich and Craft, 407 

2007). A plant FAD-FAOX from jojoba (Simmondsia chinensis) displayed activity on a range 408 

of fatty alcohols, notably C8, and exhibited best performances on C12, with one of the lowest 409 

KM hitherto reported for fatty-alcohols active oxidases (see table S1) (Rajangam et al., 2013). 410 

Among fungal FAD-FAOXs, an enzyme purified from the microsomal fraction Aspergillus 411 

terreus (MTCC 6324) was biochemically characterized, showing best activity on C7 and a 412 

broad activity on aromatic and secondary alcohols (Kumar and Goswami, 2009, 2008, 2006). 413 

We also underscore that a FAD-FAOX from A. fumigatus was successfully applied in a cascade 414 

reaction where C6-C8 fatty alcohols (10 mM) were fully converted to aldehydes (Pickl et al., 415 

2015). 416 

  417 
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2.2.4. Heterologous expression of FAD-FAOXs 418 

Heterologous expression of FAD-FAOXs became possible only two decades ago when 419 

genes encoding an enzyme from C. tropicalis (NCYC 470) and two isoenzymes from C. 420 

cloacae were cloned (Slabas et al., 1999; Vanhanen et al., 2000). Since then, several fungal, 421 

yeast and plant FAD-FAOXs have subsequently been successfully produced in E. coli (Cheng 422 

et al., 2004; Eirich et al., 2004; Rajangam et al., 2013; Takahashi et al., 2016). FAD-FAOXs 423 

are multimeric, membrane-bound enzymes showing biophysical complexity (Kumar and 424 

Goswami, 2008) which can complicate their heterologous expression and hamper their 425 

implementation at large scale. Solubilization of membrane-bound FAD-FAOXs can lead to 426 

significant decrease in activity (Kakoti et al., 2012) although it was reported that preservation 427 

of activity is possible depending on the enzyme (Cheng et al., 2004). Furthermore, a 428 

recombinant FAD-FAOX from A. fumigatus (LCAO_af), was successfully employed in a 429 

cascade with a ɷ-transaminase for conversion of fatty alcohols to amines (Pickl et al., 2015). 430 

In this study, lyophilized recombinant E. coli cells were used to avoid the solubilization and 431 

purification of the enzyme and to provide an expression system compatible with the scaled-up 432 

production of such FAD-FAOXs. So far, only E. coli has been used as recombinant production 433 

host and there is no data as to whether the utilization of eukaryotic hosts (e.g. P. pastoris) may 434 

improve protein expression.  435 

 436 

2.3. Copper Radical Alcohol Oxidases (CRO-AlcOx) 437 

Copper radical oxidases (CROs) are classified into the CAZy database as members of the 438 

Auxiliary Activity 5 family (AA5). They have been further segregated into two subfamilies, 439 

namely, AA5_1 containing glyoxal oxidases (GLOX - EC 1.2.3.15) that catalyze the oxidation 440 

of aldehydes (most certainly through their hydrated gem-diol form) to carboxylic acids, and 441 

AA5_2 that gathers enzymes acting on the alcohol moieties of diverse substrate scaffolds to 442 

generate aldehydes (see below the “substrate specificity” paragraph for more details). GLOXs 443 

were well covered elsewhere (Daou and Faulds, 2017; Kersten and Cullen, 2014), and will 444 

therefore not be further discussed here. 445 

2.3.1. Source of CRO-AlcOx 446 

To date, all characterized CROs originate from filamentous fungi. The only exceptions 447 

are a CRO (distantly related to AA5_1) from the filamentous bacterium Streptomyces lividans, 448 

the substrate preference of which remains to clarified (Chaplin et al., 2017, 2015; Petrus et al., 449 
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2016) and galactose oxidase-like enzymes from A. thaliana (Šola et al., 2019; Šola et al., 2021). 450 

Within the AA5_2 subfamily, CRO-AlcOx originate from plant pathogens ascomycetes (e.g. 451 

Colletotrichum sp. or Magnaporthe sp.). Recent investigations on the biological context of 452 

these enzymes revealed an essential role of Colletotrichum orbiculare and Magnaporthe oryzae 453 

CRO-AlcOx in the penetration of the plant through oxidation of plant cuticular long chain 454 

alcohols (Bissaro et al., 2021).   455 

 456 

2.3.2. Structure and catalytic mechanism of CRO-AlcOx 457 

Currently, all the structurally characterized CROs belong to the AA5_2 subfamily as no 458 

structure of GLOX (AA5_1) is available. CROs are monomeric enzymes with a conserved 459 

architecture, displaying a characteristic conserved seven bladed β-propeller fold (“Kelch motif” 460 

– Pfam 01344) (Figure 4A). The predominance of β-sheets in their structure has been suggested 461 

to contribute to their strong stability (Ito et al., 1991). The catalytic module exhibits a 462 

remarkably solvent-exposed active site (Firbank et al., 2001). The rather open and solvent-463 

exposed topology of the CRO active site, which is in striking contrast with FAD-AOX and 464 

ADH (Figure 5), may explain why CRO can act on bulky substrates such as fatty alcohols 465 

