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Abstract

Nonsmooth modes of vibration allow for identification of resonant behaviours and attendant vibratory
frequencies in structures prone to unilateral contact conditions on the boundary. The prominent approach
for finding nonsmooth modes of vibration entails finding continua of periodic solutions to the system in
question. In this paper, nonsmooth modes of a one-dimensional bar of varying cross-sectional area prone
to unilateral contact with a rigid obstacle are determined. While numerical and analytical techniques were
previously proposed, they were limited to constant cross section bar and could not be applied on the varying
area bar for which the classical d’Alembert solution no longer exists. In this article, nonsmooth modal
analysis of the varying area bar is performed via a novel treatment of the Signorini conditions within the
finite element framework: the nodal boundary method. The nodal boundary method solves the Signorini
problem by switching between two sets of shape functions describing either (1) inactive contact motion
(motion away from the rigid obstacle) or (2) active contact motion (bar in contact with the rigid obstacle). In
the proposed nodal boundary method, the motion of the contacting node does not participate in the resulting
governing Ordinary Differential Equation (ODE). Instead, its motion is prescribed by the boundary conditions
and is dictated by the motion of internal nodes. The nodal boundary method results in a discontinuous
ODE in the internal nodes which can be solved both analytically and via numerical techniques. Solutions
obtained by the nodal boundary method exhibit several advantages over existing numerical techniques: no
chattering at contact, no penetration of the rigid obstacle, and existence of periodic solutions. Specifically,
these periodic solutions are readily detectable via the shooting method with sequential continuation. The
nodal boundary method is used successfully for the nonsmooth modal analysis of different models of the
varying area bar. Besides, application of the nodal boundary method for nonsmooth modal analysis of the
uniform area cantilever bar in Dirichlet or Robin boundary conditions is also demonstrated for comparison
with existing literature.
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1 Introduction

For vibrations of structures prone to unilateral contact, families of periodic solutions are indicative of resonance
frequencies and behaviours and are, in fact, referred to as nonsmooth modes of vibration (NSMs) [1–4]. In
essence, NSMs are families of periodic motions of the unforced and undamped investigated structure [5–8]. In
the present work, we focus on nonsmooth modal analysis of the bar of varying (cross-section) area in unilateral
contact with a rigid structure. The dynamics of the bar are formulated via the wave equation with Signorini
conditions for treatment of unilateral contact conditions [9, 10]. While periodic solutions have been obtained
analytically for the case of the bar with constant area [1, 11], the same analytical method cannot be generalized
to the case of the bar in varying area as a closed-form solution to the wave equation with varying coefficients
has yet been obtained. Therefore, periodic solutions to the Signorini problem must be obtained numerically.
Recently, works by Yoong et al. showed that application of the Wave Finite Element method (WFEM) to the
problem of the bar of constant area in unilateral contact produces energy-conserving schemes allowing for
existence of periodic solutions [12, 13]. However, the conservation of energy in WFEM solutions does not
persist for the case of the varying-area bar or two-dimensional Signorini problems [13]. Other than via the
WFEM, the Signorini problem has been also solved via the finite element method (FEM) [9, 10, 14–16]. In
the FEM, application the Signorini boundary conditions leads to an ill-posed problem if not supplied with an
impact law or some relationship between the stress and displacement [14, p. 9]. Thus, multiple methods for
implementation of Signorini contact have been conceived. Such schemes are those utilizing a Newtonian impact
law relating the pre- and post-impact velocities of the contacting node in the form v.tC/ D �ev.t�/ where
e 2 Œ0; 1�. However, these schemes generate non-physical chattering for energy conserving schemes (e D 1)
and annihilate periodic solutions with non-zero pre-contact velocity when e ¤ 1) [14]. Another common
treatment of Signorini conditions is to approximate the contact-force using a displacement-dependent model
which regularizes the non-penetration condition. For example, penalty methods use a non-linear and possibly
smooth function for the contact force univoquely expressed in terms of the displacement [14,17]. However, since
the convergence of penalty methods depend on a penalty parameter reaching infinity, these method inevitably
result in stiff ODE and are generally found insufficient in solving the Signorini problem accurately [13,14]. Next,
mass redistribution methods [15, 18, 19] aim to solve the issue of ill-posedness by eliminating the mass of nodes
on the contact boundary such that at, every instance, prediction of the location the boundary nodes is obtained
by solving the static Signorini problem [15]. Specifically, the mass redistribution method proposed in [15]
represents a formulation culminating in a an energy-conserving ODE which allows for periodic solutions while
eliminating chattering at contact. However, the scheme requires solving a constrained optimization problem
to redistribute the mass of the contact nodes. This issue was later readdressed in [18] where the usage of
specific quadrature rules has reduced the computational cost of the mass redistribution. Regardless, the mass
redistribution method requires usage of a different mass matrix than this used in classical FEM models. At last,
it is worth mentioning the Nitsche method in FEM which solves the Signorini boundary condition in a weak
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sense [16]. While penetration is indeed allowed in the Nitsche method, it has been proven that the Signorini
boundary conditions are satisfied as the number of elements increases [16].

In this work, we propose the Nodal Boundary method (NBM) for treatment of Signorini boundary conditions
in FEM. Applied to the Signorini problem, this method allows for existence of periodic solutions while
eliminating chattering. While, similarly to [15], this method requires redistribution of masses, it does not require
solution of a constrained optimization problem nor usage of “non-traditional” quadrature rules (as done in [18]).
Thus, the proposed method allows for implementation of mass redistribution to classical finite-element models
with no significant addition to computational effort. At last, to find periodic solutions of the FEM-NBM reduced
model, the shooting method together with the continuation method are used, similar to the procedure suggested
in [7]. In particular, nonsmooth modal analysis of the varying area bar, which could not be approached via other
techniques such as WFEM and Newton impact law, is performed in this article via the NBM.

In what follows, we detail the problem statement and its finite-element formulation in sections 2 and 3,
respectively. Next, we present the nodal boundary method applied to the Signorini conditions in Section 4.
Application of nonsmooth modal analysis (ie, detection of periodic solutions) the model is presented in Section 5.
At last, the results Section 6 consists of: convergence analysis, presentation of modes and forced motion analysis.

2 Problem statement

We consider a bar illustrated in Figure 1. The displacement field of the bar is denoted Nu. Nx; Nt /, where Nx and Nt

Ng

L

Nx

NA0 u
� Nx; Nt�

NA. Nx/

Figure 1: Bar of varying area prone to unilateral contact with a rigid wall.

represent the physical position and time, respectively. The bar is clamped to a wall at Nx D 0 and is prone to
unilateral contact with a rigid obstacle at its other end Nx D L, where L denotes the length of the bar. At rest, the
rigid obstacle is set at a distance Ng from the bar.

