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STRONGEST ATTRACTION ON A RELATIVISTIC

ELECTRON?

AN OPEN PROBLEM IN RELATIVISTIC QUANTUM

MECHANICS

MARIA J. ESTEBAN, MATHIEU LEWIN, AND ÉRIC SÉRÉ

Abstract. In this article we formulate several conjectures concerning
the lowest eigenvalue of a Dirac operator with an external electrostatic
potential. The latter describes a relativistic quantum electron moving
in the field of some (pointwise or extended) nuclei. The main question
we ask is whether the eigenvalue is minimal when the nuclear charge
is concentrated at one single point. This well-known property in non-
relativistic quantum mechanics has escaped all attempts of proof in the
relativistic case.
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This article is dedicated to Catriona Byrne on the occasion of her retire-
ment. Her extremely good knowledge of the mathematical community and
profession and her kindness made her presence in mathematical events al-
ways enjoyable and very useful.

1. A conjecture for relativistic electrons

In this note we describe some conjectures which we recently coined in [13,
14], concerning the effect of a nuclear charge on a relativistic electron.
We first describe the main conjecture somewhat informally, before we dis-
cuss more thoroughly its proper mathematical formulation. Consider a
non-negative finite Borel measure µ on R3 and the corresponding linear
Schrödinger operator

− ∆

2
− µ ∗ 1

|x|
, (1)

which describes a non-relativistic electron moving in the Coulomb potential
generated by the positive charge distribution µ, in atomic units. The lowest
(negative) eigenvalue of this operator is given by the variational principle [26]

λ1

(
−∆

2
− µ ∗ 1

|x|

)
= inf

ϕ∈H1(R3)´
R3 |ϕ|

2=1

{
1

2

ˆ
R3

|∇ϕ(x)|2 dx−
ˆ
R3

(
µ ∗ 1

| · |

)
(x) |ϕ(x)|2 dx

}
. (2)
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Since this is an infimum over affine functions of µ, we deduce immediately
that the eigenvalue is a concave function of µ. Therefore, it is minimized,
at fixed mass µ(R3), when µ is proportional to a delta and we have

λ1

(
−∆

2
− µ ∗ 1

|x|

)
> λ1

(
−∆

2
− µ(R3)

|x|

)
= −µ(R3)2

2
(3)

for every µ > 0. The interpretation is that the lowest possible electronic
energy is reached by taking the most concentrated charge distribution, at
fixed total charge µ(R3). In fact, in [27, 25] it is proved that the eigenvalue
decreases when µ is deformed using an arbitrary contraction, for instance
a dilation α3µ(α·) with α > 1. This was generalized to molecular systems
in [27, 19, 25], where it is proved that the electronic part of the ground state
energy decreases when all the distances between the nuclei are decreased.

Relativistic effects play an important role in the description of quantum
electrons in molecules containing heavy nuclei, even for not so large values
of the nuclear charge. A proper description of such systems is based on the
Dirac operator [38, 11]. This is a first-order differential operator which has
very different properties compared to its non-relativistic counterpart −∆/2
in (1). For instance the spectrum of the free Dirac operator is not semi-
bounded which prevents from giving an unambiguous definition of a “ground
state” and turns out to be related to the existence of the positron [11]. In
addition, because of its scaling properties, the Dirac operator has a critical
behavior with respect to the Coulomb potential 1/|x| which gives a bound
Z 6 137 on the highest possible charge of atoms in the periodic table, for
point nuclei.

In atomic units for which m = c = ~ = 1, the free Dirac operator D0 can
be written as

D0 = −iα ·∇ + β = −i
3∑

k=1

αk∂xk + β, (4)

where α1, α2, α3 and β are 4 × 4 Hermitian matrices which satisfy the
following anticommutation relations: αkα` + α`αk = 2 δk` 1,

αkβ + βαk = 0,
β2 = 1.

The usual representation in 2× 2 blocks is given by

β =

(
I2 0
0 −I2

)
, αk =

(
0 σk
σk 0

)
(k = 1, 2, 3) ,

where the Pauli matrices are defined as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5)

The operator D0 is self-adjoint on the domain H1(R3,C4) in the Hilbert
space L2(R3,C4) and its spectrum is σ(D0) = (−∞,−1]∪ [1,∞) [38]. More-
over, (D0)2 = −∆ + 1.
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A relativistic electron in the presence of the nuclear charge µ is described
by the Dirac-Coulomb operator

D0 − µ ∗
1

|x|
(6)

in place of the non-relativistic operator (1). In our units µ represents the
nuclear charge multiplied by the fine-structure constant α ' 1/137. We defer
the precise definition of the Dirac-Coulomb operator to the next section.
Eigenvalues in the gap (−1, 1) physically correspond to stationary states of
the relativistic electron. Therefore it seems natural to expect that the lowest
eigenvalue in (−1, 1) will again be minimized for the Dirac measure µ(R3)δ0,
like in the Schrödinger case (3). This is the conjecture which we recently
made in [13, 14].

