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Background. Debio 1143, a potent orally available SMACmimetic, targets inhibitors of apoptosis proteins (IAPs) members and is
currently in clinical trials. In this study, nuclear imaging evaluated the effects of Debio 1143 on tumor cell death andmetabolism in
a triple-negative breast cancer (TNBC) cell line (MDA-MB-231)-based animal model.Methods. Apoptosis induced by Debio 1143
was assessed by FACS (caspase-3, annexin 5 (A5)), binding of 99mTc-HYNIC-Annexin V, and a cell proliferation assay. 99mTc-
HYNIC-Annexin V SPECTand [18F]-FDG PETwere also performed in mice xenografted with MDA-MB-231 cells. Results. Debio
1143 induced early apoptosis both in vitro and in vivo 6 h after treatment. Debio 1143 inhibited tumor growth, which was
associated with a decreased tumor [18F]-FDG uptake when measured during treatment. Conclusions. +is imaging study
combining SPECT and PET showed the early proapoptotic effects of Debio 1143 resulting in a robust antitumor activity in
a preclinical TNBC model. +ese imaging biomarkers represent valuable noninvasive tools for translational and clinical research
in TNBC.

1. Background

+e World Health Organization (WHO) reported that 1.7
million women were diagnosed with breast cancer in 2012
with a global number of 6.3 million women diagnosed with
breast cancer between 2008 and 2012 [1]. Since the lastWHO
report in 2008, breast cancer incidence and mortality have
increased by more than 20% and 14%, respectively. Breast
cancer is also the leading cause of cancer-related death
among women (522,000 deaths in 2012) and the most fre-
quently diagnosed cancer in 140 of 184 countries worldwide
[1]. +e combination of surgery, radiation therapy,

chemotherapy, and hormone therapy represents the com-
mon therapeutic strategies used nowadays in clinic to treat
breast cancer. Clinical and pathologic features (based on
conventional histology and immunohistochemistry) allow
breast cancer classification as hormone-receptor positive
(estrogen receptor (ER) and progesterone receptor (PR)),
HER2 (human epidermal growth factor receptor 2) positive,
and triple negative (ER, PR, and HER2 negative). +is
classification process is currently necessary for prognosis
evaluation and individualized selection of therapy. Triple-
negative breast cancer (TNBC) is a heterogeneous disease
associated with a high risk of recurrence and poor prognosis.
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+erapeutic options for TNBC are currently limited to
cytotoxic therapy, whereas other types of breast cancer
expressing receptors are eligible for targeted therapies such
as antihormonal or anti-HER2 therapies. +erefore, TNBC
is considered as a real challenging disease since no targeted
therapies has been approved yet. In this context, numerous
new targets are currently under investigations for phar-
macological purposes such as Notch signaling, Wnt/β-cat-
enin, and Hedgehog pathways; EGFR, PARP1, mTOR, TGF-
β, and angiogenesis inhibitors [2]. +e targeting of the in-
hibitors of apoptosis proteins (IAPs), which are key negative
regulators of programmed cell death, represents another
promising approach in managing TNBC. Indeed, IAPs have
been reported to be upregulated in most cancer types
contributing to tumor cell survival and resistance to cancer
therapy [3]. Among IAPs, four of them, namely, XIAP,
cIAP1, cIAP2, and ML-IAP, negatively regulate apoptosis by
downregulating the activity of caspases [4]. In addition to
apoptosis, IAPs also influence a multitude of other cellular
processes, such as ubiquitin-dependent signaling events that
regulate activation of the nuclear factor κB (NFκB), which in
turn drive the expression of genes important for in-
flammation, immunity, cell migration, and cell survival. It
has been reported that XIAP protein expression was sig-
nificantly correlated with a more aggressive tumor pheno-
type and decreased overall and disease-free survival,
suggesting a prognostic value of XIAP for invasive ductal
breast cancer with triple-negative phenotype [5]. IAPs are
antagonized by the endogenous Second Mitochondria-
derived Activator of Caspases (SMAC), also called DIA-
BLO (Direct IAP-Binding Protein with Low PI). SMAC is
released from mitochondria into the cytosol when mito-
chondria are damaged by apoptotic stimuli such as UV
radiation [4]. Such a mechanism has paved the way for the
design of SMAC-mimetic agents to promote apoptosis in
cancer cells by antagonizing the activity of IAPs and create
conditions in which apoptosis can proceed. A number of
SMAC mimetics have been advanced into early clinical
development for cancer treatment as single agent or in
combination. Interestingly, it has been proposed that TNBC
may be more sensitive to SMAC-mimetic drugs than other
malignancies, suggesting that SMAC-mimetic could repre-
sent a targeted therapy of TNBC which remains to be
discovered [4]. Recently, Debio 1143, a new potent orally
available monovalent SMAC mimetic targeting multiple
IAPsmember, has been developed and is currently in clinical
trials for cancer treatment [6]. Molecular imaging certainly
represents a reliable technique to improve such a drug
development since it is recognized to expedite cancer drug
discovery, predict responders versus nonresponders to
specific treatments, and help determine the overall effec-
tiveness of therapies longitudinally [7]. In oncology, mo-
lecular imaging of glucidic metabolism with [18F]-FDG PET
has already a crucial impact on several aspects from
detection/staging to monitoring/predicting therapeutic ef-
fects in both preclinical and clinical settings, so that it re-
mains a gold standard procedure in management of various
malignancies. Nevertheless, even if [18F]-FDG uptake re-
flects the viable tumor cell fraction, it also accumulates in