Moreover, we consider the linear-elasticity framework for the deformation of the bar. Hence, the motion of
the bar is described by the wave equation

Nut t .x; t/ D .A.x/ Nux.x; t//x; 8x 2 .0; 1/; t 2 .0;1/: (1)

where subscripts denote partial differentiation with respect to the denoted variable. Furthermore, the following
non-dimensional coordinates are introduced: x D Nx=L and t D NtL=c. There, c2 D E NA0=� with E > 0, � > 0
and NA0 > 0 representing Young’s modulus, the density of the bar, and the physical area of the bar at x D 0,
respectively. In turn, A.x/ > 0 is a non-dimensional quantity representing the area variation in the bar. The
physical cross-sectional area of the bar abides NA. Nx/ D NA.xL/ D A.x/ NA0. Moreover, we use the following
Dirichlet boundary condition at x D 0:

Nu.0; t/ D 0; 8t 2 .0;1/: (2)

At x D 1 (ie, Nx D L), we impose the Signorini boundary condition

0 � Nu.1; t/ � g ? A.1/ Nux.1; t/ � 0; 8t 2 .0;1/ (3)

to describe contact of the bar with the rigid wall, where the non-dimensional gap distance g D Ng=L is introduced.
Namely, the Signorini conditions (3), in the continuous setting, can be seen as a switching of boundary conditions
at x D 1:

Active contact conditions: Nu.1; t/ D g and A.1/ Nux.1; t/ � 0 (4)

Inactive contact conditions: A.1/ Nux.1; t/ D 0 and Nu.1; t/ � g: (5)
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For purposes of modal analysis, we are required to find the initial conditions Nu0.x/ and Nv0.x/ generating
periodic solutions

Nu.x; T / D u.x; 0/ D Nu0.x/; 8x 2 Œ0; 1� (6)

Nut .x; T / D Nut .x; 0/ D Nv0.x/; 8x 2 Œ0; 1� (7)

where T denotes the period of motion. Accordingly, to solve the problem numerically, we use the FEM with
nodal boundary method (NBM) for treatment of boundary condition on the governing boundary value problem
in Equations (1) to (5). Next, the shooting method and continuation are used to depict the continua of solutions
answering Equations (6) and (7).

While the problem of modal analysis of the bar in unilateral contact with a constant cross-section, A0.x/ D 0,
has been studied before both analytically and numerically [1, 11, 12, 20], the same techniques could not be
implemented for the case of A0.x/ ¤ 0. Namely, analytical techniques have relied on the exact solution to
the wave equation to describe both inactive and active contact phases in a closed-form manner [1, 11, 20]. In
contrast, the WFEM, in the case of the bar of uniform area, exhibits properties favoring the existence of periodic
solutions such as: energy conservation and preservation of characteristic quantities [13]. However, the same
properties are not exhibited for the case for the varying area bar as the upwind-flux, used in the WFEM, does not
accurately solve for the transfer of quantities between elements [21, chapter 9]. In contrast, it will be shown in
this manuscript that the NBM allows for detection of periodic solutions in the varying area bar by implementation
of a Galerkin-Bubnov method and boundary shape functions to satisfy the inactive and active phases of the
Signroini conditions.

3 Finite-Element formulation

In order to apply FEM on the one-dimensional Signorini problem, the displacement within the bar is approximated
by a series of piecewise Lagrange polynomials �i .x/, i D 0; 1; 2; : : : ; N , and corresponding nodal quantities
ui [22] located at the nodes xi D i=N for i D 0; 1; 2; : : : ; N , as classically achieved. The approximation thus
reads

Nu.x; t/ �
NX
iD0

�i .x/ui .t/ � P.x/u.t/; where �i .xj / D ıij and ui .t/ � u.xi ; t / (8)

with u.t/ storing the time-domain nodal displacements and ıij denoting the Kronecker Delta. Furthermore,
we introduced the vector quantity P.x/ � �

�0.x/ �1.x/ : : : �N .x/
�

to simplify the representation of the
finite-element in matrix form. The finite element applies to the weak form of PDE (1). It requires the definition
of test functions w.t/ corresponding to the nodal displacements u.t/. In the NBM, the test functions w.t/
will be subject to change through time (according to the phase of contact motion), while it is not the case for
common representation in the FEM. This will be clarified in section 4. Hence, application of the finite element
approximation on the weak form of PDE (1) with cantilever condition (2) (u0.t/ D 0 and such that �0.x/ is
omitted from P.x/) yields

w>.t/M Ru.t/C w>.t/Ku.t/ � wN .A.1/ux.1; t// D 0; 8w.t/ (9)

where M is the mass matrix, K is the stiffness matrix, with respective entries

M D
Z 1

0

P.x/P.x/dx; K D
Z 1

0

A.x/P>x .x/Px.x/dx: (10)

While this notation is conventional in FE analysis, it is reminded here since the NBM formulation will rely
on it significantly. Specifically, the nodal boundary method modifies the weak form (9) and the test functions
w.t/ actively participate in its formulation. We now introduce the nodal boundary method to treat the Signorini
conditions (4) and (5) in the finite element framework. There, the displacement and the stress at x D 1 will be
approximated using the nodal quantities

Nu.1; t/ � uN .t/; A.1/ Nux.1; t/ � A.1/
NX
iD1

�0i .1/ui .t/; (11)
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respectively. While the approximation Nu.1; t/ � uN .t/ is equivalent to the one used in the classical FEM, the
above stress approximation is non-traditional. Implementation of Neumann conditions in the classical FEM is
done in a weak sense, and the motion of the nodes does not satisfy the Neumann condition for any grid. Instead,
the error in answering the Neumann condition is reduced with increasing the number of elements or degree of
polynomials. In the NBM, the Neumann conditions are imposed on the shape functions such that for any choice
of number of elements or degree of polynomial. In fact, this is the key to the implementation of the NBM, as
described below.

4 Nodal Boundary Method

In NBM, the FE approximation is obtained by plugging the approximations (11) into the complementarity
conditions (3) such that

g � uN .t/ ? A.1/
NX
iD1

�0i .1/ui .t/ � 0: (12)

The main proposition in NBM is that condition (12) is solved by constructing shape functions capable of
satisfying the inactive and active contact conditions. To do so, the boundary node uN .t/ is isolated in (12) such
that

g � uN .t/; uN .t/ � �
NX
iD1

�0i .1/
�0N .1/

ui .t/; .uN .t/ � g/
�
uN .t/ �

NX
iD1

�0i .1/
�0N .1/

ui .t/

�
D 0: (13)

Indeed, if (13) holds then (12) holds as well. By separating uN .t/, we impose that uN .t/ is no longer dictated
by the ODE (9) but is dictated exclusively by condition (13). The following points introduce the remaining steps
of the derivation (which will be elaborated in the upcoming sections):

1. To solve for the motion during inactive contact, the Signorini conditions (13) require that

uN .t/ D �
N�1X
iD1

�0i .1/
�0N .1/

ui .t/; uN .t/ � g: (14)

Substitution of the above into the FE approximation (8) effectively creates a family of shape functions that
always satisfies the inactive contact conditions

Nu.x; t/ �
N�1X
iD1

�
�i .x/ � �N .x/

�0i .1/
�0N .1/

�
ui .t/: (15)