(Ribeaucourt et al., 2021a) or plant waxes (Bissaro et al., 2021). CRO-AlcOx are generally 466 

composed of a single catalytic module unlike most other CROs and aside from the CRO-AlcOx 467 

from Magnaporthe oryzae, that harbors a cell wall integrity and stress response (WSC) module 468 

(Oide et al., 2019). The role of this WSC module is still unclear and may not be directly involved 469 

in the catalytic mechanism, as its deletion did not affect the activity, nor the specificity of the 470 

enzyme (Oide et al., 2019). CROs are monocopper metalloenzymes that catalyze the two-471 

electron aerobic oxidation of alcohols into aldehydes (Figure 4B). No organic co-factor is 472 

involved in the catalytic mechanism, which distinguish them from previously discussed ADHs 473 

and FAD-AOXs. To catalyze the two electrons transfer, a crosslinked 3′-(S-cysteinyl)-tyrosine 474 

free radical (Cys-Tyr•) acts in combination with the Cu2+ ion, hence the term “copper radical”. 475 

CROs rely on a characteristic “ping-pong” mechanism composed of a reductive half-reaction – 476 

i.e. substrate oxidation and reduction of the active site – and the complementary reverse 477 

oxidative half-reaction – i.e. reoxidation of the active site and concomitant reduction of O2 to 478 

H2O2 (Figure 4B). CROs can also be found in an inactive “semi-reduced” form which could 479 

increase their stability or be involved in activity regulation in vivo (Bissaro et al., 2021).  480 
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 481 

Figure 4. Example of a CRO-AlcOx structure and overview of CRO-AlcOx catalytic cycle.  (A) 482 
Cartoon representation of CgrAlcOx (PDB 5C92; (Yin et al., 2015)). Copper is displayed as orange 483 
sphere. Active sites residues (including copper coordinating residues) are shown as yellow sticks. (B) 484 
Generic catalytic mechanism of CRO-catalyzed oxidation of primary alcohols, H2O2 consumption 485 
by catalase and CRO activation by a peroxidase.   486 

 487 

2.3.3. Substrate specificity of CRO-AlcOx 488 

CROs have been for long restricted to very few archetypal members and their scope of 489 

application accordingly limited. Indeed, since their discovery in 1959, the founding member of 490 

CROs, namely the galactose oxidase (EC 1.1.3.9) from Fusarium graminearum (FgrGalOx) 491 

has been the main object of most studies. Numerous applications have been described for the 492 

FgrGalOx and the boundaries of its substrate specificity have been pushed far beyond its natural 493 

carbohydrate preference (Birmingham and Turner, 2018; Deacon et al., 2004; Escalettes and 494 

Turner, 2008; Herter et al., 2015; Mattey et al., 2020; McKenna et al., 2015; Sun et al., 2002; 495 

Vilím et al., 2018; Wilkinson et al., 2004). It is only recently, with the advent of natural diversity 496 

exploration, notably rendered possible by the availability of abundant genomic data, that the 497 

true potential of CROs scope of action was unveiled (Andberg et al., 2017; Mathieu et al., 2020; 498 

Mollerup et al., 2019; Paukner et al., 2015, 2014; Yin et al., 2015). Remarkably, a subgroup of 499 

AA5_2 CROs, so-called CRO-AlcOx, appeared to be of particular relevance for fragrant 500 

aldehydes production (Forget et al., 2020; Oide et al., 2019; Ribeaucourt et al., 2021b, 2021a; 501 

Yin et al., 2015). These enzymes, mainly isolated from Colletotrichum species, all exhibit a 502 

similar substrate specificity profile and comparable efficiencies. They can oxidize a large panel 503 
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of primary alcohols, aryl alcohols and activated aliphatic alcohols being excellent substrates. 504 

Importantly, CRO-AlcOx can also convert non-activated alcohols with increasing affinity 505 

towards longer alkyl chains (Ribeaucourt et al., 2021a; Yin et al., 2015). For instance, 1-hexanol 506 

and 1-octanol (3 mM) could be fully converted by the AlcOx from Colletotrichum graminicola 507 

(CgrAlcOx) and C. destructivum (CdeAlcOx) within 15 min and under mild conditions (23°C, 508 

in aqueous media) (Ribeaucourt et al., 2021b, 2021a). Despite stable/increasing catalytic 509 

efficiencies up to C10, conversion of C10 alcohol was only partial compared to C6-C8 510 

(unpublished results; see Table S1), which might be the result of increasing insolubility of the 511 

substrate or stronger inhibition of CgrAlcOx by the hydrated form of the aldehyde (Scheme 1) 512 

(Forget et al., 2020; Ribeaucourt et al., 2021a). Preparative-scale conversion was also 513 

demonstrated using a crude preparation of CgrAlcOx (supernatant of a recombinant P. pastoris 514 

strain) yielding 0.72 g of octanal from 2 g of 1-octanol (Ribeaucourt et al., 2021a).  515 

 516 

2.3.4. Heterologous expression of CRO-AlcOx 517 

AA5_2 are secreted fungal enzymes and necessitate post-translational modification such 518 

as the formation of a thioether bond for the Cys-Tyr• co-factor. E. coli and P. pastoris have been 519 

the main expression systems used, although Aspergillus nidulans (Baron et al., 1994; 520 