noncancer tissues (e.g., inflammatory lesions, brain, and
heart) what can induce pitfalls in images interpretation. +e
combination of [18F]-FDG imaging with other modalities
and/or probes able to image a specific biomarker related to
the mechanism of action of the anticancer drugs to be tested
is then a reliable way to circumvent these drawbacks. Most of
anticancer drugs typically induce cell death through in-
duction of apoptosis which can be noninvasively imaged
with molecular imaging probe such as 99mTc-HYNIC-
Annexin V. Such a noninvasive imaging measure of apo-
ptosis would therefore be helpful for demonstrating the
efficacy of apoptosis-inducing treatments (e.g., Debio 1143)
without requiring tissue sampling. As [18F]-FDG, 99mTc-
HYNIC-Annexin V is a well-known radiotracer and has
been extensively assessed in preclinical and clinical settings,
making it a safe and reliable probe in spite of a certain lack of
specificity since it also labels necrosis [8]. In the current
study, we combined SPECT and PET imaging techniques as
pharmacodynamic biomarkers to measure the early pro-
apoptotic and antitumor effects of Debio 1143 in a pre-
clinical TNBC model. Using MDA-MB-231 xenografted
mice, we successfully demonstrated that Debio 1143 induces
apoptosis (99mTc-HYNIC-Annexin V) at early time points
and reduced glucidic metabolism ([18F]-FDG PET) over
time, which was accompanied by a robust antitumor activity.
+ese imaging biomarkers represent valuable noninvasive
tools for translational research and might be useful for
SMAC mimetic clinical development in TNBC.

2. Materials and Methods

Materials and methods are available in detail in Supple-
mental Methods.

2.1. Cell Culture (MDA-MB-231). Breast adenocarcinoma
MDA-MB-231 cells (European Collection of Authenticated
Cell Cultures (ECACC), Salisbury, UK) have been cultured
as a monolayer in RPMI 1640 containing 2mM of L-glu-
tamine (Lonza, Verviers, Belgium) supplemented with 10%
fetal bovine serum (Lonza) at 37°C in a humidified atmo-
sphere (5% CO2).

2.2.MTSAssay. MDA-MB-231 cells were plated in 190 µL of
medium per well in flat-bottom 96-well plates (Dutscher,
Brumath, France). Plates were incubated in a drug-free
culture medium at 37°C in a humidified atmosphere (5%
CO2) for 24 hours before experiments. +en, cells have been
incubated for 72 h with 10 increasing concentrations of
Debio 1143 (5 pM to 10 µM) and paclitaxel (0.5 pM to 1 µM).
Paclitaxel and Debio 1143 have been diluted in 0.3% DMSO.
See details in Supplemental Methods.