Conjecture 1 (General charges [13, 14]). For any non-negative Borel mea-
sure µ such that µ(R3) 6 1, the lowest eigenvalue in the gap (−1, 1) satisfies

λ1

(
D0 − µ ∗

1

|x|

)
> λ1

(
D0 −

µ(R3)

|x|

)
=
√

1− µ(R3)2. (7)

In relativistic quantum chemistry one often relies on extended nuclear
charges, hence the interest of looking at any possible µ. If we restrict our
attention to pointwise nuclei, then we have µ =

∑
m θmδRm and the conjec-

ture becomes

Conjecture 2 (Multi-center potentials [13, 14]). We have

λ1

(
D0 −

M∑
m=1

θm
|x−Rm|

)
> λ1

(
D0 −

∑M
m=1 θm
|x|

)
=

√√√√1−

(
M∑
m=1

θm

)2

(8)

for all M > 2, all R1, ..., RM ∈ R3 and all θm > 0 so that
∑M

m=1 θm 6 1,

Since any µ can be approximated by a combination of Dirac deltas for
the narrow topology, Conjecture 2 is equivalent to Conjecture 1. Indeed λ1

is continuous for this topology [14, Lemma 12].
The case M = 2 was conjectured by Klaus in [23, p. 478] and by Briet-

Hogreve in [3, Sec. 2.4]. Numerical simulations from [2, 30] seem to confirm
the conjecture for M = 2, even for large values of the nuclear charges.
In [13, 14] and here we make the stronger conjecture that the same holds
for any M . Note that the numerical simulations seem to indicate that λ1

decreases when the Euclidean distance between nuclear charges is decreased,
a property proved by Lieb and Simon [27, 25] in the non-relativistic case.
This leads to a third conjecture:

Conjecture 3 (Monotonicity). Let µ be a non-negative Borel measure such
that µ(R3) 6 1 and let f : R3 → R3 be a contraction for the Euclidean norm
of R3. Then, denoting by f∗µ the pushforward of µ by f , we have

λ1

(
D0 − µ ∗

1

|x|

)
> λ1

(
D0 − (f∗µ) ∗ 1

|x|

)
. (9)

Conjecture 1 is a special case of Conjecture 3, as can be seen by taking
f = 0. In this note we only discuss Conjecture 1, which is already far from
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obvious. The main difficulty is that the lowest Dirac eigenvalue in the gap
(−1, 1) is not given by a minimum like in (2). In fact, as quickly explained
below, it is given by a min-max formula [17, 7, 35, 13]. Unfortunately, it
does not seem easy to derive a concavity property of λ1(D0 − µ ∗ |x|−1)
from this variational characterization, and this prevents us from using the
same argument as in the nonrelativistic case. However the min-max formula
implies that λ1(D0 +V ) is monotone in V , so that Conjecture 1 holds true if
one restricts it to radially symmetric measures µ. Indeed, for such measures
we have the pointwise bound(

µ ∗ 1

| · |

)
(x) 6

µ(R3)

|x|
,

by Newton’s theorem [26] and (7) follows. If one only considers radial con-
tractions f , Conjecture 3 is also true for radially symmetric measures µ. No
other case seems to have been proved in the literature.

In the next section we discuss the proper definition of the Dirac operator
D0−µ ∗ |x|−1 in (6) and the exact meaning of the “lowest eigenvalue in the
gap” λ1(D0 − µ ∗ |x|−1) appearing in the conjecture.

2. Dirac operator with external charges

2.1. Self-adjointness. For Coulomb-like potentials V , it is not an easy
task to define D0 + V as a self-adjoint operator. The reason is that 1/|x|
has the same homogeneity as the differential part α ·∇ of the free Dirac
operator. In the pure Coulomb case µ = νδ0, everything is explicit. The
operator D0− ν|x|−1 has a unique self-adjoint realization for ν 6

√
3/2 and

infinitely many for ν >
√

3/2. For ν ∈ (
√

3/2, 1] one self-adjoint extension
is special, with the corresponding eigenfunctions being the least singular at
the origin. It is called the “distinguished” extension. For ν > 1 all the
self-adjoint realizations look the same, with eigenfunctions having similar
oscillations near the origin [20]. For ν ∈ [0, 1] it is known that the lowest

eigenvalue of the distinguished extension in the gap (−1, 1) equals
√

1− ν2

and therefore remains positive. The formula for this eigenvalue was already
used on the right side of (7).