McPherson et al., 1993), A. oryzae and Fusarium venenatum (Xu et al., 2000) have also been 521 

reported as possible hosts for the archetypal FgrGalOx. Detailed comparison of E. coli and P. 522 

pastoris expression systems have been described elsewhere (Spadiut et al., 2010) for the 523 

FgrGalOx. Poor expression yields were obtained in E. coli unless a custom-variant strain was 524 

used. To date, satisfactory yields of CRO-AlcOx have exclusively been obtained using P. 525 

pastoris as host. Scaled-up production in P. pastoris has been developed in bioreactor for both 526 

CgrAlcOx and FgrGalOx (Anasontzis et al., 2014; Ribeaucourt et al., 2021a). Post translational 527 

activation of the enzyme is usually done by incubation with copper under aerobic conditions. 528 

This process can be done directly in situ by adding copper salt into the expression medium 529 

(Spadiut et al., 2010; Yin et al., 2015). CRO-AlcOx, like other CROs, are usually recovered 530 

after purification in their “semi-reduced” inactive state and must therefore be oxidized to 531 

generate the fully active form prior to utilization (Forget et al., 2020; Whittaker, 2005; 532 

Whittaker and Whittaker, 1988). This activation is usually achieved by incubation with a 533 

peroxidase (EC 1.11.1.7) (see section 3.2.3).  534 
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 535 

Figure 5. Surface views of crystal structures of (A) A. pernix ADH active site (pdb 1H2B) 536 

(chain A) in complex with octanoic acid (inhibitor; shown as green stick); (B) S. cerevisiae 537 

YADH1 active site (pdb 4W6Z) (chain A) in complex with trifluoroethanol (shown as green 538 

stick); (C) C. graminicola CRO-AlcOx (pdb 5C92 – copper ion shown as orange sphere) in 539 

complex with 1-octanol (shown as green stick; docking model adapted from Ribeaucourt et al., 540 

2021a); (D) P. pastoris FAD-AOX (pdb 5HSA) homooctamer. The red arrow indicates the 541 

position of the buried substrate binding cavity. For all enzymes, surface was colored according 542 

to the ratio of non-polar/polar (NPP) residues using Protein-Sol web tool
 
(https://protein-543 

sol.manchester.ac.uk/; Hebditch et al., 2017). The NPP ratio scale, indicative of increasing 544 

hydrophobicity level from 0.6 to 2.3, displayed at the bottom left hand corner of panel C applies 545 

to all panels. Note that the structures displayed are not shown at the same scale. 546 

https://protein-sol.manchester.ac.uk/
https://protein-sol.manchester.ac.uk/
https://protein-sol.manchester.ac.uk/
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3. Toward efficient natural biocatalysts 547 

Nature remains the main source of enzymatic diversity providing a wide range of 548 

ingenious “ready-to-use” catalysts. In this paragraph, we tackle the question of the discovery 549 

and exploitation of efficient natural fatty alcohols-active biocatalysts.  550 

3.1. Exploration of biodiversity  551 

In the quest for suitable catalysts, the exploration of biodiversity can prove to be a 552 

powerful approach. A great potential, still largely untapped, exists in the microbial kingdom, 553 

as exemplified by the discovery and application of FAD-FAOXs from alkane-growing yeasts 554 

and fungi (Kemp et al., 1991, 1988; Pickl et al., 2015) (see section 2.2). Diversity among CROs 555 

was also identified while investigating phylogenetical differences in fungal sequences of the 556 

GalOx family (Andberg et al., 2017; Mathieu et al., 2020; Yin et al., 2015). The tremendous 557 

amount of genomic information available today (Sharon and Banfield, 2013) combined with, 558 

powerful bioinformatics/modeling tools and platforms for high throughput (HTP) recombinant 559 

expression (Haon et al., 2015; Vincentelli, 2019) allow to generate wide libraries of natural 560 

enzyme candidates. Once access to enzyme diversity is achieved, the next most challenging 561 

task is most likely the design of a suitable, HTP-compatible screening method to detect desired 562 

substrate specificities and/or properties. Most generic HTP methods are often indirect and fail 563 

to provide fine details as to the sought-after reaction products. Getting a higher level of 564 

information is often at the expense of the throughput frequency. For instance, for substrate 565 

screening targeting fatty alcohol oxidases, the well-established ABTS (or equivalent Amplex 566 

Red)/horseradish peroxidase (HRP) coupled assay can be used. This assay has the advantage of 567 

enabling real-time kinetic monitoring of the enzymatic reaction. However, extensive controls 568 

are required to avoid false positive/negative reactions owing to the indirect nature of the assay 569 

and to the reactivity of the radicals generated. Other indirect assays based on the detection of 570 