2.3. Flow Cytometry. MDA-MB-231 cells were plated in 6-
well flat-bottom plates (Dutscher) in 3.8ml of RPMI 1640
and incubated at 37°C in a humidified atmosphere (5% CO2)
for 24 hours before treatments. Debio 1143 (final concen-
tration 0.3, 1, and 3 µM in 0.3% DMSO) or staurosporine

2 Contrast Media & Molecular Imaging



(final concentration 0.3, 1, and 3 µM in 0.3% DMSO) was
added to the corresponding wells, and control (vehicle) cells
received 0.3% DMSO alone and incubated for 6 hours at 37°C
in a humidified atmosphere (5% CO2). +e effect of Debio
1143 and staurosporine on plasmatic membrane disruption
was evaluated using an Annexin V-FITC/7-AAD KIT
(BeckmanCoulter, Roissy, France). Alternatively, the caspase-
3 activity of MDA-MB-231 cells treated 24 h with Debio 1143
or staurosporine (both at a final concentration of 0.3, 1, and
3 µM in 0.3% DMSO) was evaluated by FACS. Cells were
plated in 25 cm2 flat-bottom flasks (Dutscher) in 9.5ml of
RPMI 1640 and incubated at 37°C under 5% CO2 for 24 hours
before treatment. After incubation, cells were detached from
the culture flask using trypsin, transferred to FACS tubes, and
stained with PE Active Xaspase-3 Apoptosis KIT (BD
Pharmigen, France). See details in Supplemental Methods.

2.4. 99mTc-HYNIC-Annexin V. Annexin-V (A5) was func-
tionalized with a bifunctional chelating agent (HYNIC) and
was radiolabeled with technetium 99m (99mTc) according
to an existing standardized protocol. Briefly, HYNIC-
Annexin-V was provided by NIH and shipped frozen and
stored at −80°C until use. Gamma-counting results are
represented as the percentage of radioactivity bound to the
apoptotic cells and will be determined according to %Bound
� (A/A + B) × 100 (A: activity of the cell pellet; B: activity of
the supernatant). See details in Supplemental Methods.

2.5. Animal Experiments. All animal experiments were
performed according to the guidelines of the Ministère de la
Recherche (Paris, France). All experiments were approved by
the ethical committee of the “centre George François Leclerc”
(Dijon, France). Tumors were induced subcutaneously by
injecting 5.106 of MDA-MB-231 cells in 200 µL of RPMI 1640
containingmatrigel (50 : 50, v : v, BD Biosciences, France) into
the right shoulder of female SCID mice.

In vivo evaluation of apoptosis was performed with
SPECT-CT imaging (99mTc-HYNIC-Annexin V). When
tumors reached a mean volume of 340mm3, 99mTc-HYNIC-
Annexin V SPECT-CT imaging was performed 6 and 24
hours after a single administration of vehicle (p.o., n � 8),
Debio 1143 (p.o., 100mg/kg, n � 8), or paclitaxel (IV,
7.5mg/kg, n � 8, Taxol®, 6mg/mL, Bristol-Myers Squibb
SpA, France). Mice were anesthetized through isoflurane
inhalation for intravenous injection (tail vein) of 10–20MBq
of 99mTc-HYNIC-Annexin V one hour prior the imaging
study. At the end of the last image acquisition, the animals
were sacrificed, and tumors were harvested and used for
gamma counting in order to confirm image analyses.

