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Nodal sets of eigenfunctions of sub-Laplacians

Suresh ESWARATHASAN* and Cyril LETROUIT�

September 9, 2023

Abstract

Nodal sets of eigenfunctions of elliptic operators on compact manifolds have been stud-
ied extensively over the past decades. In this note, we initiate the study of nodal sets of
eigenfunctions of hypoelliptic operators on compact manifolds, focusing on sub-Laplacians.
A standard example is the sum of squares of bracket-generating vector fields on compact
quotients of the Heisenberg group. Our results show that nodal sets behave in an anisotropic
way which can be analyzed with standard tools from sub-Riemannian geometry such as
sub-Riemannian dilations, nilpotent approximation and desingularization at singular points.
Furthermore, we provide a simple example demonstrating that for sub-Laplacians, the Haus-
dorff measure of nodal sets of eigenfunctions cannot be bounded above by

√
λ, which is the

bound conjectured by Yau for Laplace-Beltrami operators on smooth manifolds.

1 Introduction and main results

1.1 Eigenfunctions and nodal sets

Let Ω be a bounded open subset of RN and let ∆ be the (non-positive) Laplacian on Ω with
Dirichlet boundary conditions on ∂Ω. It has a compact resolvent, and the spectrum of −∆,
denoted by

0 ⩽ λ1 ⩽ λ2 ⩽ . . . ⩽ λn ⩽ . . .→ +∞,

is discrete and tends to +∞. The nodal set Zφλ
= φ−1

λ (0) of a mode φλ satisfying −∆φλ = λφλ
is physically interpreted as the set of nodes of the vibration profile φλ of a drum of shape Ω, and
it can be observed, when N = 2, by pouring sand on a vibrating drum of shape Ω (the famous
Chladni experiment).

On the mathematical side, nodal sets of eigenfunctions on Euclidean domains and Rie-
mannian manifolds have been studied extensively over the past decades. Let us only mention
Courant’s nodal domain theorem and Pleijel’s asymptotic bound on the number of nodal do-
mains, Donnelly and Fefferman’s proof of Yau’s conjecture in the analytic setting, and the recent
advances by Logunov and Malinnikova concerning the smooth case of the Yau conjecture. For
all these results and a global overview of the subject we refer the reader to [19] and the references
therein. A stream of results has also emerged in the past twenty years regarding nodal sets of
random waves (i.e., random linear combinations of eigenfunctions); for this we refer the reader
to the recent survey [27] and the references therein.

In the present paper, we initiate the study of nodal sets of eigenfunctions for operators
more general than Laplacians, specifically a certain class of non-elliptic operators called sub-
Laplacians. Sub-Riemannian geometry is a natural extension of Riemannian geometry whose
tools are suited to the analysis of sub-Laplacians.
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1.2 Sub-Laplacians

We start with the general definition of sub-Laplacians, and give immediately after concrete
examples of sub-Laplacians.

Let N ∈ N∗ = N \ {0} and let M be either RN or a smooth, connected, compact manifold of
dimension N without boundary, endowed with a smooth volume µ. Let X1, . . . , Xm be smooth
vector fields on M satisfying Hörmander’s bracket-generating condition:

The vector fields X1, . . . , Xm and their iterated Lie brackets [Xi, Xj ], [Xi, [Xj , Xk]], etc.

span the tangent space TxM at every point x ∈M .
(1.1)

In particular, X1, . . . , Xm are not assumed to span TM . The sub-Laplacian ∆ is then defined
as

∆ = −
m∑
i=1

X∗
iXi (1.2)

where X∗
i = −Xi−divµ(Xi) is the adjoint of Xi in L

2(M,µ). Sub-Laplacians are in general not
elliptic since X1, . . . , Xm are not assumed to span TM .

Instead of the usual elliptic estimates, sub-Laplacians satisfy subelliptic estimates of the
form1 (see [13, Inequality (3.4)], [17, Theorem 1.5])

∥u∥H2/r(M) ⩽ C(∥u∥L2(M) + ∥∆u∥L2(M)), (1.3)

where r ∈ N∗ is called the step of the sub-Laplacian ∆ and will be defined later. We only
mention that when X1, . . . , Xm span TM , then r = 1 and we recover usual elliptic estimates. In
turn the estimate (1.3) implies the following form of regularity, called hypoellipticity (see [13]):
if ∆u ∈ C∞(U) for some open set U ⊂M , then u ∈ C∞(U).

Sub-Laplacians are a natural generalization of Euclidean Laplacians and of the Laplace-
Beltrami operator in Riemannian geometry.2 They have been studied extensively since the
1960’s and Hörmander’s seminal work [13]. Let us illustrate the definition with several examples.

Example 1.1. On M = (−1, 1)x × Ty (where T = R/2πZ), we set

∆BG = ∂2x + x2∂2y .

This sub-Laplacian is the so-called Baouendi-Grushin operator. In this case, X1 = ∂x, X2 = x∂y
and µ is the Lebesgue measure dxdy. Then ∆BG is elliptic except along the singular line x = 0,
where X2 = 0. Along this line, X1 = ∂x and [X1, X2] = ∂y span the tangent space, so that (1.1)
is satisfied.

More generally, for any α ∈ N∗ we can consider the sub-Laplacian ∂2x + x2α∂2y , which
is also elliptic except along {x = 0}. In this case X1 = ∂x, X2 = xα∂y, and the bracket
[X1, [X1, . . . , [X1, X2] . . .] where X1 appears α times generates the missing direction ∂y.

1if M = RN , for any compact set K ⊂ RN there exists a constant C such that (1.3) holds for any smooth
function supported in K.

2To see that the Laplace-Beltrami operator on a Riemannian manifold (M, g) is a sub-Laplacian, take µ to
be the Riemannian volume and take a partition of unity 1 =

∑K−1
k=0 χk(x)

2 where χk is smooth and supported
in a chart where g admits an orthonormal frame (Y k

1 , . . . , Y k
N ). Then set m = KN and XNk+j = χkY

k
j for

j ∈ {1, . . . , N} and 0 ⩽ k ⩽ K − 1. One can check that with this construction
∑m

i=1 X
∗
i Xi = −∆g.
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Example 1.2. Sub-Laplacians can be defined on real Heisenberg groups in a natural way. Given
d ∈ N∗, we denote by Hd the Heisenberg group of dimension 2d + 1, i.e., R2d+1 endowed with
the group law

(x, y, z) · (x′, y′, z′) := (x+ x′, y + y′, z + z′ −
d∑
j=1

xjy
′
j), (1.4)

where x, y, x′, y′ ∈ Rd and z, z′ ∈ R. When d = 1, this group law comes from the representation
of H1 as the group of 3× 3 matrices of the form1 x −z

0 1 y
0 0 1


for x, y, z ∈ R, endowed with the usual product of matrices (the higher-dimensional case has a
similar representation).

The set of left-invariant vector fields on Hd is generated by ∂z together with the 2d vector
fields

Xj = ∂xj , Yj = ∂yj − xj∂z, for j = 1, . . . , d.

The Heisenberg group Hd admits lattices, such as Γ = (
√
2πZ)2d × 2πZ. Left-invariant vector

fields can be considered as vector fields on the compact left-quotient Γ\Hd. We define the sub-
Laplacian on Γ\Hd by

∆Γ\Hd
=

d∑
j=1

X2
j + Y 2

j .

We note that [Xj , Yj ] = −∂z for any j, hence (1.1) is verified.

Example 1.3. More generally, sub-Laplacians arise naturally in the setting of Carnot groups,
which are a family of nilpotent Lie groups whose simplest non-Euclidean examples are real
Heisenberg groups (see Example 1.2). A Carnot group G of step r is a connected, simply con-
nected, finite-dimensional Lie group whose Lie algebra g admits a step-r stratification, meaning
that there exist nontrivial linear subspaces V1, . . . , Vr such that

g = V1 ⊕ . . .⊕ Vr, [V1, Vi] = Vi+1 for i = 1, . . . , r − 1 and [V1, Vr] = 0.

The stratum Vi contains iterated brackets of length i between elements of V1. Taking a basis
of V1 composed of left-invariant vector fields X1, . . . , Xm (where m is the dimension of V1),
and taking µ to be the Haar measure on G, we obtain a sub-Laplacian thanks to the formula
(1.2). Quotienting by an appropriate lattice and using the left-invariance of ∆, we can define
sub-Laplacians on compact quotients of G (see Example 1.2).

To make this example more concrete, we now explain how G can be identified to (RN , ⋆) for
N =

∑r
i=1 dim(Vi) and ⋆ a specific group law. For each i ∈ {1, . . . , r} we pick a basis of vector

fields of Vi, which all together form a basis X1, . . . , XN of g. Then the exponential map exp is
a globally defined diffeomorphism from g ∼= RN to G (since G is connected and nilpotent):

exp : (x1, . . . , xN ) 7→ exp

(
N∑
i=1

xiXi

)
∈ G.