H2O2 exist such as the xylenol orange-based assay (Ewing et al., 2018), this method avoids the 571 

use of a secondary enzyme, but does not allow direct real-time monitoring of the reaction. A 572 

direct assay detecting the production of aldehydes would be more suitable, and applicable to all 573 

classes of enzymes. Commercial colorimetric assays are available and an HTP method using 574 

amino benzamidoxime has been developed recently and validated on CARs enzyme (Horvat et 575 

al., 2020; Ressmann et al., 2019). A HTP-derivatization strategy coupled to liquid- and 576 

supercritical fluid-chromatography was also implemented for screening of GalOx variants, 577 

which enabled product analysis. However, this method requires a more complex procedure 578 
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(derivatization) and equipment (Huffman et al., 2019). Redirecting “nature’s technology” for 579 

our needs require thoughtful reaction set-up. Parameters that can significantly affect the 580 

efficiency of the biocatalysts for fatty aldehydes production (co-factor regeneration, need for 581 

accessory enzymes, overoxidation) are discussed hereafter.   582 

3.2. Accessory enzymes 583 

Alcohol dehydrogenases and oxidases often require the use of accessory enzymes to 584 

harness the best of their ability. An overview of the most important accessory enzymes is given 585 

hereinafter. 586 

3.2.1. Co-factor recycling systems 587 

One of the main hurdles for the industrial application of ADH is the need for expensive 588 

organic co-factors (e.g. NAD(P)+) where stochiometric addition is not an affordable option. 589 

Furthermore, the oxidation of alcohols is thermodynamically disfavored compared to the 590 

reduction of aldehydes by ADH (Hummel and Hummel, 1999). Both problems can be solved 591 

by in situ co-factor regeneration. This can be achieved by chemical approaches, although 592 

coupled enzyme systems are most commonly applied. Yet, the enzymatic regeneration of the 593 

oxidized form of the cofactors (NAD(P)+) – needed for ADH-catalyzed oxidation reaction (Fig. 594 

2) – is less investigated than the regeneration of the reduced cofactors (NAD(P)H) (useful when 595 

running ADH in “reductase mode”). This lack is often a critical obstacle in the implementation 596 

of ADH-catalyzed oxidation in industry. Among the enzymes described for this purpose, 597 

glutamate dehydrogenase, lactate dehydrogenase, and NAD(P)H oxidases (NOX) are the most 598 

prominent ones. In particular, NOX have attracted a lot of attention in the past years. They can 599 

directly oxidize the reduced cofactor using oxygen as co-substrate and releasing H2O or H2O2. 600 

Recently, the use of an ADH/NOX coupled-system was demonstrated at pilot-scale for the 601 

oxidation of lactols (Bartsch et al., 2020), with the use of an engineered NOX enzyme 602 

(Petschacher et al., 2014). Alternatively, regeneration can be achieved by a substrate-coupled 603 

approach, where the ADH itself reoxidizes the co-factor by reducing a secondary substrate (see 604 

Figure 2). To this end, a cheap secondary substrate must be chosen and added in excess (e.g. 605 

acetone, which also acts as substrate-solubilizing agent) (Höllrigl et al., 2008). Care must be 606 

taken to avoid enzyme inhibition or any other drawbacks for downstream processes by these 607 

additional compounds. Case to case study is essential to select the most suitable approach. For 608 

instance, Vrsalović and colleagues studied the conversion of 1-hexanol by either isolated 609 

YADH1 or with permeabilized baker’s yeast cells (Vrsalović Presečki et al., 2012; Vrsalović 610 
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Presečki and Vasić-Rački, 2009). Substrate-coupled regeneration was probed, but the 611 

“sacrificial” oxidant (i.e. acetaldehyde) strongly inhibited the isolated YADH and utilization of 612 

a coupled enzyme system was more suitable. More exhaustive coverage of recycling systems 613 

can be found in recent reviews (Liu et al., 2018; Puetz et al., 2020; Rehn et al., 2016; Wu et al., 614 

2013). 615 

3.2.2. Catalase 616 

Both, FAD-AOXs and CRO-AlcOx, as part of their catalytic cycle, release H2O2 as 617 

byproduct, which, when accumulated, is generally deleterious for the enzyme and must be 618 

therefore eliminated. Catalases (EC 1.11.1.6), which belong to a catalytically very efficient 619 

class of enzymes, are already used at industrial scale in textile bleaching processes (Lončar and 620 

Fraaije, 2015), and are widely applied to circumvent AOXs inactivation. Catalases conveniently 621 

recycles H2O2 into H2O and ½ O2, supplying back molecular oxygen which can be rate-limiting 622 

in the reaction due to its limited solubility in aqueous media (0.25 mM at room temperature). 623 

Yet, some enzymes seem to possess an intrinsic resistance to H2O2 as described for a 624 

microsome-bound preparation of a FAD-FAOX from A. terreus, able to convert ≥85% of C7-625 

C12 alcohols (10 mM) without any addition of catalase (Kakoti et al., 2012).  626 

3.2.3. Peroxidase 627 

CROs are usually recovered in their inactive “semi-reduced” form and require activation 628 

prior to utilization. Peroxidases or chemical oxidants (e.g. ferricyanide, ammonium 629 

hexachloroiridate, Mn(III) compounds etc…) can be used to this end (Forget et al., 2020; 630 