In vivo evaluation of antitumor activity was performed
with [18F]-FDG PET-CT. Treatments started when the tu-
mors reached a mean volume of 100–200mm3. +e animals
from group 1 (n � 4) received daily p.o. administrations of
vehicle for 14 consecutive days (D11 to D25), the animals
from group 2 (n � 4) received daily p.o. administrations of
Debio 1143 at 100mg/kg for 14 consecutive days (D11 to
D25), and the animals from group 3 (n � 4) received one IV
injection of paclitaxel at 7.5mg/kg every 7 days for a total of

2 injections (D18 and D25). [18F]-FDG-PET-CT imaging
was performed in overnight fasted mice at one week of
treatment (D18), two weeks of treatment (D25), and one
week after last treatment (D32). Mice were anesthetized
through isoflurane inhalation for intravenous injection (tail
vein) of 15–20MBq of [18F]-FDG 30 minutes prior the
imaging study. Alternatively, mice receiving vehicle, Debio
1143, or paclitaxel received an intravenous injection (tail
vein) of 15–20MBq of [18F]-FDG and were immediately
imaged by dynamic PET-CT for 240 seconds to evaluate
tracer circulation and tumor perfusion.

At the end of the last imaging, the mice were in-
traperitoneally injected with an overdose of pentobarbital for
euthanasia and tumors harvested for gamma counting
(Perkin Elmer, France). See details in Supplemental Methods.

2.6. Statistical Analysis. All results are presented as mean ±
SEM. Statistical analysis was determined using one-way
(99mTc-HYNIC-Annexin V experiments) or two-way
ANOVA ([18F]-FDG PET-CT). Analysis was performed
with GraphPad Prism 6.0 (GraphPad Software Inc.), and in
all cases, a p value less than 0.05 was considered significant.

3. Results

3.1. <e Cytotoxic Activity of Debio 1143 on Human Breast
Adenocarcinoma Cells Is Comparable to Paclitaxel. +e in-
cubation of MDA-MB-231 cells with increasing concen-
tration of Debio 1143 and paclitaxel demonstrated a dose-
dependent cytotoxic activity of both drugs on human breast
adenocarcinoma cells.+emean IC50 of D1143 was 137 nM,
while the mean IC50 of paclitaxel was 7.44 nM (Figure 1(a)).
Our results confirm the findings of previous studies which
report an IC50 of 144 nM for Debio 1143 [9].

3.2. Debio 1143 Induces Apoptosis of Human Breast Adeno-
carcinoma Cells. After 6 hours of incubation of MDA-MB-
231 cells with Debio 1143, a significant dose-dependent
increase of cells in early apoptosis (Annexin-V+/7-AAD-)
was observed compared to vehicle-treated cells (Figure 1(b)).
+is increase in early apoptosis was observed starting at
0.3 µM with a maximal effect at 3 µM of Debio 1143.
Staurosporine, used as positive control in this experiment,
also induced a significant increase in early apoptosis in
MDA-MB-231 cells (Figure 1(b)). Interestingly, Debio 1143
also induced a significant increase in late apoptosis/necrosis
(Annexin-V+/7-AAD+) of MDA-MB-231 cells starting at
1 µM and increased with dose (Figure 1(b)). +ese results
were confirmed by a dose-dependent increase in proportion
of cells harboring active caspase-3, the major effector of
apoptosis, after Debio 1143 treatment (Figure 1(c)). Fur-
thermore, gamma counting of MDA-MB-231 cells after
staining with 99mTc-HYNIC-Annexin V, which specifically
stains Annexin-V positive cells, demonstrated that Debio
1143 (3 µM) induced an increase in cells presenting
Annexin-V (Figure 1(d)). All together, these results high-
light the proapoptotic effects of Debio 1143 on human breast
adenocarcinoma cells.
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3.3. Debio 1143 Induces Tumor-Apoptosis In Vivo in
a Human Breast Adenocarcinoma Murine Model.
99mTc-HYNIC-Annexin V SPECT-CT imaging experiments
were carried out when tumors reached a mean volume of