Many works have been devoted to the case of a general Coulomb-type
potential V since the 70s [36, 40, 41, 42, 33, 34, 24, 23, 22]. Various methods
were introduced to prove that there also exists a unique “distinguished” self-
adjoint extension. The results typically cover any potential V satisfying the
pointwise inequality

0 > V (x) > − ν

|x|
, ν ∈ (0, 1).

In this case, “distinguished” can have several possible meanings, which were
all eventually shown to be equivalent. One requirement was that the domain
of the operator be a subspace of H1/2(R3,C4), so that the energy is well de-
fined. Another natural property was that the operator is the norm-resolvent
limit of the Dirac operator with a regularized potential. Using a quite dif-
ferent approach Esteban and Loss proved more recently in [15, 16] that a
distinguished self-adjoint extension could also be defined in the critical case
ν = 1.



AN OPEN PROBLEM IN RELATIVISTIC QUANTUM MECHANICS 5

For small values of ν, the domain of self-adjointness is just the Sobolev
space H1(R3,C4) but for larger values of ν, the domain was not explicit in
most of the above-cited works. The recent articles [12, 35] contain a more
detailed analysis of the domain.

In [13] all the previous works were generalized to cover the case of po-
tentials V = −µ ∗ |x|−1. The existence of a “distinguished” extension was
shown under the sole assumption that µ is a non-negative finite measure
which has no atom of mass larger than or equal to 1. This gave a clear
definition to the operator D0 − µ ∗ |x|−1 in (6), describing one electron in
the presence of a nuclear charge µ.

2.2. Dirac eigenvalues in the gap. Once the operators have been well
defined, the next question is how to find and characterize the stationary
states, that is, the eigenvalues in the spectral gap (−1, 1). This has also
attracted a lot of attention in spectral theory and mathematical physics in
the last two decades [17, 7, 8, 9, 10, 31, 32, 12, 35]. We are not going to
state the precise result here, but the conclusion is that one can characterize
the eigenvalues in the spectral gap using non-standard min-max variational
methods. Potentials of the form V = −µ ∗ |x|−1 were not covered by most
of the existing results but they were handled in [13], following the method
in [7, 12, 35].

Let us emphasize that there is some difficulty in defining what it means to
be the “lowest eigenvalue in the gap (−1, 1)”, as in our two Conjectures 1–
3. If we have a well-behaved (e.g. bounded) negative potential V , then the
eigenvalues of D0 + tV will be close to 1 for small t > 0 and will all decrease
when t is increased. The lowest eigenvalue will eventually touch the lower
spectrum at −1, at a certain finite value of t, and dissolve in the continuum.
Then the second eigenvalue in the gap becomes the lowest one. We do not
wish to look at these pathological discontinuities and want to be sure that
the lowest eigenvalue remains so for all t 6 1.

In fact, should our Conjectures 1 and 2 hold true, they would imply that

λ1

(
D0 − tµ ∗ |x|−1

)
> 0, ∀t ∈ (0, 1).

In particular, when we turn on the potential V = −µ ∗ |x|−1 by means of
the parameter t, the lowest eigenvalue will always be non-negative and there
will be no spectrum in the lower half of the gap (−1, 0). No eigenvalue will
dive into the negative continuum, which justifies considering the lowest one.

Since we do not know how to prove the conjecture, a natural first step
was to investigate which measure µ can have eigenvalues approaching the
negative threshold −1. In [14], we defined a critical charge ν1 as the largest
positive number for which

λ1(D0 − µ ∗ |x|−1) > −1 for all 0 < µ(R3) < ν1 .

For measures with µ(R3) < ν1 there is thus no ambiguity of what it means to
be the “lowest eigenvalue”. Our Conjectures 1 and 2 contain the statement
that ν1 = 1. The following was shown in [14].

Theorem 1 (The critical charge ν1 [14]). The critical number ν1 satisfies

0.9 ' 2

π/2 + 2/π
6 ν1 6 1. (10)
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It is also the best constant in the Hardy-type inequality

ˆ
R3

|σ · ∇ϕ|2

µ ∗ |x|−1
dx >

ν2
1

µ(R3)2

ˆ
R3

(
µ ∗ 1

|x|

)
|ϕ|2 dx (11)

for every ϕ ∈ C∞c (R3,C2) and every finite non-negative measure µ > 0,
where σ1, σ2, σ3 are the 2× 2 Pauli matrices defined above in (5).