Hamilton et al., 1978; Johnson et al., 2021; T. Pedersen et al., 2015). However, these chemical 631 

compounds are often less efficient than peroxidases and are required in large amounts, Thus, to 632 

date no equivalent alternative to peroxidase has been found and more investigations are still 633 

needed. The HRP is the most common enzyme used as activating agent, mainly for its 634 

commercial availability and stability in reaction mixtures. Of note, recent work demonstrated 635 

that natural fungal peroxidases are better activators of CRO-AlcOx than HRP (Bissaro et al., 636 

2021). Strikingly, although the activation of CRO by peroxidases has been known for long, the 637 

underlying mechanism remains obscure. Current state of the art points toward an oxidative 638 

activation mechanism independent of any peroxidase catalytic activity but most likely mediated 639 

by a protein-protein interaction (Bissaro et al., 2021; Forget et al., 2020). Indeed, no peroxidase 640 

substrate seems involved into the activation, which suggest that chemical oxidants may act in a 641 

similar way. We underscore that the required amount of peroxidase greatly varies depending 642 



24 

 

on the substrates: only minimal amounts are needed for activated alcohols while stochiometric 643 

amounts (relative to the AlcOx) or more are required for oxidation of non-activated alcohols 644 

(Ribeaucourt et al., 2021a). The necessity to add large amount of peroxidase to foster the 645 

reaction is unambiguously the most important barrier for the implementation of CROs-646 

catalyzed oxidation of fatty alcohols at industrial scale. Peroxidases are expensive enzymes as 647 

their recombinant production remains challenging. Deeper understanding of this mechanism is 648 

needed to provide access to alternative activation methods. Very recently, an electrochemical 649 

activation method was investigated to substitute the peroxidase (Zhang et al., 2021). This 650 

approach proved to be efficient for the conversion of various aromatic alcohols and aliphatic 651 

polyols catalyzed by several FgrGalOx mutants. 652 

 653 

3.3. Overoxidation 654 

Overoxidation of aldehydes into carboxylic acids is frequently observed and affect – in a 655 

substrate-, pH and enzyme-dependent manner – every class of enzymes aforementioned, 656 

namely ADHs (Hinson and Neal, 1975; Hollmann et al., 2011; Velonia and Smonou, 2000), 657 

FAD-AOXs (Ferreira et al., 2010; Martin et al., 2020; Romero and Gadda, 2014) and CROs 658 

(Birmingham and Turner, 2018; Kelleher and Bhavanandan, 1986; Parikka and Tenkanen, 659 

2009). The aldehydes cannot be oxidized directly by these enzymes, as their H atom is not 660 

abstractable per se and need an adduct brought either by the enzyme (Olson et al., 1996), or by 661 

the environment. In most cases, the observed oxidation of aldehydes is in fact directly 662 

dependent on the propension of the aldehyde to undergo hydration to form the corresponding 663 

geminal-diol (gem-diol) (Scheme 1) (Dong et al., 2018) and the subsequent ability of the 664 

enzyme to accept the latter as a substrate. Destabilization of the dipole at the carbonyl group 665 

favor nucleophilic addition of H2O, consequently shifting the equilibrium toward the hydrated 666 

species. Electron-withdrawing groups will thence favor gem-diol, while electron-donating 667 

groups or resonance effect should stabilize the carbonyl group (Bell, 1966; Hutchings and 668 

Gasteiger, 1986). Aldehydes bearing an alkyl group, like fatty aldehydes are known to be prone 669 

to hydration (Buschmann et al., 1982, 1980; McClelland and Coe, 1983).  670 

Aldehyde overoxidation and disproportionation (i.e., when two molecules of aldehyde 671 

yields one molecule of acid and one molecule of alcohol, also known as “Cannizzaro reaction”) 672 

by ADHs (Velonia and Smonou, 2000) has been investigated for some applications in 673 

pharmaceuticals or food additives (Contente et al., 2020; Könst et al., 2012; Tassano et al., 674 
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2018). Production of carboxylic acid has been reported early for the prominent HADH, 675 

exhibiting a different behavior depending on the substrate. HADH oxidation of ethanol resulted 676 

in a mixture of aldehyde and carboxylic acid, while for 1-octanol, octanoic acid was the only 677 

detectable end-product (Hinson and Neal, 1975, 1972; Oppenheimer and Henehan, 1995).  678 

Overoxidation in FAD-AOXs-catalyzed reactions must also be carefully considered. 679 

Indeed, in a recent study, a mutant of the Phanerochaete chrysosporium FAD-AOX (PcAOX) 680 

yielded >99 % of carboxylic acid when oxidizing C6 alcohol (Martin et al., 2020). In contrast, 681 

a choline oxidase variant (AcCO6) engineered for fatty alcohol oxidation (see section 4.1) 682 

(Heath et al., 2019) revealed only traces of acid for C6 and between 1.5 - 8 % for C7-C12 (Table 683 