340mm3. Imaging was performed at 6 h after treatment for
vehicle-treated mice and at 6 and 24 h after treatment for
paclitaxel- and Debio 1143-treated mice. One hour after
99mTc-HYNIC-Annexin V administration, mice from all
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Figure 1: D1143 induces apoptosis of human breast adenocarcinoma cells. (a) Viable MDA-MB-231 cells (%) after treatment with
increasing concentration of paclitaxel (left panel) or D1143 (right panel) for 72 h. Paclitaxel and D1143 are expressed as log[con-
centration] for IC50 determination. Results are presented as mean ± SEM; n � 8. (b) Annexin-V+/7-AAD- (left panel) and Annexin-V
+/7-AAD+ (right panel) MDA-MB-231 cells (%) after treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or staurosporine (3 µM) for 6 h.
Results are presented as mean ± SEM; n � 4; ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001. (c) Active caspase-3 positiveMDA-MB-231 cells (%) after
treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or staurosporine (3 µM) for 6 h. Results are presented as mean ± SEM; n � 4; ∗∗p< 0.01,
∗∗∗p< 0.001. (d) Bound/Total 99mTc-HYNIC-Annexin VMDA-MB-231 cells (%) after treatment with D1143 (0.3 µM, 1 µM, and 3 µM) or
staurosporine (3 µM) for 6h. Results are presented as mean ± SEM; n � 4; ∗p< 0.05.
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group showed an apparent similar whole body distribu-
tion of radioactivity localized mainly in kidneys, bladder,
and liver concentrating more than 80% of overall radio-
active signal as previously described in the literature ([8];
Figures 2(a) and 2(b)). A weak 99mTc-HYNIC-Annexin V
signal was observed in tumors from vehicle-treated mice,
comparable with signal observed in paclitaxel-treated mice.
Interestingly, a significant increase in tumor 99mTc-HYNIC-
Annexin V signal was observed at 6h following Debio 1143
treatment (Figures 2(c) and 2(d)). An increase in 99mTc-
HYNIC-Annexin V signal was also observed after 24 h of
paclitaxel although not significant (Figure 2(d)). +ese results
were consistent with ex vivo gamma counting of tumors with
an increase of 99mTc-HYNIC-Annexin V tumor uptake 6 h
after Debio 1143 compared to vehicle-treated mice (Figure 2
(e)). All together, these results demonstrate that Debio 1143
specifically induces tumor apoptosis in vivo in a human breast
adenocarcinoma murine model.

3.4. InVivoEvaluationof theAntitumorActivity ofDebio1143
by [18F]-FDGPET-CT. After tumor induction, mice received
vehicle, Debio 1143, or paclitaxel for 2 weeks. Treatment
started when mean tumor volume reached approximately
120–170mm3 (D11). Mice received corresponding treatment
from D11 to D25 (2 weeks) and were left untreated for
another week up to D32. While mice receiving vehicle
continued to gain weight throughout the experiment, pac-
litaxel and Debio 1143 induced a slight and transient decrease
of body weight recovered once treatments ended (Figure 3
(a)). Tumor volume increased regularly and similarly in
vehicle-treated mice from D11 (treatment initiation) to D32
(end of experiment; Figure 3(b)). Paclitaxel did not induce
any decrease in tumor growth throughout the experiment,
while Debio 1143 displayed a significant antitumor activity
after 2 weeks of treatment (D25) that was sustained up to D32
(Figure 3(b)). [18F]-FDG PET-CT was performed on D18 (1
week of treatment), D25 (2 weeks of treatment), and D32 (1
week after treatment end). [18F]-FDG uptake measured by
SUV (standardized uptake values) max and mean SUV was
significantly lower in Debio 1143-treated mice compared to
vehicle at D18 (Figures 3(c)–3(e)). [18F]-FDG uptake
remained lower in Debio 1143-treated mice compared to
vehicle throughout the experiment but not significantly at
D25 and D32 (Figures 3(c)–3(e)). Paclitaxel also reduced not
significantly [18F]-FDG uptake as compared to vehicle-
treated mice (Figures 3(c)–3(e)). Interestingly, gamma
counting performed on tumors at D32 (1 week after treat-
ment end) confirmed our imaging results with a significant
lower tumor [18F]-FDG uptake in Debio 1143 and paclitaxel-
treated mice compared to vehicle (Figure 3(f)). We also
performed dynamic [18F]-FDG PET-CT imaging for 4
minutes after injection on all groups at D18, D25, and D32 to
evaluate tumor perfusion. Interestingly, dynamic monitoring
of mean tumor SUV (every 5 seconds for 240 seconds)
showed a significant decrease in tumor perfusion in mice
treated with Debio 1143 and paclitaxel at D18 and D32 and
only in mice treated with D1143 at D25 (Figures 4(a)–4(c)).
No changes were observed in mean aorta SUV (control