This allows to identify G with RN , and the group law ⋆ derives from the Baker-Campbell-
Hausdorff formula. Following this procedure with X1 = ∂x, X2 = ∂y − x∂z and X3 = ∂z, the
group which is obtained is isomorphic to the Heisenberg group H1 of Example 1.2. Besides
Heisenberg groups, other examples of Carnot groups include the Engel group, for which r = 3.
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Our results concern the nodal sets of eigenfunctions of ∆ (i.e., the set where an eigenfunction
φ vanishes) and the nodal components (i.e., the connected components of {φ ̸= 0}). They extend
results which are well-known for eigenfunctions of Laplace-Beltrami operators.

1.3 Main results: Courant’s theorem and density of the nodal set

Our results address the validity of Courant’s nodal domain theorem [9] for eigenfunctions of sub-
Laplacians and the 1/

√
λ-density of the nodal set with respect to an adapted distance, called

the sub-Riemannian distance.
Let Ω ⊂M be a connected open subset, assumed to be bounded and with Lipschitz boundary

if M = RN . We denote by C∞
c (Ω) the set of smooth functions whose support is contained in Ω.

The operator ∆ : C∞
c (Ω) → C∞

c (Ω) is non-positive, symmetric and densely defined in L2(Ω, µ).
In the sequel, we denote by (∆Ω,D(∆Ω)) its Friedrichs extension (see [23] and Section 2 for
reminders). When ∂Ω ̸= ∅, this naturally enforces Dirichlet boundary conditions.

Proposition 1.4. The selfadjoint operator (−∆Ω,D(∆Ω)) has discrete point spectrum

0 ⩽ λ1 ⩽ λ2 ⩽ . . . ⩽ λn ⩽ . . .→ +∞

(with repetitions according to multiplicities). There exists an orthonormal basis {φn}n∈N of
L2(Ω, µ) such that for every n ∈ N, φn ∈ D(∆Ω) and −∆Ωφn = λnφn.

In our next results, we are going to rely on two assumptions.

Assumption 1.5. We assume that either Ω = M , or the boundary of Ω is smooth and non-
characteristic, meaning that for any x ∈ ∂Ω, there exists i ∈ {1, . . . ,m} such that Xi(x) /∈ Tx∂Ω.

Under Assumption 1.5, the eigenfunctions of −∆Ω are smooth up to the boundary ∂Ω (see
[16, Theorem III, point (4)]), which will be important in the proofs.

Assumption 1.6. We assume that one of the following holds:

1. The (topological) dimension of M is N = 2;

2. or the manifold M , the volume µ and the vector fields X1, . . . , Xm are real-analytic.

Under this assumption, it follows from [26, Theorem 1] (in case 1) and [7] (in case 2) that any
u satisfying (∆Ω+λ)u = 0 in Ω for some λ ∈ R and vanishing in a non-empty open subset U ⊂ Ω
vanishes in fact everywhere in Ω. Actually, to prove this unique continuation property in case
2, instead of working directly with the operator ∆Ω + λ which does not satisfy the assumptions
of [7], we work with ∂2t + ∆Ω instead. We write that v = ueiλt is a solution of the equation
(∂2t +∆Ω)v = 0 in Ω×R, which vanishes in the non-empty open subset U ×R. Hence v vanishes
everywhere in Ω×R according to [26, Theorem 1] (in case 1) and [7, Corollary 4.1] (in case 2),
and consequently u vanishes everywhere in Ω. This unique continuation property will be used
in the proof of the second part of Theorem 1.

We denote by
Zf = {f = 0} ⊂ Ω

the zero set, or commonly the nodal set of a function f . A nodal domain of f is a connected
component of Ω \ Zf . We are in position to state an analogue of the Courant nodal domain
theorem for sub-Laplacians:
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Theorem 1. Under Assumption 1.5, for any n ∈ N, any eigenfunction of −∆Ω with eigenvalue
λn has at most n+mult(λn)− 1 nodal domains, where mult(λn) denotes the multiplicity of λn.
If moreover Assumption 1.6 is satisfied, a stronger bound holds: the number of nodal domains
of any eigenfunction with eigenvalue λn is bounded above by n.

For our second result we introduce the sub-Riemannian metric: it is defined for q ∈ M and
v ∈ TqM as

gq(v) = inf

{
m∑
i=1

u2i | v =

m∑
i=1

uiXi

}
. (1.5)

This metric is finite if and only if v ∈ D = Span(X1, . . . , Xm). It induces a notion of distance
d : M ×M → R+, and the distance between two points is always finite thanks to the bracket-
generating condition (1.1) (due to the Chow-Rashevsky theorem [5, Theorem 2.4]). The sub-
Riemannian balls are then defined as

Bε(q) =
{
q′ ∈M, d(q, q′) < ε

}
(1.6)

for q ∈M and ε > 0.

Theorem 2. Under Assumption 1.5, there exists C > 0 depending only on Ω such that for
any λ ∈ R and any eigenfunction φλ with eigenvalue λ, the nodal set Zφλ

intersects any sub-
Riemannian ball of radius greater than Cλ−1/2.

Theorem 2 is illustrated by a simple example in Section 5.3 below.
An important distinguishing factor of sub-Riemannian geometry from Riemannian geometry

is that sub-Riemannian balls are anisotropic whilst Riemannian balls are isotropic. The ball-box
theorem captures this difference in more precise language (see [5, Corollary 7.35]): it states that
at any point q ∈ Ω, there exist a system of privileged coordinates ψq = (x1, . . . , xN ) : U → RN
defined in a neighborhood U of q, positive integers w1, . . . , wN , and constants Cq, εq > 0 such
that for any ε < εq, the sub-Riemannian ball Bε(q) verifies

Box(C−1
q ε) ⊂ (ψq)∗(Bε(q)) ⊂ Box(Cqε) (1.7)

where
Box(ε) = [−εw1 , εw1 ]x1 × . . .× [−εwN , εwN ]xN ⊂ RN (1.8)

(note that Cq does not depend on ε). Sub-Riemannian balls can thus be approximated by
Euclidean rectangles in an appropriate coordinate system, with side-lengths scaling differently
in each direction. Section 5.3’s example serves as a useful illustrator of the ball-box theorem.

As a consequence, roughly speaking, if Ω is some subset of RN , starting from a fixed point
q ∈ Ω and following a given direction ℓ⃗, one expects to cross the nodal set many more times
in some directions ℓ⃗ than some others, when the eigenvalue is large. This phenomenon is also
explicitly expressed by Section 5.3’s example.

1.4 Yau-type bounds for sub-Laplacians

In this section we explain that Yau’s conjecture, unless properly modified, is not true for sub-
Laplacians. Yau conjectured that for any smooth closed Riemannian manifold (M, g) of di-
mension N , there exist constants c, C > 0 such that for any eigenfunction φλ of the associated
Laplace-Beltrami operator −∆g with eigenvalue λ,

c
√
λ ⩽ H N−1(Zφλ

) ⩽ C
√
λ. (1.9)
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where H N−1 is the (N − 1)-dimensional Hausdorff measure. This conjecture has been proved
in the real-analytic setting by Donnelly and Fefferman [10], but it is open in the case of general
smooth manifolds.

In sub-Riemannian geometry, it is known, under the condition that the wi in (1.8) are
independent of q 3, that the Hausdorff dimension with respect to the sub-Riemannian metric
(1.5) of M is equal to

Q =

N∑
i=1

wi (1.10)

(see [20]), which is strictly greater than N as soon as the vector fields X1, . . . , Xm do not span
TM . For instance, in the Heisenberg group H1 of Example 1.2, there holds N = 3, w1 = 1,
w2 = 1, w3 = 2, and hence Q = 4. It is also known that hypersurfaces have Hausdorff dimension
Q− 1 with respect to the sub-Riemannian metric (1.5) (see [12, Section 0.6.C]).

The following result shows that Yau-type bounds like (1.9) (with N replaced by Q) do not
hold for sub-Laplacians: in general we do not expect better bounds than

c
√
λ ⩽ H Q−1(Zφλ

) ⩽ Cλr/2

where the step r is defined in Section 4.1 below and is equal to 2 in the Heisenberg case. Here
and in the sequel, H K denotes the Hausdorff measure of dimension K.

Theorem 3. Let M = Γ\H1 as in Example 1.2, endowed with the Lebesgue measure and
the vector fields X1 = ∂x1 and Y1 = ∂y1 − x1∂z1. Let H 3 denote the Hausdorff measure of
dimension 3 with respect to the associated sub-Riemannian metric on M . There exist an open
subset Ω ⊂ M , constants c1, c2 > 0 and sequences of eigenfunctions (φ1,m)m∈N and (φ2,m)m∈N
of −∆Ω with respective eigenvalues (λ1,m)m∈N and (λ2,m)m∈N tending to +∞, such that

H 3(Zφ1,m) ⩽ c1
√
λ1,m (1.11)

and
H 3(Zφ2,m) ⩾ c2λ2,m. (1.12)

The fact that the two bounds in our result are not of the same order is due to the fact
that some sequences of eigenfunctions oscillate much more in the directions needing brackets
to be generated (like ∂z in the Heisenberg group) than what is possible for Laplacians. This
demonstrates the need for a reformulation of Yau’s Conjecture.