S1) despite expectable strong activity on gem-diols (Gadda, 2008). Very few studies on LCAO 684 

included products analyses and, therefore, overoxidation has rarely been evaluated. The 685 

aforementioned study on LCAO_Af revealed no overoxidation for C4 to C8 but led to 5-26% 686 

carboxylic acid for C9 to C11 (Pickl et al., 2015).  687 

Overoxidation was also monitored when using CRO-AlcOx and in this case, different 688 

mechanisms were observed. While a gem-diol dependent, CRO-catalyzed overoxidation was 689 

monitored for benzyl substrates, the overoxidation of fatty aldehydes was rather triggered by 690 

exposure to HRP.  691 

 692 

Scheme 1: Aldehyde hydration and overoxidation routes. Formation of gem-diol upon 693 

aldehyde hydration in acidic or alkaline conditions and subsequent enzymatic oxidation of the 694 

gem-diol to carboxylic acid. 695 

Overoxidation can be circumvented or limited by different level of control on reaction 696 

conditions. The substrate structure will firstly give indication on the propension of the aldehyde 697 

to undergo hydration and subsequent probability of overoxidation. In terms of hydration rate, 698 

gem-diols seem readily generated in a matter of seconds or less upon exposure to H2O at room 699 
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temperature (Hilal et al., 2005). Setting the pH of the reaction around neutrality, when possible, 700 

could slow down the rate of gem-diol formation (Doussin and Monod, 2013). Gem-diols are 701 

often disfavored substrates compared to the initial alcohols, especially for enzymes with 702 

preferences upon primary alcohols, as gem-diols are structurally similar to secondary alcohols. 703 

Thus, tight control of alcohol concentration and reaction time may be one of the main levers to 704 

avoid the formation of unwanted carboxylic acid (Ribeaucourt et al., 2021a). The 705 

implementation of a biphasic system can also be an alternative to remove the aldehyde from the 706 

aqueous phase and prevent its hydration (see section 4.2). 707 

Aside from the enzymatic-catalyzed overoxidation, intrinsic reactivity of aldehydes can 708 

result in autooxidation (Marteau et al., 2013; Sankar et al., 2014) or side reactions (e.g. 709 

formation of hemi-acetals) which require careful controls of reaction conditions and product 710 

validation.  711 

 712 

4. Biocatalytic system engineering 713 

4.1. Protein engineering 714 

Protein engineering is a complimentary approach to the exploration of biodiversity 715 

(section 3.1), enabling to enhance or reprogram a natural enzymatic starting scaffold for a 716 

targeted process (Woodley, 2019). Native enzymes are designed for in vivo finely tuned 717 

reactions. Early engineering approaches mostly relied on rational engineering based on 718 

structural and mechanistic information (Wilkinson et al., 1984). Directed evolution of enzymes 719 

though the introduction of random diversity was then widely adopted using error-prone PCR 720 

and DNA shuffling (Chen and Arnold, 1993; Cobb et al., 2013; Stemmer, 1994). The large 721 

libraries of generated mutants require HTP screening methods raising similar problematics than 722 

for biodiversity screening. The field is now rapidly evolving toward semi-rational approaches, 723 

harnessing structure/mechanistic information and computational modeling to focus the directed 724 

evolution effort on the most relevant residues (Vogel, 2019). The resulting “smart” libraries are 725 

smaller allowing to apply more specific detection methods, closer to the final sought-after 726 

properties (Lutz, 2010; Sheldon and Brady, 2019). 727 

In the context of this review, enzyme engineering is an asset to (i) improve substrate and 728 

organic solvent tolerance, (ii) improve thermal stability, (iii) switch enzyme specificity to non-729 

natural substrates, (iv) improve expression, (v) adapt enzyme to specific conditions (pH, 730 
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temperature, presence of inhibitors) etc. For instance, a choline oxidase from Arthrobacter 731 

cholorphenolicus was recently engineered using structure-guided evolution (Heath et al., 2019). 732 

With six mutated residues, the AcCO6 variant gained activity toward 1-hexanol and a broad 733 

array of saturated, unsaturated, aliphatic, cyclic and benzylic alcohols (Heath et al., 2019). 734 

Notably, C6–C10 unsaturated alcohols were identified as good substrates and were converted 735 

(with little overoxidation) in 24 h at 30°C in air-saturated buffer, without any added catalase. 736 

This enzyme variant also displayed improved thermostability and solvent tolerance as 737 

demonstrated by the implementation of biphasic biotransformation with heptane. 738 

The enlargement of the substrate binding pocket has been successfully applied on several 739 

enzymes of interest to increase their activities towards bulky primary alcohols. With only two 740 

single-point mutations on YADH1, kinetic constants were improved by one order of magnitude 741 

on octanol, (kcat/KM = 5.5×104 M- s-1) for the T48S-W39A variant), reaching a catalytic 742 

efficiency comparable to HADH (EE isoenzyme) (Green et al., 1993). Similarly, enlargement 743 

of the substrate pocket of PcAOX enabled oxidation of 1-hexanol and diols, when the wild-744 

type enzyme showed only poor activity on these substrates (Linke et al., 2014; Martin et al., 745 

2020; Nguyen et al., 2018). 746 

The CRO FgrGalOx enzyme has been the subject of many engineering studies, bending 747 

its properties far from its initial characteristics, yielding for instance, enantioselective oxidation 748 

of secondary alcohols or glucose-6-oxidase activity (Escalettes and Turner, 2008; Sun et al., 749 