[18F]-FDG SUV). All together, these results demonstrate the
antitumor activity of Debio 1143 and highlight [18F]-FDG
PET-CT imaging as a reliable method to follow the activity of
Debio 1143 in human breast adenocarcinoma tumors in
a noninvasive manner.

4. Discussion

In order to improve the management of malignancies, it is
now well established that an early and reliable assessment of
therapy response is a crucial issue. It allows guidance of the
oncologist to the best options for the patients: modulations
of the doses, treatment switching, or treatment combina-
tions. In the current study, using two different molecular
imaging modalities (SPECT-CT and PET-CT), we assessed
the effect of Debio 1143, a new potent oral SMAC mimetic,
as a single agent in a preclinical model of TNBC, in im-
munodeficient mice xenografted with MDA-MB-231 cells.
+e xenografted models still constitute a major preclinical
screen for the development of novel cancer therapeutics,
included human-targeted therapies. Despite limitations,
these models have identified clinically efficacious agents,
suggesting that they are still a “workhorse” of the phar-
maceutical industry [10]. TNBC represents 15–20% of breast
cancers and remains a challenging disease regarding its
aggressive nature, its poor prognosis, and the lack of targeted
therapies. As no well-defined molecular targets have been
described so far, cytotoxic chemotherapy is currently the
only treatment option for TNBC whose major drawback is
an unacceptable deterioration in the quality of life. Cur-
rently, paclitaxel is commonly used in clinical practice to
treat TNBC. However, the clinical efficacy of paclitaxel has
been weakened by the development of drug resistance and
the emergence of side-effects, including neutropenia and
neurotoxicity [11]. Paclitaxel induces apoptosis by targeting
microtubules and resulting in cell cycle arrest [12]. Although
paclitaxel has been shown to eliminate most tumor cells
including TNBC, paclitaxel resistance has been estimated to
cause treatment failure in more than 90% of patients [13].
+erefore, the development of alternative therapeutic
strategies is essential. Inhibitor of apoptosis proteins (IAPs)
play key roles in resistance to cell death induced by a variety
of anticancer drugs in various indications including in
TNBC, and thus are promising drug targets [4]. Debio 1143
(a.k.a. AT-406 or SM-406) is a monovalent, orally available,
small molecule antagonist of IAPs in clinical development
that has demonstrated potent single-agent antitumor ac-
tivity in multiple models of human cancer such as lung
adenocarcinoma [14, 15], head and neck squamous cell
carcinoma [16], and TNBC [9, 17]. Debio 1143 has also been
shown to work synergistically with conventional chemo-
therapeutic agents (such as taxanes) or radiotherapy RT in
nonclinical cancer models [14, 16]. SMAC mimetics have
been shown to promote apoptosis by inhibiting IAP-
mediated caspase repression [18]. In vitro SMAC-
mimetics treatment has been shown to increase Annexin-
V positive cells and activate caspases-3 and -8 in various
cancer cell lines [16, 19, 20]. Our results are in line with
previous studies and confirm the increase in Annexin-V and
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activation of caspase-3 after Debio 1143 treatment in MDA-
MB-231 cells. Our results also demonstrate that, this increase
in Annexin-V can be measured in tumor in vivo in a pre-
clinical model of breast adenocarcinoma with radiolabelled
99mTc-HYNIC-Annexin V. +is tool could represent a reli-
able way to monitor early apoptosis induced by anticancer

agents in order to evaluate early treatment efficacy and allow
improvement of therapeutic strategies.