1.5 Open questions

1.5.1 Pleijel bound

The Courant bound for Laplace-Beltrami operators is known to be non-optimal as the eigenvalue
tends to +∞: the Pleijel bound asserts that when n becomes large, the number of nodal domains
of an eigenfunction with eigenvalue λn is at most cn for some explicit constant c < 1 (see [21] for
the case of 2-dimensional Euclidean domains, and [6]). An analogous result for sub-Laplacians
would require new ideas since the appropriate Faber-Krahn inequality that one uses in the usual
proof of the Pleijel bound is not known.

3this is equivalent to the condition that the sub-Riemannian flag is equiregular, see Section 4.1 for definitions.
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1.5.2 Relation between elliptic and subelliptic bounds

In the analytic case, Yau’s conjectured bound (1.9) for the Laplace-Beltrami operator is known
to hold (see [10]). If we consider a family of Laplace-Beltrami operators of the form

∆gε = ∆sR + ε2∆h (1.13)

where ∆sR is a fixed analytic sub-Laplacian and ∆h is a fixed analytic Laplace-Beltrami operator
(defined on the same domain of RN ), how do the constants c and C in (1.9) behave as ε → 0?
This question is motivated by the fact that the “sub-Riemannian limit” of operators (1.13) has
already attracted attention in other related contexts, see for instance [25].

1.6 Organization of the paper and new contributions

The proofs of our results follow the same broad strokes as those for elliptic Laplacians. However,
to the best of our knowledge, it is the novel application of tools and techniques unique to sub-
Riemannian geometry and hypoelliptic equations within the subject of nodal geometry that is
our main contribution. We elaborate on this in our outline.

In Section 2, we prove Proposition 1.4: our proof mostly relies on the compactness of
the resolvent of sub-Laplacians, which follows from well-known subelliptic estimates due to
Hörmander. In Section 3 we prove Theorem 1 using the usual strategy for proving Courant-
type bounds, and a combination of a robust argument by Colette Anné [3] with subelliptic
estimates. In Section 4, we gather tools coming from sub-Riemannian geometry, namely the
nilpotent approximation and the desingularization procedure. In Section 5, we prove Theorem
2 using the aforementioned tools as basic building blocks for estimating the first eigenvalue of
a sub-Laplacian in a small ball. Finally, in Section 6 we prove Theorem 3 by constructing a
sub-Laplacian and explicit examples of eigenfunctions.

Acknowledgments. We thank Hajer Bahouri, Yves Colin de Verdière, Valentina Franceschi,
Bernard Helffer, Thomas Letendre, Eugenia Malinnikova, Iosif Polterovich and Luca Rizzi for
interesting discussions. The first author is supported by an NSERC Discovery Grant and the
second author is supported by the Simons Foundation Grant 601948, DJ.

2 Proof of Proposition 1.4

We first recall briefly the classical Friedrichs extension construction ([23]). We denote by qΩ the
quadratic form on C∞

c (Ω) given by qΩ(v, w) = (∆v, w) where (·, ·) denotes the L2(Ω, µ) scalar
product. It is closable and we denote by q̂Ω its closure. Explicitly, denoting by H the Hilbert
space completion of C∞

c (Ω) with respect to the scalar product (v, w)H = (v, w) + qΩ(v, w), the
inclusion map ι : C∞

c (Ω) ↪−→ L2(Ω, µ) extends by continuity to a linear map ι̂ : H → L2(Ω, µ).
The quadratic form qΩ also extends by continuity to a quadratic form q̂Ω over H, so that if v
and w denote the equivalence classes of {vn} and {wn} in H, then q̂(v, w) = limn→∞ qΩ(vn, wn).
One can check that ι̂ is injective, hence q̂Ω can be seen as a quadratic form on L2(Ω, µ), with
domain D(q̂Ω) = ι̂(H). More concretely, the domain D(q̂Ω) consists of those v ∈ L2(Ω, µ) such
that there exists {vn} ⊂ C∞

c (Ω) such that vn → v in L2(Ω, µ) and qΩ(vn− vℓ) → 0 as ℓ, n→ ∞.
Then, the Friedrichs extension of (∆, C∞

c (Ω)) is the operator (∆Ω,D(∆Ω)) where

D(∆Ω) = {v ∈ D(q̂Ω) : q̂Ω(v, ·) is L2(Ω, µ)− continuous} (2.1)

and ∆Ωv ∈ L2(Ω, µ) is defined through the Riesz representation theorem by the relation
(∆Ωv, w) = q̂Ω(v, w) for any w ∈ D(q̂Ω) (note that D(q̂Ω) is dense in L2(Ω, µ)). By the
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same procedure, for any bounded open set U ⊂ M (including the cases of U = M and
U = Ω) we obtain the Friedrichs extension (∆U ,D(∆U )) of the non-positive symmetric operator
∆ : C∞

c (U) → C∞
c (U) (densely defined on L2(U, µ)).

In the next lemma, for any v ∈ D(q̂Ω), we denote by Ev its extension by 0 in M \ Ω.

Lemma 2.1. Let v ∈ D(q̂Ω). Then Ev ∈ D(q̂M ) and q̂M (Ev) = q̂Ω(v).

Proof. Let vn ∈ C∞
c (Ω) such that vn → v in L2(Ω, µ) and qΩ(vn − vℓ) → 0 as n, ℓ → ∞. We

have Evn → Ev in L2(M,µ) and

qM (Evn − Evℓ) = (∆(Evn − Evℓ), Evn − Evℓ) = (∆(vn − vℓ), vn − vℓ) = qΩ(vn − vℓ) −→
n,ℓ→∞

0.

Thus Ev ∈ D(q̂M ) and q̂M (Ev) = q̂Ω(v).

We start the proof of Proposition 1.4 with the following particular case of the subelliptic
estimate [24, Estimate (17.20)]: whenever a and b are in C∞

c (M) with sufficiently small support
and b = 1 on the support of a, there exist s > 0, C > 0 such that

∥au∥Hs(M) ⩽ C
m∑
j=1

(∥bXju∥L2(M) + ∥bu∥L2(M)).

Using a partition of unity and the fact that commutators of Xj with smooth cutoff functions
are multiplication operators, we can globalize this inequality: there exist s > 0, C > 0 such that

∥u∥Hs(M) ⩽ C

m∑
j=1

(∥Xju∥L2(M) + ∥u∥L2(M)). (2.2)

Squaring this inequality, we obtain ∥u∥2Hs(M) ⩽ C(−∆Mu+u, u)L2(M), which together with the
Cauchy-Schwarz inequality implies that

∥u∥Hs(M) ⩽ C∥(Id−∆M )u∥L2(M). (2.3)

Case 1: M is compact. In this case, the Rellich–Kondrachov theorem gives that the resolvent
(Id−∆M )−1 is compact from L2(M) to L2(M). Using [22, Theorem XIII.64 p.245], this implies
that µn(∆M ) → +∞ where

µn(∆M ) = inf
W⊂D(q̂M )
dim(W )=n

max
v∈W
∥v∥=1

q̂M (v). (2.4)

Note that in [22, Theorem XIII.1 p. 76] the quantity µn(∆M ) is defined differently, but it is
well-known that µn(∆M ) is in fact also equal to (2.4) (see for instance [18, Theorem 5.37]). This
implies thanks to Lemma 2.1 that

µn(∆Ω) = inf
W ′⊂D(q̂Ω)
dim(W ′)=n

max
v∈W ′

∥v∥=1

q̂Ω(v)

tends to +∞ as n → +∞: indeed, by extending all elements of W ′ ⊂ D(q̂Ω) by 0 outside Ω,
we obtain an n dimensional subspace W ⊂ D(q̂M ), hence µn(∆M ) ⩽ µn(∆Ω) for any n ∈ N.
Applying again [22, Theorem XIII.64 p.245], this time to (∆Ω,D(∆Ω)), we obtain the existence
of a complete orthonormal basis {φn}∞n=1 in D(∆Ω) so that −∆Ωφn = λnφn with 0 ⩽ λ1 ⩽
. . . ⩽ λn ⩽ . . .→ +∞.
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Case 2: M = RN . In this case, recall that we assumed in the introduction that Ω is bounded
and has Lipschitz boundary. The inequality (2.3) applied to u ∈ C∞

c (Ω), together with the
density of C∞

c (Ω) in L2(Ω), proves that (Id−∆Ω)
−1 : L2(Ω) → Hs(Ω) ∩ D(∆Ω) is continuous.

Since the injection from Hs(Ω) to L2(Ω) is compact (we use here the fact that the boundary
of Ω is Lipschitz), we obtain directly that the resolvent is compact, and we conclude by [22,
Theorem XIII.64 p.245].

3 Proof of Theorem 1

We start the proof of Theorem 1 with a lemma containing an integration-by-parts formula. We
do not give its proof, which follows from the definition of the quadratic form q̂Ω recalled above.