In other words, any solution obtained using the above approximation satisfies the homogeneous Neumann
condition taking place during inactive contact. In the FEM, all functions �i .x/ have local support and
are non-zero for elements containing the node ui .t/. In the case of NBM, the principle of local support
is followed as well, and only the shape functions at the element including the contact node uN .t/ are
affected by the approximation (15). In turn, the inactive contact inequality in (14) reads

uN .t/ � g ) �
N�1X
iD1

�0i .1/
�0N .1/

ui .t/ � g: (16)

2. To solve for the motion during active contact, we construct a family of shape functions that always answers

Nu.L; t/ � uN .t/ D g; uN .t/ � �
N�1X
iD1

�0i .1/
�0N .1/

ui .t/: (17)

Evidently, the set of shape functions answering this condition admits

Nu.x; t/ �
N�1X
iD1

�i .x/ui .t/ � �N .x/g (18)
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Thus, any solution that is obtained using the above approximation satisfies the Dirichlet condition in (17).
In turn, the active contact inequality in (17), under this approximation becomes

uN .t/ � �
N�1X
iD1

�0i .1/
�0N .1/

ui .t/) �
N�1X
iD1

�0i .1/
�0N .1/

ui .t/ � g: (19)

3. The different sets of shape functions described in (15) and (18) will lead to different sets of ODEs
governing inactive and active contact motions, respectively. The Signorini conditions are then satisfied by
switching between the two sets of functions according to inequalities (16) and (19), which are mutually
exclusive, as expected from the Signorini conditions. At the moment of switch, the internal nodal
displacements and velocities (internal nodes are those with indexed i D 1; 2; : : : ; N � 1) are assumed to
be continuous in time.

4. The NBM formulation results in an ODE, featuring discontinuous mass and stiffness matrices, which
exhibits periodic solutions.

4.1 Comment on application of NBM to other shape functions

Although the NBM is derived in this manuscript using the classical FEM piecewise Lagrangian shape functions,
this method can be also formulated using other shape functions. However, for other shape functions, precautions
must be considered. One such precaution is that the shape functions must admit a stress approximation that is
not always vanishing at the contacting end. To clarify, the NBM relies on the approximation of stress for the
switching between active and inactive contact phases, as seen in Equation (12). In order to allow for a switching
between contact phases, the shape function must be chosen such that the stress approximation at x D 1 does not
exhibit �0i .1/ D 0 for all i D 1; : : : ; N .

Here, the linear modes of the cantilever bar with uniform area

�i .x/ D sin

�
.2i � 1/�x

2

�
; i D 1; 2; : : : ; N: (20)

will be investigated as an example of a set of shape functions that cannot be used in NBM. These mode shapes
bear the undesired property �0i .1/ D 0, 8i . For such shape functions, the active contact phase cannot occur as
can be seen by plugging Equation (20) into the Signorini conditions Equation (12)

g � uN .t/ ? 0 � 0! g � uN .t/: (21)

In simple terms, Equation (21) shows that the linear modes of the cantilever bar exhibit inactive contact motions
exclusively and therefore a switch between contact phases cannot occur.

The choice of shape functions is crucial for other methods in contact dynamics and not only the NBM. In
fact, for the shape functions (20), both the mass redistribution method [15] and Nitsche method would fail. The
mass redistribution method would fail in the same fashion as NBM since it relies on strong enforcement of the
Signorini boundary condition. In turn, the Nitsche method would not be able to approximate adequately the
Signorini problem. This is illustrated in the remainder of this section. In the Nitsche method, the Signorini
boundary conditions are enforced via the following approximation of the stress at the contact boundary

A.1/ Nux.1; t/ � A.1/
NX
iD1

�0i .1/ui .t/Cmax

�
0; .uN .t/ � g/ � A.1/

NX
iD1

�0i .1/ui .t/
�
;  > 0 (22)

where  is set to be constant [16]. The Signorini condition is then satisfied as N !1

A.1/ Nux.1; t/ D lim
N!1A.1/

NX
iD1

�0i .1/ui .t/Cmax

�
0; .uN .t/ � g/ � A.1/

NX
iD1

�0i .1/ui .t/
�

(23)

A.1/ Nux.1; t/ D A.1/ Nux.1; t/Cmax.0; . Nu.1; t/ � g/ � A.1/ Nux.1; t//;  > 0 (24)

where the last term is equivalent to the Signorini condition (3). The convergence of the Nitsche method largely
relies on the participation of the stress approximation in the right-hand side of Equation (23). This property is
disrupted for the �i .x/ in Equation (21). For these shape functions, the Nitsche stress approximation (22) reads

A.1/ Nux.1; t/ �  max.0; uN .t/ � g/: (25)
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Since the stress approximation is omitted from the right hand side of (25), the resulting approximation (25)
is equivalent to a penalty force with penalty parameter  [14]. The penalty method does not share the same
convergence properties as Nitsche as can be seen that by taking the limit of Equation (25) as N !1:

A.1/ Nux.1; t/ D lim
N!1  max.0; uN .t/ � g/ D  max.0; Nu.1; t/ � g/: (26)

This term, in contrast to Equation (24), is not equivalent to the Signorini conditions.

4.2 Inactive contact motion

The inactive contact motion condition (5) in the NBM framework is

�.t/ � A.1/
NX
iD1

�0i .1/ui .t/ D 0; uN .t/ � g: (27)

where we use �.t/ to denote the FE approximation of the stress at x D 1. For inactive contact motion, we
impose that uN satisfies equation (27) such that

uN .t/ D �
1

�0N .1/

N�1X
iD1

�0i .1/ui .t/ � S.uo.t//; uo.t/ D �u1.t/ u2.t/ : : : uN�1.t/�> (28)

where uo.t/ gathers internal nodal displacements and the function S , acting on uo.t/, has been assigned to
simplify the notation. Actually, S appears naturally throughout the derivation of both inactive and active contact
motions in NBM. Indeed, this function is of integral importance to NBM and serves for multiple purposes: it
defines the conditions for the switching between phases, the motion of the contact node during inactive contact
phase, and the contact force applied on the bar during active contact phase. These roles of S are illustrated in
Figure 2 and are explicitly explained later in Section 4.4. For the remainder of this article, the function S will be
referred to as the switching function.

0 0:5 1 1:5 2 2:5 3 3:5

0

g

t

uN .t/

S.uo.t//

�.t/

Figure 2: Switching function and associated quantities. The switching function dictates the phase of motion. For
S.uo.t// � g, inactive contact motion takes place, and active contact motion takes place otherwise. Moreover,
the displacement at the contact boundary abides uN .t/ D S.uo.t// during the inactive contact phase, S.uo.t// �
g, and the approximation of the stress at the contact boundary abides �.t/ D A.1/�0N .1/.g � S.uo.t/// during
the active contact phase.