The estimate (10) was proved using an inequality due to Tix [39], whereas
the link with the Hardy inequality (11) comes from the variational charac-
terization of the first eigenvalue. Such inequalities have played an important
role in the study of Dirac operators [7, 6, 5, 1, 4].

3. Two results from [13, 14]

In this last section we mention two results from [13, 14] which are related
to our Conjectures 1–3.

3.1. Existence of an optimal measure µ. Even if we do not know that
concentrating all the mass at one point gives the lowest eigenvalue, we could
at least prove that there exists an optimizer µ for a fixed mass µ(R3) = ν <
ν1 and that it has a very small support.

Theorem 2 (Existence of an optimal measure [14]). For any ν ∈ [0, ν1),
there exists a positive Borel measure µν with µν(R3) = ν so that

λ1

(
D0 − µν ∗

1

|x|

)
= min

µ :
µ(R3)=ν

λ1

(
D0 − µ ∗ |x|−1

)
.

The support of any such minimiser µν is a compact set of zero Lebesgue
measure.

The theorem is proved in [14] by a rather delicate adaptation of tech-
niques from nonlinear analysis to the context of Dirac operators. The first
eigenvalue is a highly nonlinear function of the measure µ, even if the op-
erator only depends linearly on µ. The main “enemy” is the action of the
non-compact group of space translations, which is controlled using Lions’
concentration-compactness method [28, 29]. The main difficulty was to prove
that the problem is locally compact under the assumption that 0 6 ν < ν1

and this is another reason why the critical mass ν1 plays a central role.
In spirit, the local compactness holds true because the eigenvalue cannot
dive into the lower continuous spectrum by definition of ν1. But the ac-
tual proof is rather involved and relies on variational arguments using the
min-max characterization of the first eigenvalue. That the support has zero
Lebesgue measure was shown in [14] by means of a unique continuation prin-
ciple for Dirac operators, which extends famous results in the Schrödinger
case [21, 37].

3.2. The potential energy surface. In quantum chemistry one is inter-
ested in the potential energy surface which, by definition, is the graph of
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the first eigenvalue of the multi-center Dirac-Coulomb operator, seen as a
function of the locations of the nuclei, including the nuclear repulsion:

(R1, ..., RM ) 7→ λ1

(
D0 −

M∑
m=1

θm
|x−Rm|

)
+

∑
16m<`6M

θmθ`
|Rm −R`|

.

For the case M = 2 the properties of the above function were analyzed
in [23, 18, 3] in the case of subcritical singularities with charge θm < 1.
In [13] we extended these results to cover the case M > 2 and also to include
the critical case of nuclear charge equal to 1. We proved the following

Theorem 3 (The potential energy surface [13]). Let 0 < θ1, ..., θM 6 1.

(i) The map (R1, ..., RM ) 7→ λ1

(
D0 −

∑M
m=1 θm|x − Rm|−1

)
is continuous

on the open set

Ω =

{
(R1, ..., RM ) ∈ (R3)M : Rm 6= R` for m 6= `

λ1

(
D0 −

M∑
m=1

θm
|x−Rm|

)
> −1

}
.

(ii) Moreover,

lim
mink 6=` |Rk−R`|→∞

λ1

(
D0 −

M∑
m=1

θm
|x−Rm|

)
=
√

1−max
m

θ2
m. (12)

(iii) If in addition
∑M

m=1 θm < ν1 then

lim
maxk 6=` |Rk−R`|→0

λ1

(
D0 −

M∑
m=1

θm
|x−Rm|

)
=

√√√√1−

(
M∑
m=1

θm

)2

. (13)

By (ii) we see that Conjecture 2 is valid when the nuclei are infinitely far
apart. On the other hand, (iii) says that the lowest eigenvalue is continuous
when all the nuclei are merged to one point. Conjecture 2 says that the
limit (13) should be from above and it would be interesting to try to prove
the conjecture when the nuclei are very close to each other. The limit (13)
was also stated for M = 2 and ν1 = ν2 < 1/2 in [3] but we could not fill all
the details of the argument of the proof.

The properties of Dirac-Coulomb operators are fascinating and much more
involved than the non-relativistic Schrödinger case. Many tools (such as
min-max methods) have been developed to better deal with Dirac operators.
Our Conjectures 1, 2 and 3 are strongly supported by numerical results in
the physics and chemistry literature, but their proof will probably require
introducing new techniques.
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