Lemma 3.1. If u ∈ D(q̂Ω), then Xiu ∈ L2(Ω, µ). Moreover if u, v ∈ D(q̂Ω), then

q̂Ω(u, v) = −
m∑
i=1

∫
Ω
(Xiu)(Xiv)dµ.

We denote by Eλk the eigenspace associated to the eigenvalue λk of −∆Ω. We have the
following min-max principle:

Lemma 3.2. 1. φ ∈ D(q̂Ω) \ {0} belongs to Eλ1 if and only if it minimizes over D(q̂Ω) \ {0}
the Rayleigh quotient

R(φ) =

∑m
i=1 ∥Xiφ∥2L2(Ω,µ)

∥φ∥2
L2(Ω,µ)

. (3.1)

In this case R(φ) = λ1.

2. If φ ∈ D(q̂Ω) \ {0} is orthogonal to Eλ1 , . . . , Eλk−1
and R(φ) = λk, then φ ∈ Eλk .

The proof is standard and follows for the first point from the computation of R(φ+ εψ) for
ψ ∈ D(q̂Ω) and ε→ 0, and for the second point from the decomposition of φ in the orthonormal
basis given by Proposition 1.4.

The next two lemmas are classical in the Riemannian setting but their proofs require some
care in the present sub-Riemannian (sR) context.

Lemma 3.3. Let D ⊂ M be a connected open set with ∂D ̸= ∅. Then λ1(D) > 0, and there
exists an eigenfunction of −∆D with eigenvalue λ1(D) which is non-negative.

Proof. Assume for the sake of a contradiction that λ1(D) = 0 and let u ̸≡ 0 be an eigenfunction
∆u = 0. Then (∆u, u) = 0 hence by definition q̂D(u, u) = 0, which implies ∥Xiu∥L2(D,µ) =
0 for any i thanks to Lemma 3.1. But thanks to hypoelliptic regularity [13] we know that
u ∈ C∞(D) (a priori not up to the boundary if D is arbitrary) hence Xiu ≡ 0 in D. Then
[Xi1 , [Xi2 , . . .] . . .]u ≡ 0 for any bracket of the vector fields, hence by the Hörmander bracket-
generating condition u is constant in D.

Let us prove that the only constant u which belongs to D(q̂D) is 0. We choose (uℓ)ℓ∈N such
that uℓ ∈ C∞

c (D) and uℓ → u, Xiuℓ → 0 in L2(D) as ℓ → +∞. We denote by u (resp. uℓ) the
extension of u (resp. uℓ) to M by 0 in M \D. First, u ∈ D(q̂M ) according to Lemma 2.1. Let
v ∈ D(q̂M ), and vℓ ∈ C∞

c (M) such that vℓ → v in L2(M,µ) and qM (vn− vℓ) → 0 as ℓ, n→ +∞.
Then

q̂M (u, v) = lim
ℓ→+∞

m∑
i=1

(Xiuℓ, Xivℓ)L2(M,µ) = lim
ℓ→+∞

m∑
i=1

(Xiuℓ, Xivℓ)L2(supp(uℓ),µ) = 0

9



since (Xivℓ)ℓ∈N is bounded in L2(M,µ), and thus in L2(supp(uℓ), µ). Hence u ∈ D(∆M ) and
∆Mu = 0. By hypoellipticity, u ∈ C∞(M), which is impossible since u is not smooth across
∂D ̸= ∅.

Let u0 ̸= 0 be in the first eigenspace of ∆D. Then |u0| ∈ D(q̂D) and for any i ∈ {1, . . . ,m},

Xi|u0| =


Xiu0 a.e. in {u0 > 0}
0 a.e. in {u0 = 0}
−Xiu0 a.e. in {u0 < 0}

. (3.2)

Both statements follow from [11, Chapter 5, Exercise 17]: the main steps are to apply the chain
rule to Fε ◦ u0 where Fε(z) =

√
z2 + ε2 − ε and then use the dominated convergence theorem.

From (3.2) we deduce that R(|u0|) = R(u0) where the Rayleigh quotient R is defined in
(3.1). According to Lemma 3.2, this implies that |u0| is also in the first eigenspace of ∆D.

Lemma 3.4. Let u ∈ D(∆Ω) satisfying −∆Ωu = λu in Ω. Let D be a nodal domain of u. Then
the restriction u of u to D belongs to D(∆D), and it is an eigenfunction of the Dirichlet problem
in D, associated to the smallest eigenvalue λ = λ1(D).

Proof. Thanks to Assumption 1.5, u is smooth up to the boundary of Ω (see [16, Theorem III,
point (4)]), hence u is smooth up to the boundary of D. Without loss of generality, we assume
that u is non-negative. We follow the proof of Lemma 2.0.1 in [3], which does not use any
regularity on the boundary of the nodal domain.

We fix a Riemannian metric gR on M , which induces a distance distgR and a gradient ∇gR ,
in order to conveniently conduct our local analysis. Let χn ∈ C∞

c (D) be a cut-off function such
that there exists a constant C > 0 independent of n such that

� χn(x) = 1 for distgR(x, ∂D) ⩾ 1/n

� χn(x) = 0 for distgR(x, ∂D) ⩽ 1/(2n)

� ∥∇gRχn∥L∞ ⩽ Cn

� ∥∇2
gR
χn∥L∞ ⩽ Cn2

(the existence of χn is shown in [3]). SinceX1, . . . , Xm are smooth, this implies that ∥Xiχn∥L∞ ⩽
Cn and ∥X∗

i χn∥L∞ ⩽ Cn for any i, and ∥∆χn∥L∞ ⩽ Cn2 (the constant C may have changed).
It suffices to show that u arises from a Cauchy sequence in D(q̂Ω) and that u generates a

continuous linear functional on L2(D,µ) via the quadratic form q̂D. We set un = χnu. We have
un → u in L2(D,µ). Let us prove that qD(un − uℓ) → 0 as ℓ, n→ ∞. To simplify notations, we
set αn,ℓ = χn − χℓ. We have

|qD(un − uℓ)| =
∫
D

m∑
i=1

(Xi(un − uℓ))
2 dµ =

∫
D

m∑
i=1

αn,ℓuX
∗
i ((Xiαn,ℓ)u+ αn,ℓ(Xiu))dµ

= −
∫
D
αn,ℓu

2∆αn,ℓ dµ−
∫
D
α2
n,ℓu∆u dµ

−
∫
D

(
m∑
i=1

(Xiαn,ℓ)(X
∗
i u)αn,ℓu+ (X∗

i αn,ℓ)(Xiu)αn,ℓu

)
dµ (3.3)

= I1 + I2 + I3.
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We show that Ij → 0 for j = 1, 2, 3, a n, ℓ → +∞. We denote by An the support of ∇χn, in
particular vol(An) → 0. We have∣∣∣∣∫

D
αn,ℓu

2∆αn,ℓ dµ

∣∣∣∣ ⩽ Cℓ2
∫
Aℓ

u2 dµ+ Cn2
∫
An

u2 dµ. (3.4)

We use the fact that u is smooth up to the boundary to get that u2 ⩽ Cℓ−2 in Aℓ and similarly
u2 ⩽ Cn−2 in An. Hence

|I1| =
∣∣∣∣∫
D
αn,ℓu

2∆αn,ℓ dµ

∣∣∣∣ ⩽ C(vol(Aℓ) + vol(An)) −→
n,ℓ→+∞

0.

Then, we have∣∣∣∣∫
D
α2
n,ℓu∆u dµ

∣∣∣∣ = λ

∫
D
α2
n,ℓu

2 dµ ⩽ C(vol(Aℓ) + vol(An))

∫
D
u2 dµ −→

n,ℓ→+∞
0.

One can also check that

I3 = −1

2

∫
D
u2

(
m∑
i=1

αn,ℓX
2
i αn,ℓ + (Xiαn,ℓ)

2 + αn,ℓ(X
∗
i )

2αn,ℓ + (X∗
i αn,ℓ)

2 + α2
n,ℓ(divµ(Xi))

2

)
dµ

and once again

|I3| ⩽ Cℓ2
∫
Aℓ

u2 dµ+ Cn2
∫
An

u2 dµ ⩽ C(vol(Aℓ) + vol(An)) −→
n,ℓ→+∞

0.

All in all, |qD(un − uℓ)| → 0 as n, ℓ→ +∞. Hence u ∈ D(q̂D).
Next, we have to check that |q̂D(u, v)| ⩽ C(u, v)L2(D,µ) for any v ∈ D(q̂D). It is sufficient to

check it for v ∈ C∞
c (D) and then extend it by density to D(q̂D). Let v ∈ C∞

c (D). We have

q̂D(u, v) = − lim
n→+∞

∫
D

m∑
i=1

Xi(χnu)Xiv dµ = lim
n→+∞

(∆un, v)L2(D,µ)

= (∆u, v)L2(D,µ) = −λ(u, v)L2(D,µ)

since un = u on Supp(v) for n sufficiently large. Hence u ∈ D(∆D) and u is an eigenfunction
with eigenvalue λ.