Following the substitution uN .t/ in (28), u.t/ can be related to uo.t/ via a linear operator B 2 RN�N�1

u.t/ D Buo.t/ Bij D

8̂
<
:̂
ıij i D 1; : : : ; N � 1 and j D 1; : : : ; N � 1;
�
�0j .1/
�0N .1/

i D N and j D 1; : : : ; N � 1: (29)
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This representation will be helpful when we introduce the ODE governing the inactive contact motion. Specifi-
cally, it allows representation of the approximation of inactive contact conditions to be

Nu.x; t/ � P.x/Bu0.t/; uN � g (30)

which is equivalent to the presentation in (15).
Next, the inequality condition for inactive contact motion (27) (non-penetration) can be put in terms of the

nodes uo.t/ via the switching function

uN � g) S.uo/ � g (31)

To derive the ODE governing the inactive contact motion, we insert the inactive motion constraints (29)
and (31) into the weak-form of the PDE, Equation (9),

w>.t/.MB Ruo.t/CKBuo.t// D 0 (32)

uN .t/ D S.uo.t//; RuN .t/ D S. Ruo.t//; S.uo.t// � g: (33)

In classical FEM, it is generally assumed Equation (32) is true for all w.t/ and the subsequent omission of
w.t/ from the equation takes place. Here, however, omission of w.t/ will lead to an over-defined system of
ODEs (N � 1 variables in uo for N equations). To remedy this, we use the Galerkin-Bubnov method where
we project the residual (the term multiplying w in Equation (32)) on the same solution space used for u.t/ [23].
This strategy has been proven successful in other applications and is commonly used when shape functions
that satisfy the boundary conditions are involved in the approximation [23, 24]; [25, p. 300]. It is further noted
that the strategy taken here in deriving the NBM has also been referred to as basis recombination [26, p. 112].
Following the Galerkin-Bubnov method, we project of the residual resulting from the approximation (30) on the
composing trial functions. Under representation (9), this results effectively in modification of the test-function
as follows

w.t/ D Bwo (34)

where wo gathers all test function contributions corresponding to the internal nodes uo.t/. Then, substitution
of (34) into (32) and omission of wo results in the reduced ODE (of N � 1 equations)

.MN Ruo.t/CKNuo.t// D 0; MN D B>MB; KN D B>KB: (35)

where the subscript N in MN (or KN ) is used to denote the NBM coefficients corresponding to answering
homogeneous Neumann conditions. We remark that, via the NBM, the displacement uN .t/ has been effectively
removed from the ODE such that neither the equation nor the inequality constraint in expression (35) includes uN .

4.3 Active contact motion

The active contact condition in NBM, derived from Equation (13), reads

uN .t/ D g implying PuN .t/ D 0 and wN .t/ D 0 (36)

Effectively, this approximation applies in the active contact phase and the velocity of the contact node is
discontinuous at the moment of contact. Here, the test function vanishes on Dirichlet boundaries (ie, wN .t/ D 0
during active contact) which is common practice for FEM approximations [22,23,27]. Next, the complementarity
condition (13) can be rewritten in terms of the switching function

A.1/

NX
iD1

�0i .L/ui .t/ � 0; (37)

�
N�1X
iD1

�0i .1/
�0N .1/

ui .t/ � uN .t/; (38)

S.uo.t// � g: (39)
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Here, the transition between statements (37) and (38) requires that �0N .1/ > 0 holds. Otherwise, for example
in the case �0N .1/ � 0, both inactive and active contact phases would have to occur for S.uo.t// < 0, that is
simultaneously, which disagrees with the mutual exclusivity of the inactive and active contact conditions in the
complementarity conditions (3). Accordingly, for �0N .1/ > 0, we note that the active contact motion occurs for
S.uo.t// > g, and the inactive contact motion occurs for S.uo.t// < g such that both are mutually exclusive.
Fortunately, for the case of Lagrangian polynomials used here, the statement �0N .1/ > 0 has been proven to hold
for any number of elements. The proof can be found in Appendix A.1.

We continue with the substitution of expressions (36) and (39) into the FEM-ODE (9) where (36) is first
recast in the matrix format

w.t/ D Bdwo; u.t/ D Bduo.t/C gbd ; S.uo.t// � g (40)

with the notations

Bdij D
(
ıij i D 1; : : : ; N � 1I j D 1; : : : ; N � 1
0 i D N I j D 1; : : : ; N � 1 and bdi D

(
0 i D 1; : : : ; N � 1
1 i D N: (41)

We then plug (40) into (9) to obtain an ODE in terms of uo multiplied by wo forming the scalar equation

.wo/>.MD Ruo.t/CKDu
o.t/C gfD/ D 0; S.uo.t// � g (42)

where MD D .Bd />MBd , KD D .Bd />KBd , and fD D .Bd />Kbd , and the subscript D is used to denote
the coefficients corresponding the ODE answering the nonhomogeneous Dirichlet conditions. Assuming
equation (42) should be valid for all values wo, the following ODE formulation is obtained:

MD Ruo.t/CKDu
o.t/C gfD D 0; S.uo.t// � g (43)

Equation (43) is equivalent to the ODE obtained by application of classical Finite Element method on the
clamped-clamped bar. Furthermore, the NBM formulation of the ODE for active contact is equivalent to this
described by the basis recombination method for non-homogeneous boundary conditions [26, p. 112]. However,
the NBM adds the restriction S.uo.t// > g to infer that the bar must be repulsed at all time throughout contact,
as required by the active contact condition (4).

In the next section, we combine the ODEs corresponding to both active and inactive motions, Equation (35)
and Equation (43) respectively, to construct the ODE approximation for the original Signorini problem.

4.4 NBM-FEM formulation of Signorini problem

The switching method [12, 28] is used for the enforcement of the Signorini conditions in NBM. In the switching
method, the Signorini complementarity conditions are answered by alternating between the boundary condi-
tions (4) and (5) both in the test and trial functions such that the inequality constraints are satisfied. In NBM,
this translates to switching between Equation (35) and Equation (43), and the complete NBM-ODE reads

(
MD Ruo.t/CKDu

o.t/C gfD D 0 S.uo.t// � g
MN Ruo.t/CKNuo.t/ D 0 S.uo.t// � g: (44)

We note that at the moment of switch, denoted ts such that S.uo.ts// D g, the resulting NBM-ODE (44) raises
two conflicting definitions to the ODE. This conflict is resolved by extending the active and inactive contact
NBM conditions as follows

Active contact NBM: S.uo.t// > g; or S.uo.t// D g and S. Puo.t�// > 0 (45)

Inactive contact NBM: S.uo.t// < g; or S.uo.t// D g and S. Puo.t�// < 0 (46)

which is mathematically sound since the velocity at the moment of switch indicates whether an active contact
or an inactive contact occurs after the switch. Furthermore, note that the case of zero velocity S. Puo.t�s // D 0
before contact is not investigated in definitions (45) and (46). Such solutions are referred to as grazing solutions
and propose a challenge that is beyond the scope of this paper (the reader may refer to [10, p. 385] for some

9



of the intricacies involved with determining grazing periodic motions). Since grazing motions are excluded,
the NBM is limited in its solutions. Thus, it is important to note that the NBM is not presented as a scheme
for generation physically accurate simulations. Rather, the NBM is used for modal analysis and detection of
periodic Signorini compliant non-grazing motions.