Interestingly, Debio 1143 presented a higher antitumor
activity in vivo in comparison with paclitaxel despite an
apparent higher intrinsic cytotoxic activity of paclitaxel in
vitro suggesting that targeting IAPs may offer the potential
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Figure 2: D1143 induces tumor apoptosis in vivo in a human breast adenocarcinoma murine model. (a) In vivo biodistribution of 99mTc-
HYNIC-Annexin V in tumor (MDA-MB-231 cells) bearing SCID mice (tumor in the right shoulder) 6 h and 24 h after receiving paclitaxel
(iv), D1143 (po), or vehicle as control. Liver/spleen, kidneys, bladder, spine, and tumor activity are expressed as % ID/mm3. Results are
presented as mean ± SEM; n � 8. (b) Representative SPECT pictures of 99mTc-HYNIC-Annexin V in tumor (MDA-MB-231 cells) bearing
SCIDmice 6 h and 24 h after receiving paclitaxel (iv), D1143 (po), or vehicle as control. (c) Representative tumor-centered SPECTpictures of
tumor (MDA-MB-231 cells) bearing SCID mice 6 h after receiving D1143 (po). (d) Specific 99mTc-HYNIC-Annexin V tumor activity (%
ID/mm3) of tumor- (MDA-MB-231 cells-) bearing SCIDmice (tumor in the right shoulder) 6 h and 24 h after receiving paclitaxel (iv), D1143
(po), or vehicle as control. Results are presented as mean ± SEM; n � 8; ∗p< 0.05. (e) Gamma counting of 99mTc-HYNIC-Annexin V in
tumors in SCID mice 6h and 24h after receiving paclitaxel (iv), D1143 (po), or vehicle as control (%ID/g). Results are presented as mean ±
SEM; n � 8 and n � 2 for the paclitaxel group 6 h, ∗p< 0.05.
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for a greater therapeutic window than conventional che-
motherapy in vivo. In addition, our results show that Debio
1143 and placlitaxel presented differentiated proapoptotic
effects over time in vivo. Debio 1143 induced an earlier and
stronger cancer cell apoptosis as early as 6 h after treatment,

whereas paclitaxel induced-apoptosis was only detectable
(although not significant) 24 h after treatment. Apoptosis
is an early event expected to occur after successful che-
motherapy and is highly predictive of treatment success.
+us, apoptosis quantification represents a major way to
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Figure 4: In vivo dynamic [18F]-FDG PET-CT. (a) Dynamic [18F]-FDG PET-CTperformed on tumor-bearing SCIDmice receiving paclitaxel,
D1143, or vehicle at D18 (1 week of treatment). Mean aorta SUV (left panel) and mean tumor SUV (right panel) have been measured every 5
seconds for 240 seconds. (b) Dynamic [18F]-FDG PET-CTperformed on tumor-bearing SCID mice receiving paclitaxel, D1143, or vehicle at
D25 (week of treatment). Mean aorta SUV (left panel) andmean tumor SUV (right panel) have beenmeasured every 5 seconds for 240 seconds.
(c) Dynamic [18F]-FDG PET-CT performed on tumor-bearing SCID mice receiving paclitaxel, D1143, or vehicle at D32 (1 week after
treatment). Mean aorta SUV (left panel) and mean tumor SUV (right panel) have been measured every 5 seconds for 240 seconds.
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assess therapy response. Annexin V (A5) has been widely
used in basic and clinical research as an apoptosis marker in
conjunction with propidium iodide to distinguish be-
tween apoptotic and necrotic cells. +erefore, it has been
labeled with radionuclides for measuring apoptosis in vitro
and in vivo in animal models and patients [8, 21, 22]. 99mTc-
HYNIC-Annexin V, used in the current study, is the most
widely applied probe in preclinical and clinical settings
for A5 imaging [23]. Kemerink et al. demonstrated that
highest uptake of 99mTc-HYNIC-Annexin V in humans
was observed in the kidneys followed by the liver and spleen
[24]. +ese results are in accordance with our findings in
mice where the highest uptake was found in the kidney at 6h
and 24h.