2002) (see section 2.3.2). The FgrGalOx was also recently engineered to catalyze the first step 750 

of a cascade to produce a drug for HIV treatment (Huffman et al., 2019). Twelve rounds of 751 

mutations starting from a previously generated variant (Rannes et al., 2011) were run leading 752 

to 34 mutated residues in the evolved enzyme enabling an 11-fold improvement for 2-753 

ethynylglycerol oxidation and reversing the enzyme enantio-specificity. This study, among the 754 

numerous studies performed on the FgrGalOx, let envision a great potential for CRO-AlcOx 755 

enzymes, which naturally possess attractive features for fatty alcohol conversion and can 756 

benefit from the knowledge gathered on structurally/phylogenetically related CROs.  757 

 758 

4.2. Whole-cell catalysis 759 

When considering industrial applications, whole-cell and isolated enzymes approaches 760 

must be put into balance (Hoyos et al., 2017). The whole-cell approach is attractive for some 761 

enzymes like ADHs that require in situ supply and regeneration of a cofactor (Romano et al., 762 
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2012; Sheldon and Brady, 2019). Implementation of multi-enzymatic systems into a chassis 763 

through synthetic biology is a powerful approach to reprogram metabolic pathways, as 764 

exemplified by recent work on the production of sclareol in pathway-engineered E. coli (Schalk, 765 

2014; Schalk et al., 2012). Yet, this approach has inherent drawbacks such as low enzyme 766 

activity levels, cell membrane permeability-related issues, growth inhibition by substrate or 767 

product toxicity etc. (Garzón-Posse et al., 2018). Indeed, aldehydes are particularly hard to 768 

produce through this approach as they are undesirable intermediates for most cells and are often 769 

readily converted to carboxylic acids or alcohols by endogenous enzymes (Liu et al., 2018). 770 

Two studies using permeabilized S. cerevisiae cells producing YADH outlined such 771 

difficulties: the conversion of C6 alcohol yielded only hexanoic acid due to overoxidation 772 

attributed to the endogenous aldehyde dehydrogenase (Vrsalović Presečki et al., 2012; 773 

Vrsalović Presečki and Vasić-Rački, 2009). Whole-cell aldehyde production for F&F has been 774 

recently reviewed elsewhere (Ben Akacha and Gargouri, 2015; Kunjapur and Prather, 2015) 775 

and will not be further discussed here. 776 

 777 

4.3. Biphasic systems and enzyme immobilization 778 

Biphasic systems are attractive to trap the produced aldehydes in the organic phase and 779 

avoid their hydration and subsequent overoxidation, especially for hydrophobic fatty aldehydes 780 

(Gandolfi et al., 2001; Heath et al., 2019). Biphasic systems are also a convenient way to (i) 781 

overcome low water solubility of the substrates, (ii) limit product inhibition and (iii) facilitate 782 

product recovery trough simple distillation (Domínguez de María and Hollmann, 2015). The 783 

use of biphasic systems to avoid overoxidation can yet be limited, when hydration occurs 784 

directly within the active site as reported for a FAD-AOX (Gadda, 2003; Salvi et al., 2014). 785 

Another limitation of these systems lies on the intrinsic enzyme tolerance to the water-786 

immiscible solvent, their related resistance to interfacial tension, the rate of phase transfer, and 787 

the level of O2 available in the case of AOXs. However, in some cases, utilization of an organic 788 

layer can improve or modify the activity of a given enzyme. The microsomal fraction of C. 789 

tropicalis was for instance much more efficient in oxidizing C10 and C12 alcohols in an 790 

hydrophobic organic solvent containing 1-10% water as compared to aqueous media (Kemp et 791 

al., 1991). The FAD-AOX from P. pastoris – active on methanol and other short-chain alcohols 792 

– has been used for conversion of 1-hexanol and bulkier substrates thanks to the implementation 793 

of biphasic systems (Karra‐Chaabouni et al., 2003; Murray and Duff, 1990). Noteworthy, the 794 
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substrate itself can sometimes be employed as the organic layer (de Almeida et al., 2019). Using 795 

naturally resilient or engineered enzymes, reactions can be run in water-saturated organic 796 

medium.  797 

Another alternative to improve enzyme industrial applicability is immobilization. 798 

Immobilization techniques are intended to facilitate downstream processes, improve turnover 799 

number by enhancing catalyst stability and reusability. They also can be applied to improve 800 

resistance of enzymes to organic solvents. Some examples are given elsewhere (Basso and 801 

Serban, 2019; Pessôa et al., 2019). Immobilization of ADH enzymes has been extensively 802 

studied (Bolivar et al., 2006; Vasić et al., 2020) but with the use of fatty alcohols as substrates 803 

is less common (Cea et al., 2009). YADH immobilized on glyoxyl agarose crosslinked with a 804 

polymer improved its stability and its activity on fatty alcohols (Ottone et al., 2018). A study 805 

conducted in 2010 combined immobilization of HADH and YADH and the use of organic 806 

solvents, including the use of the substrate itself as solvent (Snijder-Lambers et al., 2010). In 807 

organic medium, YADH showed better activity on bulkier substrates compared to aqueous 808 

environment. Immobilization of YADH on amberlite XAD-8, resulted in 93-99 % loss of 809 

activity despite optimization attempts, while immobilized HADH remained fully active 810 