Next, at the instant of contact, we impose that the internal displacements uo.t/ and velocities Puo.ts/ are
continuous at switching instants

Continuity of internal states: uo.tC/ D uo.t�/; Puo.tC/ D Puo.t�/; S.uo.t// D g: (47)

while only the contact node is characterized by discontinuous velocities, as will be shown later in Equation (51).
The condition for continuity of the internal states (47) corresponds to common application of the Signorini
conditions both numerically and analytically [1, 12, 14–16]. Thus, both internal displacements and internal
velocities are assumed to be always continuous and only the acceleration Ruo.t/ is discontinuous at instants ts (as
can be deduced from Equation (44)). The discontinuity of internal accelerations at the moment of switch is a
consequence of the NBM and is not expected in the true solution. However, solutions of the NBM still show
good agreement with the true solution as N !1, as illustrated in Section 6.

Given that the acceleration is discontinuous at the moment of switch, it is more convenient to represent the
ODE (44) in terms of the acceleration at tC

Ruo.tC/ D
(
�.MD/

�1.KDuo.t/C gfD/ active contact NBM
�.MN /

�1.KNuo.t// inactive contact NBM
(48)

where MD and MN are always invertible (the proof follows from M being non-invertible and is not presented in
this manuscript for sake of conciseness).

In turn, the approximation of u.x; t/ in NBM is defined via expressions (30) and (40)

Nu.x; t/ � P.x/u.t/ D
(
P.x/.Bduo.t/C gbd / S.uo.t// � g
P.x/Buo.t/ S.uo.t// � g (49)

At last, from expression (49), we obtain nonsmooth expressions for the displacement, velocity and stress at the
contacting end (with strict inequality applied on the active contact condition)

Nu.1; t/ � uN .uo.t// D
(
g S.uo.t// � g
S.uo.t// S.uo.t// � g (50)

Nut .1; t/ � PuN .uo.t/; Puo.t// D
(
0 S.uo.t// > g

S. Puo.t// S.uo.t// < g
(51)

A.1/ Nux.1; t/ � �.uo.t// D
(
A.1/�0N .1/.g � S.uo.t// S.uo.t// � g
0 S.uo.t// � g (52)

We note that �.t/ is continuous in the NBM formulation contrarily to the discontinuous behaviour of the true
solution to the Signorini problem [1, 12, 20]. However, in section 6 it will be shown that the method still
converges. Furthermore, it is important to note that schemes utilizing Newton’s impact law with e D 0 are
characterized by continuous contact pressure as well and yet show convergence to the true solution [14].

On another note, the acceleration RuN .t/ obtained by differentiating Equation (51) involves the Dirac-delta
distribution at the instance of switch, which may affect the formulation of the NBM-ODE since it participates in
its definition, see Equation (33). However, the influence of the Dirac-delta in the NBM formulation was not
investigated in this article and is suppressed to simplify the formulation. Nevertheless, numerical experiments
show that the NBM-ODE (48) admits solutions that converge to the true motion for large N . Such numerical
experiment is explored in section Section 6.1.

The Signorini problem is hence formulated as the nonsmooth ODE (48) in uo.t/ with unique solutions
given initial conditions uo.0/ and Puo.0/. Furthermore, the solutions generated by the NBM are characterized
by sticking phases. Sticking phases are continuous intervals of time of non-zero measure where active contact
motion occurs. To clarify, sticking phases stand in contrast to chattering exhibited by schemes utilizing a Newton
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impact law with e D 1 [1]. This is a noteworthy property of this scheme since sticking phases occur in the true
solution to the Signorini problem [1, 11, 12, 14].

Next, since periodic solutions require energy conservation, we investigate the energy conservation properties
of solutions to the NBM-ODE.

4.5 Energy conservation properties of solutions to NBM-ODE

Solutions to the NBM-ODE (48) are equipped with the energy metric

2E.t/ D
Z 1

0

Nut .x; t/2 C A.x/ Nux.x; t/2 dx � Pu>.t/M Pu.t/C u>.t/Ku.t/ (53)

and exhibit the following properties
1. The ODE preserves energy for S.uo.t// > g and S.uo.t// < g, away from instants ts such that
S.uo.ts// D g.

2. At a time instant ts , where a transition between active and inactive contact occurs (namely, at an instant
where S.uo.ts// D g and S. Puo.ti // ¤ 0), an instantaneous change in energy �E occurs

�E D E.tCs / �E.t�s / D �jS. Puo.ts//j
�1
2
MNNS. Puo.ts//C

N�1X
jD1

MNj Puj .ts/
�
: (54)

The energy after transition may either decrease (�E < 0), increase (�E > 0) or be conserved (�E D 0).

For proofs, section A.2 establishes lemmas regarding statement 1 and Section A.3 details the proof for statement 2.
An immediate consequence of statements 1 and 2 is that solutions of the NBM-ODE may exhibit a periodic

energy evolution in time. Indeed, this property is favourable for detection of periodic solutions, and it is expected
that the NBM can be used for detection periodic solutions to the Signorini problem. From numerical experiments,
such periodic solutions to the NBM were found. An example of a periodic solution is shown in Figure 3 from
which it is clear that the NBM allows for existence of periodic solutions with sticking phases. In contrast,

(a) Displacement field

0 T

0.98

1

t

N
or
m
al
iz
ed

E
n
er
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)/
E
(0
)

(b) Total Energy

Figure 3: NBM periodic solution for the varying area bar (corresponding to the model investigated in Figure 4)
of 10 elements and quadratic Lagrangian shape functions (N D 20). Note that the total energy is dissipated at
the moment of contact but is completely regained at the end of the contact phase. Due to this characteristic, the
NBM allows for periodic solutions with sticking phases.

solutions obtained via Nitsche method exhibit sticking phases only at convergence (ie, for high number of
elements) [16] and solutions of scheme with Newton impact law e D 1 exhibit chattering [14]. While solutions
to Newton’s impact law with e D 0 exhibit sticking phases, they also exhibit energy dissipation for non-zero
impact velocity [14] and therefore do not allow for periodic solutions. The NBM, in comparison to Newton’s
impact law e D 0, allows for regain of energy in transition from active to inactive contact.
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Indeed, the existence of periodic solutions in NBM relates largely to the fact that energy can be regained
throughout the motion, as seen in Figure 3. Although, it is important to note that the concept of “gain of energy”
in the NBM is used in a numerical sense rather than a physical sense. For Newton’s impact law e D 0, the loss
of energy can be seen as physical dissipation of energy from the system, while in the NBM there is no physical
justification for a gain in energy. To clarify, the difference in energy (whether loss or gain) relates to the use
of different sets of shape functions to describe the motion and not due to physical assumptions. For the true
solution, at the instance of switch, Nut .x; tCs / D Nut .x; t�s / holds true for x 2 .0; 1/ [1, 11, 20]. However, for the
approximation of the same motion in NBM, the approximations of Nut .x; tCs / and Nut .x; t�s / involve two different
sets of shape functions, described in Equations (16) and (19), and the switch is accompanied by a difference
in kinetic energy (54). Thus, the gain or loss in energy is a numerical phenomenon resulting from switching
between two distinct sets of shape functions in both the trial and test functions. Along the same line, the terms
dissipation and gain of energy will be used to describe the evolution of the energy metric in time rather than
implying any physical energy transfer in or out of the system. Moreover, in the NBM, it was evident from
numerical experiments that the energy jump �E diminishes for large N . Although, an analytical proof for this
statement is not presented in this article. To conclude, the behaviour of the energy metric in the NBM should be
understood as a consequence of the Galerkin-Bubnov method rather than as a physical imposition on the system
(as done by implementing a Newton impact law with e D 0, for example).