By Lemma 3.3 we know that λ1(D) > 0. Assume for the sake of a contradiction that
λ > λ1(D). Let us denote by u0 a non-negative function in the first eigenspace of −∆D, which
exists thanks to Lemma 3.3. Then according to Proposition 1.4, u0 and u are orthogonal for the
L2(D,µ) scalar product. At the beginning of the proof, we assumed without loss of generality
that u is non-negative, but since D ⊂ Ω \ Zu, we even know that u is strictly positive in D.
Hence u0 = 0 a.e. in D, which is a contradiction with the fact that λ1(D) > 0. We conclude
that λ1(D) = λ.

We start the proof of Theorem 1 by proving its second part. For this, we follow the arguments
of [9, Chapter VI (p. 453-454)] (see also [6, Appendix D]). Suppose that u ∈ Eλn has at least
(n + 1) nodal domains D1, . . . , Dn+1. We also assume λn−1 < λn. For 1 ⩽ i ⩽ n, we denote
by ui the restriction of u to Di, which lies in the first eigenspace of the Dirichlet problem in
Di according to Lemma 3.4. In particular its Rayleigh quotient R(ui) is equal to λn due to
Point 1. of Lemma 3.2. We extend ui by 0 in Ω \Di, and we still denote by ui this extension,
which belongs to D(q̂Ω) according to Lemma 2.1. We can determine (a1, . . . , an) ∈ Rn \{0} such
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that f =
∑n

i=1 aiui is orthogonal in L
2(Ω, µ) to the (n− 1) first eigenfunctions φ1, . . . , φn−1 of

−∆Ω on Ω. We have R(f) = λn, hence f is an eigenfunction for λn according to the min-max
principle (Point 2 of Lemma 3.2). But f vanishes in the open set Dn+1 in contradiction with
the unique continuation property of eigenfunctions which is satisfied thanks to Assumption 1.6.

The first part of Theorem 1 follows from similar arguments, except that we avoid using the
unique continuation property in the end.4 Assume for the sake of a contradiction that u ∈ Eλn
has at least mn = n+mult(λn) nodal domains D1, . . . , Dmn . By standard linear algebra, there
exist mult(λn) + 1 linearly independent functions fj , j = 1, . . . ,mult(λn) + 1 of the form

fj =

mn∑
i=1

aj,iui,

with aj,i ∈ R, ui is the extension by 0 of the restriction of u to Di, and fj is orthogonal in
L2(Ω, µ) to the (n − 1) first eigenfunctions φ1, . . . , φn−1 of −∆Ω on Ω. For any j we have
R(fj) = λn, hence fj is an eigenfunction for λn according to the min-max principle (Point 2 of
Lemma 3.2). The fj are mult(λn) + 1 linearly independent eigenfunctions with eigenvalue λn,
which is impossible.

Remark 3.5. Counterexamples to the unique continuation property are known when Assumption
1.6 is not satisfied, for operators of the form ∆ + V where V is a smooth function on Ω (see
[4]).

4 Sub-Riemannian tools

This section introduces the notations, the terminology and the tools of sub-Riemannian (sR)
geometry which will be needed in the proof of Theorem 2. For a more comprehensive introduction
to sR geometry, we refer to [2] and [5].

4.1 Sub-Riemannian flag

First, we define the sR distribution

D = Span(X1, . . . , Xm)

and then the sR flag as follows: D0 = {0}, D1 = D, and, for any j ⩾ 1,

Dj+1 = Dj + [D,Dj ].

For any q ∈M , this gives a flag

{0} = D0
q ⊂ D1

q ⊂ . . . ⊂ Dr−1
q ⊊ Dr(q)

q = TqM. (4.1)

where Di
q denotes Di taken at point q. The integer r(q) is called the step, or non-holonomic

order, of D at q. In the case of Example 1.1 it is equal to 1 except on the singular line {x = 0},
where it is equal to 2 (or α). In the case of Example 1.3 it coincides with the step r defined
there; in particular it is equal to 2 in Example 1.2 at any point.

For i ∈ {0, . . . , r(q)}, we set
ni(q) = dimDi

q.

The sequence (ni(q))0⩽i⩽r(q) is called the growth vector at point q. We say that q ∈M is regular
if the growth vector (ni(q

′))0⩽i⩽r(q′) at q
′ is constant for q′ in a neighborhood of q. Otherwise,

q is said to be singular. If any point q ∈M is regular, we say that the structure is equiregular.

4We would like to thank Iosif Polterovich for sharing with us this argument, itself communicated to him by
Dan Mangoubi.
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Remark 4.1. The Heisenberg sub-Laplacian of Example 1.2 is equiregular (with n1 = 2d, n2 =
2d+ 1), but the Baouendi-Grushin sub-Laplacian of Example 1.1 is not equiregular.

The number

Q(q) =

r(q)∑
i=1

i(ni(q)− ni−1(q)), (4.2)

coincides at any regular point q with the Hausdorff dimension of the metric space induced by
the sR distance on M near q (see [20]).

We define a non-decreasing sequence of weights wi(q). Roughly speaking, wi(q) is the minimal
length of the brackets of X1, . . . , Xm needed to generate i independent directions at q. Formally,
given any i ∈ {1, . . . , N} and q ∈M , there exists a unique j ∈ {1, . . . , r(q)} such that nj−1(q)+

1 ⩽ i ⩽ nj(q). We set wi(q) = j. It is not difficult to check that (4.2) coincides with
∑N

i=1wi(q)
(see (1.10)).

4.2 Nilpotentization

The aim of the following paragraphs is to introduce a system of local coordinates, called privi-
leged coordinates, in which it is natural to write Taylor expansions of vector fields defined on the
sR manifold (see [5, Section 4], [14, Chapter 2]). The first order term in the Taylor expansion of
a vector field in privileged coordinates is called the nilpotent approximation of the vector field.
A typical example of privileged coordinates system is given by some exponential coordinates
with respect to a frame of TqM which is “adapted” to the sR flag (4.1) (see (4.5) below).

4.2.1 Non-holonomic orders.

The non-holonomic order of a smooth germ of function is

ordq(f) = min{p ∈ N : ∃i1, . . . , ip ∈ {1, . . . ,m} such that (Xi1 . . . Xipf)(q) ̸= 0}

where we adopt the convention that min ∅ = +∞.
The non-holonomic order of a smooth germ of vector field X at q, denoted by ordq(X), is

the real number

ordq(X) = sup{σ ∈ R : ordq(Xf) ⩾ σ + ordq(f), ∀f ∈ C∞(q)} ∈ Z.

In other words, applying X to a function f “increases” the non-holonomic order by at least
ordq(X) (we put quotation marks to indicate that since ordq(X) may be negative, applying X
may in fact decrease the non-holonomic order).

There holds ordq(fg) = ordq(f)+ordq(g), ordq(fX) = ordq(f)+ordq(X) and ordq([X,Y ]) ⩾
ordq(X)+ordq(Y ). As a consequence, every X which has the property that X(q′) ∈ Di

q′ for any
q′ in a neighborhood of q is of non-holonomic order ⩾ −i.

Example 4.2. Let us illustrate these definitions on Example 1.1 where X1 = ∂x and X2 = x∂y.
At (x, y) = 0, the non-holonomic order of the function f(x, y) = x is 1 and the non-holonomic
order of f(x, y) = y is 2 since X1X2y = 1. The non-holonomic order of ∂x is −1, the non-
holonomic order of ∂y is −2, and the non-holonomic order of x∂y is −1.
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4.2.2 Privileged coordinates.

A system of privileged coordinates at q is a system of local coordinates (x1, . . . , xN ) near q
verifying

ordq(xi) = wi, for 1 ⩽ i ⩽ N. (4.3)

In particular, privileged coordinates satisfy ∂xi ∈ Dwi(q)
q \Dwi(q)−1

q at q, meaning that privileged
coordinates are adapted to the flag (see definition below). One can also check that for any
(α1, . . . , αN ) ∈ NN , (β1, . . . , βN ) ∈ NN ,

ordq(x
α1
1 . . . xαN

N ∂β1x1 . . . ∂
βN
xN

) =
N∑
i=1

(αi − βi)wi. (4.4)

We now describe a construction showing that privileged coordinates systems exist at any
q ∈ M . A family (Z1, . . . , ZN ) of vector fields is said to be adapted to the sR flag at q if it

is a frame of TqM at q and if Zi(q) ∈ Dwi(q)
q for any i ∈ {1, . . . , N}. In other words, for any

i ∈ {1, . . . , r(q)}, the vectors Z1, . . . , Zni(q) at q span Di
q.

If (Z1, . . . , ZN ) is an adapted frame at q, it is proved in [14, Appendix B] that the inverse of
the local diffeomorphism

(x1, . . . , xn) 7→ exp(x1Z1) . . . exp(xNZN )(q) (4.5)

defines privileged coordinates at q (called exponential coordinates of the second kind).

4.2.3 Dilations.

As we mentioned in the introduction, sR geometries are anisotropic. The natural sR dilations
that we now define are thus also anisotropic.