Moreover, 99mTc-HYNIC-Annexin V showed a fast
blood clearance with more than 90% of the tracer cleared
with a half-life of 24min [24], allowing imaging at 6 h after
injection. +erefore, 99mTc-HYNIC-Annexin V has been
used successfully to assess therapy response in patients after
radiation therapy or chemotherapy [25–27]. 99mTc-HYNIC-
Annexin V uptake has also been demonstrated to predict
prognostic value and efficacy of anticancer therapies. In our
study, Debio 1143 induced a significantly higher tumor
(MDA-MB-231) uptake of 99mTc-HYNIC-Annexin V
compared to vehicle and paclitaxel. In parallel, Debio 1143
showed an improved efficacy in preventing tumor growth
compared to vehicle and paclitaxel after 1 and 2 weeks of
treatment and remained 1 week after treatment arrest
confirming the predictive value of 99mTc-HYNIC-Annexin
V tumor uptake on therapy efficacy. Unexpectedly, pacli-
taxel did not induce a strong in vivo apoptosis in our study
and, in parallel, did not prevent tumor growth. Despite some
controversy, MDA-MB-231 has been demonstrated to be
rather insensitive to paclitaxel compared to other TNBC
cells [28–30]. Interestingly, Panayotopoulou et al. identified,
by high throughput screening, that SMAC mimetics were
able to eliminate MDA-MB-231 short-term paclitaxel re-
sistance suggesting a benefit of such drugs for TNBC patients
[31]. Similar results have also been found in other cancer
types including ovarian cancer [32], non-small cell lung
cancer [14], and breast cancer [33], in which SMAC mi-
metics were able to potentiate the effect of standard che-
motherapy, including paclitaxel [14, 34, 35]. However, this
study did not evaluate the efficacy of the combination of
SMAC mimetics and paclitaxel with [18F]-FDG PET im-
aging. Moreover, Panayotopoulou et al. identified that long-
term paclitaxel was associated with desensitization to SMAC
mimetics. +erefore, combination therapy of SMAC mi-
metics and short-term paclitaxel could be an effective
therapeutic strategy for TNBC.

Most interestingly, the effect of the SMAC mimetic
birinapant on caspase-3 activation has recently been in-
vestigated by in vivo imaging [36]. In this study, Yang et al.
used a specific caspase-3 PET radiotracer, [18F]ICMT-11,
and demonstrated that birinapant induced in vitro a rapid
and transient activation of caspase-3 on MDA-MB-231 cells
6 h after treatment. Moreover, a similar activation of
caspase-3 was also shown in vivo in a preclinical model of
colon cancer. +ese results are in accordance with Debio

1143 presented in the current study using 99mTc-HYNIC-
Annexin V. In addition, Yang et al. also observed a decrease
[18F]-FDG uptake and a delay in tumor growth in vivo after
birinapant treatment similarly to what was observed with
Debio 1143 in our study. Interestingly, the in vivo activation
of caspase-3 and decrease in [18F]-FDG uptake induced by
birinapant was only transient and returned to baseline 24 h
and 48 h after treatment highlighting the need of multiple
dosing of SMAC mimetics to elicit antitumor activity as
monotherapy.

5. Conclusions

[18F]-FDG PET is nowadays the main tool for detection,
staging, and monitoring of tumor clinically. However, [18F]-
FDG uptake accumulates in noncancer tissues and can be
influenced by physiologic uptake of FDG (for example,
infection and inflammation) [37].

Moreover, some adenocarcinoma are characterized by
low-grade or absence of FDG uptake [38, 39]. In our study,
we demonstrate that both 99mTc-HYNIC-Annexin V and
[18F]-FDG PET data can be associated to predict therapy
efficacy and outcome. +erefore, the combination of [18F]-
FDG PET and 99mTc-HYNIC-Annexin V appears as a reli-
able and noninvasive way to monitor early therapy efficacy
and subsequent tumor activity in TNBC patients.
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