(Snijder-Lambers et al., 2010). The aforementioned FAD-AOX AcCO6 has been immobilized 811 

on an affinity resin via the His-tag used for purification (Thompson et al., 2019) and on an 812 

epoxy resin (Mattey et al., 2020), improving its reusability. Only one study reported the 813 

immobilization of a FAD-FAOX (isolated from microsomal fraction of A. terreus) into a 814 

polyurethane foam matrix but resulted in only 20% conversion of C7 alcohol (Kakoti et al., 815 

2012). Immobilization studies were performed on the M1 and M3-5 variants of the CRO 816 

FgrGalOx and improved their thermal stability, reusability and organic solvent tolerance 817 

(Mattey et al., 2020). To our knowledge, no attempts have yet been made for CRO-AlcOx. It is 818 

likely that immobilization of CRO-AlcOx and FAD-FAOX could greatly enhance their use in 819 

bi-phasic system or hydrophobic medium, avoiding solubility and overoxidation issues. 820 

The main problematics and possible solutions (discussed in sections 3. and 4.) to consider 821 

for the applications of ADHs; FAD-AOXs or CRO-AlcOx for the oxidation of fatty alcohols 822 

are summarized in Figure 6. 823 
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 824 

Figure 6. Overview of some challenges and possible solutions for implementation of 825 

enzymatic oxidation of fatty alcohols. While bringing answers to certain challenges, some 826 

solutions might cause other unwanted drawbacks that are represented by red dashed lines. 827 

 828 

5. Outlook 829 

The current state of the art reveals that a great number of enzymes candidates already 830 

exists for the challenging oxidation of non-activated fatty alcohols. Some clear trends stand out 831 

(see Figure 1):  832 

(i) ADHs constitute a tremendous reservoir of enzymes but scarce information exists 833 

on their biocatalytic performances for fatty alcohols turnover. The need for a 834 

nicotinamide co-factor adds complexity to this biocatalytic system.  835 

(ii) CRO-AlcOx are promising catalysts with well-established large-scale recombinant 836 

production but require a peroxidase activation step for oxidation of unactivated 837 

alcohols. Research on CRO-AlcOx is still in its infancy since their discovery in 2015 838 

by Yin et al. and better understanding of these microbial enzyme systems could 839 
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bring alternative activation methods. The recent success in activating some 840 

FgrGalOx mutants by electrochemical means (Zhang et al., 2021), open a new 841 

avenue to overcome the need of peroxidase and could be assessed on CRO-AlcOx 842 

likewise. 843 

(iii) FAD-FAOX might be today the best suited enzymes for oxidation of fatty alcohols. 844 

They display high catalytic efficiencies toward fatty alcohols (Figure 1B) and only 845 

require the “industrial-compatible” catalase as accessory enzyme. However, only 846 

scarce information is available regarding their large-scale recombinant production 847 

and their performances in biocatalytic systems.  848 

To foster the translation of fatty aldehydes production at industrial scale, we draw the 849 

attention towards some crucial criteria that must be taken into account early in the research and 850 

development process: (i) Culture media used for growth of microorganisms should be simple 851 

and composed of low-cost ingredients (e.g. malt). Complex bioreactor media supplemented 852 

with vitamins or metals are costly when shifting to large scale processes for F&F and any 853 

additional compounds (chemicals, metals, accessory enzymes, etc.) will increase reaction costs 854 

and must be balanced with substantial gain in yields. (ii) Upscaled reactions in large tank 855 

reactors (e.g. 30-80 m3) require important investments and solutions that are easily set up at lab 856 

scale (e.g., work in pressurized reactor, addition of large volume or organic solvent, etc.) can 857 

be difficult to transfer to industry or must be useful for multiple processes to justify new 858 

investments. (iii) The duration of the process has also a direct effect in the cost. Long-time 859 

immobilization of the material will impair profitability and could increase the probability of a 860 

contamination. Consequently, every step must be optimized: culture of the microorganism, 861 

production and recovery of the biocatalyst, conversion reaction and product recovery. (iv) The 862 

extraction procedure is also crucial and full conversion of the substrate is thus highly desirable 863 

to simplify downstream processes.  864 

In the future, the biotechnological production of fatty aldehydes will increase to secure 865 

the production using greener systems. To set up a sustainable approach, natural sources of fatty 866 

alcohols must be considered. Although cheap chemical sources are available (Surburg and 867 

Panten, 2016), natural sources of fatty alcohols are very limited today. Some new reservoirs 868 

could arise from forestry by-products and from the pulp and paper industry (Corberán et al., 869 

2014) and alternative sources could be established by implementing cascade reactions from 870 

natural esters (using for instance well-known lipases; Johannsen et al., 2020) or carboxylic acid 871 
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as starting raw material. In any case, the extraction of the substrate from raw materials must be 872 

done in compliance with local regulation to preserve their natural origin.  873 

The hunt for ad-hoc biocatalysts to produce fatty aldehydes calls for highly integrated 874 

approaches harnessing fundamental knowledge on enzymes and their biological context, taking 875 

into account industrial constraints. We hope that the background information provided in this 876 

review will encourage new investigations to foster the sustainable development of 877 

biotechnological solutions for the F&F industry. 878 
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