Fix q ∈M . For every ε ∈ R \ {0}, the dilation δε : RN → RN is defined by

δε(x) = (εw1(q)x1, . . . , ε
wN (q)xN )

for every x = (x1, . . . , xN ) - we omit the dependance in q in the notation.
A dilation δε acts also on functions and vector fields on RN by pull-back: δ∗εf = f ◦ δε and

δ∗εX is the vector field such that (δ∗εX)(δ∗εf) = δ∗ε(Xf) for any f ∈ C1(RN ).
In particular, given a system of privileged coordinates ψq : U → RN , for any vector field X

in U of non-holonomic order k there holds δ∗ε(ψq)∗X = ε−k(ψq)∗X. We will use this property
many times for vector fields of the form (4.4).

4.2.4 Nilpotent approximation.

We now turn to the definition of the nilpotent approximation, which is a first-order approxi-
mation of vector fields in privileged coordinates near a point q ∈ M . An explicit example of
computation of nilpotent approximation is given in [14, Example 2.8], it may help to understand
the definitions which follow.

Fix a system of privileged coordinates ψq = (x1, . . . , xN ) : U → RN defined in a neighborhood
U of q. Coming back to the vector fields X1, . . . , Xm, we write the Taylor expansion

(ψq)∗Xi(x) ∼
∑
α∈NN

j∈{1,...,N}

aα,jx
α∂xj . (4.6)
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Since Xi ∈ D, its non-holonomic order is −1. Hence, when aα,j ̸= 0 for some α =
(α1, . . . , αN ) ∈ NN and j ∈ {1, . . . , N}, the monomial vector field xα∂xj has non-holonomic

order ⩾ −1, which implies that
∑N

i=1wi(q)αi ⩾ wj(q)−1 according to (4.4). Therefore, we may
write Xi as a formal series

(ψq)∗Xi = X
(−1)
i +X

(0)
i +X

(1)
i + . . . (4.7)

where X
(k)
i is a homogeneous vector field of degree k, meaning that

δ∗εX
(k)
i = εkX

(k)
i . (4.8)

We set
X̂q
i = X

(−1)
i , 1 ⩽ i ⩽ m (4.9)

which is a vector field on RN . Then X̂q
i is homogeneous of degree −1 with respect to dilations,

meaning that δ∗εX̂
q
i = ε−1X̂q

i for ε ̸= 0. For ε > 0 small enough we have

Xε
i := εδ∗ε(ψq)∗Xi = X̂q

i + εRqi,ε (4.10)

where Rqi,ε depends smoothly on ε for the C∞ topology (see also [2, Lemma 10.58]).

Finally, the nilpotent approximation of X1, . . . , Xm at q is defined as M̂ q ≃ RN endowed
with the vector fields X̂q

1 , . . . , X̂
q
m. This definition does not depend on the choice of privileged

coordinates at q because two sets of such coordinates produce two “sR-isometric” sR structures.
An important property is that (X̂q

1 , . . . , X̂
q
m) generates a nilpotent Lie algebra of step r(q) (see

[14, Proposition 2.3]).
The nilpotent approximation of a measure µ on M at q ∈M is the measure on RN

µ̂q = lim
ε→0

ε−Q(q)δ∗ε(ψq)∗µ (4.11)

where the convergence is understood in the vague topology. It follows from this definition that
µ̂q is proportional to the Lebesgue measure.

4.3 Desingularization

The estimates we will need at some point in the proof of Theorem 2 blow-up at singular points.
However, when q ∈ M is a singular point, it is possible to lift locally in a neighborhood U of
q the vector fields X1, . . . , Xm to vector fields X̃1, . . . , X̃m on Ũ = U × RK , so that the lift
q̃ = (q, 0) of q is a regular point in Ũ and many properties of the vector fields are preserved.
This lifting procedure will allow us to recover uniform estimates in Section 5.2.

Lemma 4.3. [14, Lemma 2.5 and Theorem 2.9] Let q be a point in M . Then there exist K ∈ N,
a neighborhood U ⊂M of q, coordinates (x, y) on Ũ = U × RK and smooth vector fields

X̃i(x, y) = Xi(x) +

K∑
j=1

bij(x, y)∂yj , i = 1, . . . ,m,

on Ũ such that

� X̃1, . . . , X̃m satisfy Hörmander’s bracket-generating condition in Ũ ;

� every p̃ in Ũ is regular;
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� denoting by π : Ũ → U the canonical projection, and by d̃ the sR distance defined by
X̃1, . . . , X̃m on Ũ , we have π∗X̃i = Xi, and for p ∈ U and ε small enough,

Bε(p) = π
(
Bd̃
ε ((p, 0))

)
. (4.12)

Example 4.4. A possible (global) desingularization of the vector fields X1 = ∂x and X2 = x∂y
on R2 is given by the vector fields X̃1 = ∂x and X̃2 = ∂z + x∂y on R3.

5 Proof of Theorem 2

The proof of Theorem 2 splits into two steps. The first one consists in proving an asymptotic
upper bound for the first eigenvalue of the Dirichlet sub-Laplacian in a sR ball centered at q ∈M
whose radius tends to 0. This upper bound is uniform in q when q is a regular point. The second
step is to use Lemma 4.3 (i.e., a desingularization) to conclude.

5.1 The first eigenvalue of the sub-Laplacian in a small sR ball

We fix q ∈ M and we take a chart ψq : U → RN of privileged coordinates at q, with ψq(q) = 0.
We denote by R(q) the maximal radius such that BR(q)(q) ⊂ U .

As seen in Section 4.2.4, the nilpotent approximations of X1, . . . , Xm (resp. of µ) at q are
vector fields X̂q

i (resp. a measure µ̂q) in RN .
For ε ⩽ R(q), we set

L2
ε = L2((ψq)∗Bε(q), (ψq)∗µ).

We also fix u1 ∈ C∞
c (Box(1/2)) such that u1(0) ̸= 0. Finally, we set

uε(x) = ε−Q(q)/2u1(δ1/εx) (5.1)

and we have uε ∈ C∞
c (Box(ε/2)).

Lemma 5.1. If X is a vector field on ψq(U) ⊂ RN which is homogeneous of degree k ∈ R
(in the sense of (4.8)), then there exist c(q) > 0, ε(q) > 0 such that for any ε ⩽ ε(q) and any
1 ⩽ i ⩽ m,

∥Xuε∥L2
ε
⩽ c(q)εk∥uε∥L2

ε
(5.2)

Proof. First, the ball-box theorem (1.7) (see also [5], [14, Corollary 2.1]) yields the existence of
0 < α ⩽ 1 and ε(q) > 0 (both depending on q) such that for any 0 < ε < ε(q),

Box(αε) ⊂ (ψq)∗Bε(q) ⊂ Box(α−1ε). (5.3)

We use (5.1) and the homogeneity in ε of X, Box(ε) and µ̂q. Due to (4.11) this implies the
following two convergences

ε−Q(q)/2ε−k∥Xuε∥L2(Box(ε),(ψq)∗µ) = ε−Q(q)/2∥Xu1∥L2(Box(1),δ∗ε (ψq)∗µ) −→ε→0
∥Xu1∥L2(Box(1),µ̂q)

ε−Q(q)/2∥uε∥L2(Box(α2ε),(ψq)∗µ) = ε−Q(q)/2∥u1∥L2(Box(α2),δ∗ε (ψq)∗µ) −→ε→0
∥u1∥L2(Box(α2),µ̂q).

Taking the ratio of the two convergences (justified by the fact that u1(0) ̸= 0 hence the last
limit is ̸= 0), we obtain

∥Xuε∥L2(Box(ε),(ψq)∗µ) ⩽ c(q)εk∥uε∥L2(Box(α2ε),(ψq)∗µ). (5.4)

Using twice (5.3), we obtain

∥Xuε∥L2
ε
⩽ ∥Xuε∥L2(Box(α−1ε),(ψq)∗µ) ⩽ c(q)εk∥uε∥L2(Box(αε),(ψq)∗µ) ⩽ c(q)εk∥uε∥L2

ε

which implies the lemma.
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Corollary 5.2. For any q ∈ M , there exist c(q) > 0 and ε(q) > 0 such that for any ε ⩽ ε(q),
there holds λ1(Bε(q)) ⩽ c(q)ε−2.