5 Nonsmooth modal analysis

In the preceding sections, the NBM and FEM were used to approximate the solution to the initial boundary value
problem exposed in Equation (1) to Equation (4). To solve for the remaining conditions, we require that uo.t/
and Puo.t/ are periodic, see Equation (6) and Equation (7),

uo.0/ D uo.T / (55)

Puo.0/ D Puo.T /: (56)

In this article, we attempt to find such solutions and corresponding period using the shooting method. Moreover,
continuation is used for detection of nonsmooth modes, ie families of periodic solutions [7].

5.1 Time-marching techniques and shooting method

In the shooting method [7], we find periodic solutions by aiming for a set of initial conditions, uo0 and vo0,
generating a periodic solutions, ie

uo.T / D uo.0/ � uo0
Puo.T / D Puo.0/ � vo0

(57)

where uo.t/ is subject to the ODE (48).
In order to solve for the shooting equations, we solve for uo.T / and Puo.T / numerically via a numerical

time marching scheme. For example, a Crank-Nicolson (CN) scheme (or Newmark scheme with ˇ D 1=2 and
 D 1=4 [29]) may be used. While the CN scheme is considered energy stable for finite element schemes [29],
it is an implicit algorithm and requires the implementation of a root solving algorithm. To implement the time-
marching techniques, we shall first convert the NBM-ODE (48) into a system of first order ODEs Pq.t/ D G.q.t///
with

G.q.t// D

8̂
ˆ̂̂<
ˆ̂̂̂
:

 
vo.t/

M�1D .gfD �KDu
o.t//

!
Active contact NBM

 
vo.t/

�M�1N KNuo.t/

!
Inactive contact NBM

and q.t/ D
�
uo.t/
vo.t/

�
: (58)

For application of the time-marching scheme, a discretization of the time span t 2 Œ0; T � into Nt steps is
considered with the time-step �t D T=Nt . In the time-marching scheme, the quantities qi � q.ti / are solved
iteratively for i D 1; : : : ; Nt . After Nt steps, the state at the end of the period is obtained q.T / � qNt

.
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Indeed, the approximated state qNt
is a function of T and q0. Substitution of the approximation qNt

.q0; T / in
Equation (57) reads

F.q0; T / D qNt
.T; q0/ � q0 D 0: (59)

This problem constitutes an under-defined system of equations with 2.N � 1/ equations for 2.N � 1/ C 1
variables. This gives rise to a continuum of solutions parameterized in T , ie .q0.T /; T /. This continuum of
solutions then directly corresponds to families of periodic solutions, otherwise known as nonsmooth modes
(NSMs) [1].

5.2 Error estimation

For cases where the solution Nu.x; t/ exists, a proper error estimate of the NBM solution is the L2 norm
jjP.x/u.t/ � Nu.x; t/jj2 where P.x/u.t/ is defined in Equation (49). However, in the absence of closed-form
solution, such as the periodic solutions sought for the varying-area bar, other error metrics are needed. While the
error in the residual resulting from the approximation constitutes a common error metric for the Galerkin-Bubnov
method [23, 30], the residual of the PDE (1) under the NBM-FEM approximation requires knowledge of �00i .x/
for x 2 Œ0; 1�. However, since �i .x/ is described using the piecewise Lagrangian used in FE framework, the
double derivative of �i .x/ is not defined on element boundaries. Therefore, to quantify the error, the residual
estimator [30, p. 93]

R.t/ D h4
NeX
jD1

Z
Ej

� NX
iD1

�i .x/ Rui .t/ � �00i .x/ui .t/
�2

dx (60)

is used, where h describes the length of the element, Ne denotes the total number of elements and Ej is the
domain of the element j excluding its boundaries such that any given �00i .x/ is defined everywhere in Ej ,
and the boundary of the elements are excluded from the error metric (60). It is noted, that while the error
metric effectively excludes points of discontinuity, it evaluates the accuracy of the solution for ranges where
the approximation of Nu.x; t/ is clearly defined. Thus, it is considered a proper metric for the evaluation of the
solution’s accuracy. For the NBM, we must evaluate the integral of R.t/ for t 2 Œ0; T �. Since the acceleration
Ru.t/ is discontinuous at the moment of switch ts , we define the residual error by excluding instances of
discontinuity, similarly to the residual estimator,

R� D
Z t1�s

0

R.t/dt C
Z T

t
.Ns�1/C
s

R.t/dt C
NsX
jD1

Z t
.jC1/�
s

t
jC
s

R.t/dt (61)

where tjs denote various distinct instants of switch through the motion and Ns defines the total instances of
switch in Œ0; T �. We duly note that the residual error does not take into account the discontinuities in time, and
may be an inaccurate error metric for the Signorini problem. However, the metric R� does define the quality
of the approximation of inactive and active phases of motion by their respective shape functions. Thus, R� is
useful in determining the accuracy in the approximation of the active and inactive contact phases. Nevertheless,
if the exact solution to the problem is known, the more accurate error norm jju.x; t/ � P.x/u.t/jj2 will be used
instead of R�.

5.3 Sequential continuation with correction

As evident from literature on modal analysis of the Signorini problem, NSM can be described by via a
continuum of solutions .q0.T /; T / on a closed interval of periods, referred to as a backbone curve [1, 11,
12, 31]. This continuum of solutions can can be found by applying sequential continuation on the system of
equations (59) [12, 31]. Applying sequential continuation to the NBM numerically, it has been noticed that the
sequential continuation for curves of N � 10 faces difficulties in obtaining solutions on the backbone curve
.q0.T /; T /. To distinguish between curves approximated using differentN , we will denote a solution continuum
as follows: .q0.T /; T /N .

For large N , it is more efficient to obtain solutions by first finding solution with a low N and then apply a
shooting algorithm while recursively increasing the number of nodes for each point in the low-N curve. We
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refer to this method as sequential continuation with correction (SCC). The steps of sequential continuation with
correction are:

1. Obtain the nonlinear normal mode with low N (for instance, N D 4), stored as the series .qk0 ; T
k/4,

k D 1; 2; : : : ; Nc .
2. For the point i D 1 in the series .q10; T

1/N , perform shooting on a system with higher number of nodes
NC. First, interpolate .q10/

N using the shape functions P.x/ to obtain an initial guess for the desired NC
approximation.

3. Solve the shooting equations with NC nodes with period T 1 and obtain .q10; T
1/NC.

4. Steps 2 and 3 above may be repeated for higher number of nodes while keeping the period T 1 constant.
5. Repeat 2, 3 and 4 for all points in the series discovered in step 1, ie k D 2; 3; : : : ; Nc .
Figures 4 and 5 are used to illustrate the method.

1:55 1:6 1:65 1:7 1:75 1:8 1:85
10�3
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E
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N = 4
N = 20
N = 30
T D 3:7812

Figure 4: Sequential Continuation with Correction: every point represents a periodic solution of specific
frequency and energy. The curve for N D 4 is found using sequential continuation. For each point on this curve,
a shooting algorithm is applied to obtain a periodic solution in higher N and the same frequency. Dotted line
relates to Figure 5 depicting solutions along this line. The results in this figure and in Figure 5 were obtained
using CN and NBM with g D 0:1 and A.x/ D 1 � x=2.

(a) N D 4, R� D 1:75 � 10�2 (b) N D 20, R� D 2:8433 � 10�4 (c) N D 30, R� D 1:0904 � 10�4

Figure 5: Periodic displacement field corresponding to Figure 4, for period T D 3:7812. With higher number of
nodes, the obtained displacement field is more accurate as evident by the lower R� value.

6 Results

6.1 Convergence of Crank-Nicolson and NBM

In this section, we verify the validity of the NBM for the cantilever bar of uniform area, ie A.x/ D 1, 8x 2 Œ0; 1�
and g D 0:1. For this model, analytical solutions and nonsmooth modal analysis results are available [1, 11, 13].
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We compare the exact solution with its NBM approximation for T D 3:5. The corresponding NSM displacement
field reads [11]

Nu.x; t/ D f .t C x/ � f .t � x/ with f .s/ D 0:1

8̂
<
:̂
�s s 2 Œ�1; 1�;
s � 2 s 2 Œ1; 2:5�;
3 � s s 2 Œ2:5; 4:5�:

(62)

The NBM model is assigned the initial conditions generating the exact periodic solutions. The exact initial
conditions are discretized and their values are taken at loci xi corresponding to the NBM-FEM nodes ui .t/

uoi .0/ D f .xi / � f .�xi / D �0:2xi and voi .0/ D f 0.xi / � f 0.�xi / D 0 (63)

inserted in the implicit CN time-marching with Nt D 2000 steps and �t D 1:75 � 10�3. The error used in the
convergence analysis is expressed in the L2-norm

jjP.x/u.t/ � Nu.x; t/jj2 D 1

T

vuutZ 1

0

Z T

0

. Nu.x; t/ �
N�1X
iD1

�i .x/u
o
i .t/C �N .x/uN .uo.t///2 dt dx (64)

where uN .uo.t// is defined in Equation (50). From Figure 6, it is noted that, for any shape function polynomial
degree, convergence is approximately of first order in terms of the number of elements. Indeed, since the exact
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Figure 6: Error in NBM approximation. Curves denote different order of Lagrangian shape function in the FE
approximation.

solution is only once piecewise differentiable as evident from Equation (62), the order of convergence of the FE
methods is limited to first order [22, p. 117]. A sample of the solution for N D 200 is illustrated in Figure 7.

6.2 Nonsmooth modes

In this section, we shall use the nonsmooth modal analysis techniques developed in Section 5 to perform
nonsmooth modal analysis for three variations of the bar: the internally resonant cantilever uniform area bar,
the uniform area cantilever bar with soft support, and the varying area cantilever bar. To verify the validity of
the nonsmooth modes presented here, we will compare each nonsmooth mode with its corresponding forced-
response diagram since it is expected that the backbone branch will align with the frequency and energy at
resonance [7, 13]. All results in Section 6.2 are generated for a gap distance g D 0:001 to comply with the
models investigated in [13, 31]. Furthermore, all NSMs were generated via FE models of 20 elements and
quadratic shape functions for which the backbone branches were depicting resonant points sufficiently.

6.2.1 Forced-response curves

The forced response-curves are generated by solving the equation

ut t .x; t/C cut .x; t/C .A.x/ux.x; t//x D NF cos.!t/ (65)
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(a) Displacement field (b) Velocity field

Figure 7: NBM solution emerging from initial conditions (63) for 100 elements and quadratic shape functions
(N D 200). We note a small disturbance in the velocity field Figure 7(b). This disturbance in the velocity field
seems to travel along characteristic lines and diminishes progressively as higher number of elements and degree
of polynomials are used.

where c, NF and ! denote the damping coefficient, forcing amplitude and the forcing frequency, respectively.
This governing PDE is complemented with the Signorini boundary conditions (5) and (4) as well as the boundary
conditions imposed at x D 0 by the model in questions. The resulting Signorini problem is then solved for
c D 0:1; 0:2; : : : ; 0:7 and for frequencies ! within the range of the detected NSM. For each set of values c and
!, we record the sum of kinetic and potential energies of the structure at steady state to plot the forced-response
diagrams.

In practice, it is assumed a steady state is reached as t !1. Although we often expect a forced motion to
reach a periodic steady state, for some frequencies, quasi-periodic or chaotic solutions take place [12]. Thus, to
obtain the forced-response curve, the Signorini problem is solved until a periodic motion is obtained or until the
energy’s mean value throughout a forcing period is sufficiently stable.

All forced-response curves were obtained using the FEM framework with 20 elements and quadratic shape
functions and solved via SICONOS [32]. SICONOS uses a Moreau-Jean scheme to implement the Newton-
impact law in the resulting system of ODEs. Here, the Newton-impact law is applied on a classical FEM
approximation of the model in question, that is without application of NBM. The coefficient of restitution
used to generate the forced responses in Section 6.2.2 to Section 6.2.4 is e D 0. It is important to note that
forced-response diagrams for the models have been also obtained using SICONOS with e D 1, Nitsche’s method,
and NBM. Since all the forced-response curves yielded very similar results, we chose to present just those
obtained for SICONOS with e D 0 for sake of conciseness.

6.2.2 Constant cross-section and internally resonant bar

The internally resonant bar of uniform area A.x/ D 1 is an example that has been investigated both numeri-
cally [12,31] and analytically [1,11,20]. The system is known to manifest an intricate modal space consisting of
families of iso-periodic periodic solutions in a dense set of periods and families of periodic solutions of the same
frequency and energy.

In Figure 8(a), we compare the curve obtained by NBM to the curve of piecewise-linear analytical solutions
obtained in [13]. It is clear that the NSM obtained from NBM lays closely to the exact piecewise-linear NSM
obtained in literature [1, 11, 13]. We note that there exist other exact periodic solutions on top of the NSM curve
as was concluded in [11]. It is known, from exact solutions and numerical solutions, that the spectrum of the
internally resonant bar consists of iso-periodic nonsmooth modes existing as lines above the exact NSM branch
in the frequency-energy diagram [11]. Therefore, the group of solutions found by NBM may be considered
numerically accurate due to the existence of solutions above the Exact NSM curve. Nevertheless, we note that
the NBM backbone curve does cross all points of resonance in the forced-response diagram. This shows that the
NBM is useful for the modal analysis of the Signorini problem.
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Figure 8: NSM of the internally resonant bar detected by the NBM. ( NF D 0:05). Exact NSM is the piecewise-
linear mode detected for the internally resonant bar in [1, 13]. !1 D �=2 and E1 � 5:9 � 10�7. We note
here that the velocity field Figure 8(c) involves porous oscillations which are common to methods in the FE
framework. However, a heat-map representation of the velocity field is useful in demonstrating that the found
solution follows (approximately) the characteristic lines, exhibited by the exact solution [13].