Proof. We fix q ∈ M and 1 ⩽ i ⩽ m. According to (5.3), we know that uαε is supported in
(ψq)∗Bε(q). We set Rqi = (ψq)∗Xi−X̂q

i , which is a vector field on (ψq)∗(U) ⊂ RN . Let us assume
for the moment that we have proved the existence of C(q) such that for ε sufficiently small,

∥Rqiuαε∥
2
L2
ε
⩽ C(q)∥uαε∥2L2

ε
. (5.5)

Then we can write

∥(ψq)∗Xiuαε∥2L2
ε
⩽ 2

(
∥X̂q

i uαε∥
2
L2
ε
+ ∥Rqiuαε∥

2
L2
ε

)
⩽ (c(q)ε−2 + C(q))∥uαε∥2L2

ε
(5.6)

⩽ c′(q)ε−2∥uαε∥2L2
ε

where in the second inequality we used Lemma 5.1 with X = X̂q
i , and (5.5). By the min-max

principle (Lemma 3.2), we get the result.
There remains to prove (5.5). We can write Rqi =

∑N
k=1 a

q
i,k∂xk where the aqi,k are smooth

functions of x ∈ RN . We then apply Taylor’s theorem for multivariate functions with exact
remainder to each aqi,k. Recalling (4.7), (4.9) and the fact that Rqi = (ψq)∗Xi − X̂q

i has homo-

geneous components of order ⩾ 0 only, this yields a decomposition (“factorizing out from Rqi
monomial vector fields of order 0”)

Rqi =
∑
j∈J

bqi,jYj (5.7)

where bqi,j is a continuous function of x. Here J is a finite set such that (Yj)j∈J consists of all
monomial vector fields Y which are homogeneous of degree 0, i.e. Y is of the form Y = xi∂xk
for some indices i, k ∈ {1, . . . , n} satisfying wi = wk. Then we can write

∥Rqiuαε∥L2
ε
⩽
∑
j∈J

∥bqi,jYjuαε∥L2
ε
⩽
∑
j∈J

∥bqi,j∥L∞((ψq)∗Bε(q))∥Yjuαε∥L2
ε
⩽ C(q)∥uαε∥L2

ε

where the last inequality comes from Lemma 5.1 applied with k = 0 (and the fact that bqi,j is
smooth, hence bounded). This concludes the proof of (5.5).

Remark 5.3. One can in fact prove that ε2λ1(Bε(q)) converges to the first eigenvalue of the
Dirichlet sub-Laplacian ∆̂q on L2(B̂1(q), µ̂

q), which is a stronger statement than Corollary 5.2.
Here, ∆̂q =

∑m
i=1(X̂

q
i )

2 and B̂1(q) ⊂ RN denotes the sR ball computed with the metric obtained

by replacing in (1.5) the vector fields Xi by the nilpotentized ones X̂q
i .

However, what we will need for our purpose is the uniformity of the convergence with respect
to q, and it is easier to prove the uniformity of c(q) with respect to q (see Lemma 5.4) than the
uniformity of the convergence of ε2λ1(Bε(q)) with respect to q. This is why we prefered to keep
our weaker statements.

Lemma 5.4. When q is regular, the constants c(q) and ε(q) in Corollary 5.2 can be taken
uniform in a small neighborhood of q.

Proof. We use the fact that taking a nilpotent approximation is a “uniform” procedure near a
regular point (but it is not uniform near a singular point). This fact is described in Section
2.2.2 in [14], and it mainly relies on the property that q being regular, there exists a smooth
frame q′ 7→ (Z1(q

′), . . . , ZN (q
′)) ∈ (Tq′M)N which is an adapted frame at every point q′ in some
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neighborhood V of q. Using (4.5), this yields a smoothly varying system of privileged coordinates
in V , and a smooth nilpotent approximation in V (see Definition 2.9 in [14]). As remarked in
[8, Section 4.4] where a similar uniformity argument as ours is carried out, the continuity in
Definition 2.9 of [14] can be replaced by smoothness.

It follows from Theorem 2.3 in [14] that the constants α and ε(q′) in (5.3) can be taken
uniform over q′ ∈ V . These uniform constants are respectively denoted by α ∈ (0, 1] and
ε(V ) > 0. We will deduce that the inequality (5.4) remains true in V with a uniform constant
c(V ). To state this property rigorously (see (5.8)), we notice that given any family of vector
fields V ∋ q′ 7→ Xq′ which is smooth in q′ ∈ V , since {µ̂q′}q′∈V is a smooth family of measures
(see [1, Section 4.1]), the constant

c(q′) =
∥Xq′u1∥L2(Box(1),µ̂q′ )

∥u1∥L2(Box(α2),µ̂q′ )

in (5.4) is continuous over V , and its supremum over V is denoted by c(V ). Moreover, the
convergence (4.11) is also uniform over V , due to the smoothness of µ. We assume that each
vector field Xq′ is homogeneous of degree k ∈ R. Following the proof of Lemma 5.1, we obtain
that for any q′ ∈ V and any 0 < ε < ε(V ) there holds

∥Xq′uε∥L2(Box(ε),(ψq′ )∗µ)
⩽ c(V )εk∥uε∥L2(Box(α2ε),(ψq′ )∗µ)

. (5.8)

Applying (5.8) to Xq′ = X̂q′

i we obtain that ∥X̂q′

i uαε∥L2
ε
⩽ c(V )ε−2 for any q′ ∈ V .

Since q′ 7→ (ψq′)∗Xi(q
′) and q′ 7→ X̂q′

i are smooth, the map

V ∋ q′ 7→ (ψq′)∗Xi(q
′)− X̂q′

i (q
′) = Rq

′

i

is also smooth. Therefore the functions bq
′

i,j defined in (5.7) depend smoothly on q′. Besides, the
vector fields xi∂xk for i, k ∈ {1, . . . , N}, which appear in (5.7), do not depend on q′. This implies
that the constant C(q′) in (5.5) can be taken uniform over V . More precisely, this means that
there exists C(V ) > 0 such that for any ε < ε(V ) and any q′ ∈ V ,

∥Rq
′

i uαε∥
2
L2((ψq′ )∗Bε(q′),(ψq′ )∗µ)

⩽ C(V )∥uαε∥2L2((ψq′ )∗Bε(q′),(ψq′ )∗µ)
. (5.9)

This implies that the constants c(q′), ε(q′) in Corollary 5.2 can be taken uniform over q′ ∈ V ,
which proves Lemma 5.4.

Remark 5.5. Corollary 5.2 establishes an upper bound for the first Dirichlet eigenvalue as
r → 0. Note that lower bounds on the first Neumann eigenvalue were established in [15], this is
equivalent to Poincaré’s inequality.

5.2 End of the proof of Theorem 2

We assume that φλ is an eigenfunction of −∆Ω not belonging to the first eigenspace Eλ1 . We
denote by Dj its nodal domains. According to Lemma 3.4, the restriction of φλ to each domain
Dj is an eigenfunction of the Dirichlet sub-Laplacian ∆Dj , it belongs to its first eigenspace, and
λ1(Dj) = λ for each Dj . Now, if x ∈ Ω and d(q, Zφλ

) > ε, where d is the sR distance, then
Bε(q) ⊂ Dj for some j. By the min-max principle, it implies that λ = λ1(Dj) ⩽ λ1(Bε(q)). But
λ1(Bε(q)) ⩽ c(q)ε−2 thanks to Corollary 5.2, hence ε ⩽ c(q)λ−1/2.

If q is regular, using Lemma 5.4, we obtain that the constant c(q′) above is in fact uniform
for q′ in a neighborhood of q. Hence any sR ball centered in a neighborhood V of q and of radius
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⩾ c′(V )λ−1/2 will intersect Zφλ
, which concludes the proof of the theorem “locally near q” in

this case.
If q ∈ Ω is a singular point, the idea is to desingularize the vector fields at q thanks to Lemma

4.3 in order to recover a regular neighborhood but in a higher-dimensional space, and be able
to apply the result we just obtained in the regular case. Following the notations and defined
quantities of Lemma 4.3, we consider

X̃i(x, y) = Xi(x) +

K∑
j=1

bij(x, y)∂yj , i = 1, . . . ,m,

for (x, y) ∈ U × RK .
We will build a sub-Laplacian ∆̃ satisfying the following key properties:

� It is defined on the bounded set Ω× TK where T = R/2πZ.

� In a neighborhood of (q, 0) we have ∆̃ = −
∑m

i=1 X̃
∗
i X̃i. Its domain D(∆̃) is constructed

as in Section 2.

� The vector fields defining ∆̃ satisfy Hörmander’s bracket-generating condition everywhere
in Ω× TK .

The construction of ∆̃ is achieved through cut-offs and extensions of the vector fields X̃i to
vector fields which are periodic in the yj variables and thus defined on Ω × TK . In the sequel,
T is identified with [−π, π) (with periodic boundary).

Without loss of generality we assume that U is contained in the fundamental domain Ω ×
[−π, π)K . We fix a compact set V ⊂ U which is a neighborhood of (q, 0). We consider cut-off
functions satisfying:

� χ0 : Ω× TK → R+ is a smooth function which is equal to 1 in V and 0 in Ω× TK \ U .

� χ1 : Ω× TK → R+ is a smooth function which is equal to 0 in V and > 0 outside V .

We consider the vector fields

X̃i(x, y) = Xi +
K∑
j=1

χ0(x, y)bij(x, y)∂yj (5.10)

for i ∈ {1, . . . ,m} and Yj = χ1(x, y)∂yj for j ∈ {1, . . . ,K} on Ω×TK , and the sub-Laplacian on
Ω× TK defined by

∆̃ = −
m∑
i=1

(X̃i)
∗X̃i −

K∑
j=1

Y ∗
j Yj .

Lemma 5.6. The family of vector fields X̃1, . . . , X̃m, Y1, . . . , YK satisfies Hörmander’s bracket-
generating condition (1.1), it is regular at (q, 0), and the non-characteristic boundary condition
(Assumption 1.5) is verified on ∂(Ω× TK).

Proof. In V there holds X̃i = X̃i. By Lemma 4.3, this implies that the Hörmander bracket-
generating condition is satisfied in V . We notice that for any i1, . . . , iℓ ∈ {1, . . . ,m},

[X̃i1 , [X̃i2 , [. . . , X̃iℓ
]] = [Xi1 , [Xi2 , [. . . , Xiℓ ]] mod Y1, . . . , YK .
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Since the Yj do not vanish outside V , using that the vector fieldsX1, . . . , Xm satisfy Hörmander’s

bracket-generating condition in Ω, we obtain that the family of vector fields X̃1, . . . , X̃m, Y1, . . . , YK
satisfies Hörmander’s bracket-generating condition outside V .

The regularity of the family at (q, 0) follows from the fact that in V there holds X̃i = X̃i

and Yj = 0 for any i ∈ {1, . . . ,m} and any j ∈ {1, . . . ,K}. By definition of the desingularized

vector fields X̃i, they form an equiregular family, so in particular a regular family at (q, 0).
The non-characteristic boundary condition on ∂(Ω × TK) follows from the non-characteristic
boundary condition satisfied by the vector fields Xi on ∂Ω (Assumption 1.5) and the fact that
X̃i = Xi on ∂(Ω× TK).

Let φλ(x) be an eigenfunction of −∆Ω, with eigenvalue λ. We consider ψλ : Ω × TK → R
defined by ψλ(x, y) = φλ(x). This is an eigenfunction of −∆̃ with eigenvalue λ.

We apply the arguments of the beginning of Section 5.2 to ∆̃: they imply that there exist a
neighborhood Ṽ ⊂ Ω× TK and a constant c(Ṽ ) > 0 independent of λ such that

∀q̃ ∈ Ṽ , ∀ε ⩾ c(Ṽ )λ−1/2, Zψλ
∩ B̃ε(q̃) ̸= ∅. (5.11)

These sR balls are computed with the vector fields defining ∆̃, and these vector fields coincide
near (q, 0) with X̃i thanks to (5.10); hence it is equivalent to compute the sR balls with the
vector fields X̃i since we are considering small balls near (q, 0), with radius much smaller than
δ. By the projection property (4.12), since Zψλ

= Zφλ
× TK , we finally obtain that

∀q̃ ∈ Ṽ , ∀ε ⩾ c(Ṽ )λ−1/2, Zφλ
∩Bε(π(q̃)) ̸= ∅ (5.12)

where π : Ω×TK is the canonical projection. The constant involved in (5.12) is thus uniform in
a neighborhood of q. Since this uniformity is true in a neighborhood of any point q ∈M (either
regular or singular), using the compactness of Ω we obtain the result.

Remark 5.7. One could wonder why we do not simply consider in the proof the sub-Laplacian
−
∑m

i=1 X̃
∗
i X̃i on U×RK instead of ∆̃ (the adjoint being computed with respect to µ̃ = µ⊗LRK ,

where LRK is the Lebesgue measure on RK). In fact this does not work for our purposes, since
the formula ψλ(x, y) = φλ(x) does not define an L2(U × RK) eigenfunction.

5.3 An example

In this section we illustrate Theorem 2 with an example.
Fix α ∈ N∗ and consider the generalized Baouendi-Grushin sub-Laplacian ∆BG = ∂2x+x

2α∂2y on
(−1, 1)x × Ty. For k ∈ Z we denote by ψk a non-trivial element of the lowest energy eigenspace
of the 1D operator Hk = −∂2x + k2x2α on (−1, 1)x. The associated eigenvalue satisfies

cα|k|2/(α+1) ⩽ µk ⩽ Cα|k|2/(α+1)

as k → +∞ for some constants cα, Cα > 0. Then Ψk : (x, y) 7→ ψk(x) cos(ky) is an eigenfunction
of −∆BG with eigenvalue µk. Its nodal set is

ZΨk
= (−1, 1)x ×

(⋃
n∈Z

π
n

k
Z

)
y

i.e. it is a union of “horizontal” lines separated by π/k (in Euclidean distance).
Using the ball-box theorem (1.7), the sR ball centered at a point (0, y0) on the singular line, and of
radius ε, can be compared with ball-boxes of the form [−Cε,Cε]x×[y0−(Cε)α+1, y0+(Cε)α+1]y:
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the weights wi in this case are w1 = 1 and w2 = α + 1. The sR ball is more squeezed in the y
direction due to the fact that brackets are needed to span this direction; we refer the reader to
[5, Section 3.1] and the picture in [5, Section 3.3] for the case α = 1. Hence, the statement that
any sR ball of radius c/

√
µk intersects the nodal set of Ψk is true for c large enough but false

for c small enough. This proves the sharpness of Theorem 2.

6 Proof of Theorem 3

We use the setting defined in Example 1.2 for d = 1 (and we drop the indices: x, y, z replace
x1, y1, z1): we consider M = Γ\H1, with coordinates x, y, z, and endowed with the Lebesgue
measure µ = dxdydz. We denote by Ω the open subset of M containing all points (x, y, z) ∈M
such that x /∈

√
2π(Z + 1

2) (the factor 1
2 becomes clear in the proof). The boundary condition

is then at x = ±
√

π
2 (mod

√
2π).

We consider the vector fields X = ∂x and Y = ∂y − x∂z on M (see Example 1.2). The
sub-Laplacian is

∆ = −X∗X − Y ∗Y = X2 + Y 2.

Proposition 1.4 applies; we denote by (∆Ω,D(∆Ω)) the domain of ∆ acting on functions on Ω
(with Dirichlet boundary conditions). We now proceed to explicit computations.

For c ∈ R we introduce the sets

Ac = {(x, y, z) ∈ Ω | y = c} , Bc = {(x, y, z) ∈ Ω | z = c} .

We make the following observations:

� All these hypersurfaces have Hausdorff dimension 3 (see [12, Section 0.6.C]).

� All hypersurfaces Ac have the same 3D Hausdorff measure, which we denote by a. This
follows from the fact that for any t ∈ R, the multiplication on the left by (0, t, 0) is an
isometry, which sends (x, y, z) to (x, y + t, z), and thus Ac to Ac+t for any c ∈ R. Since it
is an isometry, it preserves balls and Hausdorff measures, and thus Ac and Ac+t have the
same 3D Hausdorff measure, for any c, t ∈ R.

� All hypersurfaces Bc have the same 3D Hausdorff measure, which we denote by b. This
follows from the fact that for any t ∈ R, the multiplication on the left by (0, 0, t) is an
isometry, which sends (x, y, z) to (x, y, z + t), and thus Bc to Bc+t for any c ∈ R. Since it
is an isometry, it preserves balls and Hausdorff measures, and thus Bc and Bc+t have the
same 3D Hausdorff measure, for any c, t ∈ R.

We consider two sequences of eigenfunctions of ∆Ω; it is not difficult to check that they are
indeed well-defined on Ω and that they satisfy Dirichlet boundary conditions.

We first consider eigenfunctions of the form φ1,m(x, y, z) = sin(
√
2πx) sin(

√
2πmy) for m ∈

Z⩾0, for which the corresponding eigenvalue is λ1,m = 2π(1 +m2). The nodal set in Ω5 is the
disjoint union of {x = 0} (whose Hausdorff measure is denoted by a0) with the sets Ac for
c = k

m

√
π
2 , k ∈ {−m+1, . . . ,m− 1}. The Hausdorff measure of this nodal set is a0 +(2m− 1)a

which is bounded above by Ca
√
λ1,m for some C > 0 independent of m.

Secondly, we consider for m ∈ Z⩾0 the eigenfunction defined by extending to Ω by periodiza-
tion with the group law (1.4) the function on the fundamental cell (−

√
π
2 ,
√

π
2 )× [−

√
π
2 ,
√

π
2 )×

[−π, π) given by φ2,m(x, y, z) = ψm(x) sin(mz), where ψm denotes a non-null element of the

5since x ∈ (−
√

π/2,
√

π/2), x = 0 is the only nodal set coming from sin(
√
2πx).
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first eigenspace of the 1D operator −d2/dx2 + m2x2 on (−
√

π
2 ,
√

π
2 ) with Dirichlet boundary

conditions. The first eigenvalue λ2,m of this harmonic oscillator, which is also the eigenvalue
associated to φ2,m, is m + o(1) as m → +∞. Since ψm does not vanish, the nodal set of φ2,m

is the (disjoint) union of the sets Bc for c = kπ/m, k ∈ {−m + 1, . . . ,m − 1}. Its Hausdorff
measure is (2m−1)b which is bounded below by Cλ2,mb for m ̸= 0 and some C > 0 independent
of m.

This completes the proof of Theorem 3.
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