6.2.3 Constant cross-section bar with soft support

Similarly to [13, 31], the bar with soft support features a uniform cross-sectional area A.x/ D 1 where the
homogeneous Dirichlet condition at x D 0 is replaced with the Robin condition

ku.0; t/ D ux.0; t/; k D NkL=.EA0/ (66)

where Nk is the physical stiffness coefficient of the spring. The NBM was used to handle the Signorini boundary
condition at x D 1 while the soft support condition (66) was treated using the classical finite element technique.

For this experiment, we set k D 0:5 to replicate the results in [13, 31]. Corresponding results are shown in
Figure 9. Again, as in the case of the internally resonant bar, the alignment between occurrences of resonance
and the NSM detected by NBM is clear. The motions obtained in the NBM analysis are similar to those obtained
in [31] for the same values. Specifically, the displacement fields depicted in Figure 9(b) and Figure 9(c) are
similar to those presented in [31, (a) and (b) in Figure 11].

In Figure 9(a), it seems apparent that both displacements relate to two different branches of the solution.
Moreover, the forced response curves of less damped motions have two peaks which may indicate the existence
of two distinct NSM branches. Here, the branch corresponding to solution q2 has been detected until a maximal
energy point. Backward sequential continuation has then revealed a distinct a set of points to which the solution
q1 belongs. These points seem to consist of a curve and the origin of this curve coincides with a subharmonic 4 of
the second fundamental frequency !2. This coincidence with the subharmonic !2=4 may suggest the existence
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Figure 9: NSM analysis of the bar with soft support with k D 0:5 detected by the NBM. Forced response
curves with NF D 0:025 and c D 0:1; 0:2; : : : ; 0:7. First natural frequency !1 � 0:65, second natural frequency
!2 � 3:3 and grazing energy E1 � 5:9 � 10�7.

of an internal resonance in the proximity of both curves. Further attempts using sequential continuation to reveal
the internal resonance between the curves were not successful. Indeed, the use of sequential continuation prevents
us from confirming confidently the existence of the two distinct branches since the method does distinguish
between branches belonging to different continua [33]. In order to affirm this hypothesis, a continuation method
capable of resolving internal resonances is required.

A method generally used for detection of internal resonances is the pseudo-arclength continuation [7].
However, the use of pseudo-arclength continuation relies on the a tangent to the backbone curve to formulate the
next solution along the curve [33]. Due to the nonsmoothness of the motions in NSMs, such tangent cannot be
formulated at every point on the branch. In fact, pesudo-arclength continuation was applied in [31, p. 9] for
detection of nonsmooth modes. While some continuous sections of the NSM were detected, pseudo-arclength
continuation has failed to reveal internal resonances and could not reveal backbone curves for long ranges of
frequencies [31, p. 10].

6.2.4 Varying area bar

While modal analysis of the bar of uniform area has been the subject of both analytical or numerical analysis [11,
13, 31], these relied on knowledge of the d’Alembert function or Green’s function for this purposes. Here, the
NBM allows for modal analysis of the varying-area bar as it relies on Lagrangian shape-functions approximation
to determine the behaviour of the bar during inactive and active contact phase. For the varying area bar in
Figure 1, several area functions A.x/ were considered. In order to simplify the discussion for the remainder of
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this section, the following terminology is introduced to distinguish between the investigated models:

heav-bar A.x/ D 1 � 0:5‚.x � 0:5/ (67)

lin-bar A.x/ D 1 � x=2 (68)

quad-bar A.x/ D 0:5x.2 � x/ (69)

where ‚.x/ denotes the Heaviside function, and the heav-bar hence exhibits two cross-sectional areas: NA0 for
Nx 2 Œ0; 0:5L� and 0:5 NA0 for Nx 2 .0:5L; 1�. The corresponding NSM is illustrated in Figure 10(a). The detected
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Figure 10: Backbone and forced response curves ( NF D 0:05) for varying area bar. NSMs detected by the NBM
with 20 elements of quadratic shape functions. The depicted points in sub-figures (a), (b) and (c) correspond
respectively to solutions b, c, and d investigated in Figure 11(b).

NSMs of the lin- and quad-bars are illustrated in Figure 10(b) and Figure 10(c), respectively. The results derive
from the NBM do coincide the resonant points in the forced-response diagrams. Furthermore, it is noted that all
models consist of bars with decreasing areas such that A.0/ D 1 and A.1/ D 0:5.

The effect of area variation on the modal space of the bar in unilateral contact is of interest. In contrast to the
conclusions from the bar with soft support in Section 6.2.3, no internal resonances were detected for the cases
of the varying area bar around the subharmonic !3=4 or other subharmonics within spectrum of the backbone
curve. Thus, Figure 11 illustrates the backbone curves of all varying area models and that of the uniform area
investigated in Section 6.2.2. In Figure 11(a), the backbones of the varying area bars exhibit higher energies for
the same normalized frequencies when compared to the uniform area bar. In other terms, the behaviour of the
varying area bars can be characterized as “softer” in relation to the uniform area bar. Along the same line, it is
noted that while the lin- and quad-bars exhibit a similar stiffening pattern, the heav-bar is characterized by the
softest stiffening. Thus, it is indicative that the varying area function affects the stiffening behavior and, in turn,
the range size of resonant frequencies.

Moreover, comparison of the varying-area bar NSMs with respect to their true (not normalized) frequencies
in Figure 11(b) shows that the area variation shifts the backbone curves towards lower frequency ranges. This
can be explained by the amount of total mass removed from the bar. For all varying area models, the total mass
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Figure 11: Backbone curves of different area cantilever bars corresponding to Figure 8(a) and Figure 10.

of the bar, mtot D
R
� NA.x/dx, is lower than that of the uniform area bar. While the heav-bar and lin-bar exhibit

a 1=4 decrease in total mass, the quad-area bar exhibits a greater 1=3 decrease. Thus, a greater backward shift
in the backbone curves is noticed when the removed mass is greater. Indeed, this is expected considering the
fundamental physics of mechanical oscillators: with all other parameters being constant, the resonant frequency
of the oscillator reduces with the reduction of mass. At last, Figure 12 entails NSM motion of similar energy. It
is noted that the NSM motions of the varying area bar models while qualitatively similar to the NSM motions
of the uniform area bar depicted in Figure 8(d) and 8(c), exhibit piecewise nonlinear displacement fields in
space-time rather than piecewise-linear displacement field of the uniform area bar. Furthermore, the amplitudes
of motion are greater in the varying area model which can be explained by diminishing kinetic energy due to
loss of total mass and the consequent increase in potential energy. While the results presented here are novel,
a more in depth and more conclusive analysis in regard to the effect of different area variation is a subject of
future research with the NBM.

7 Conclusion

The nodal boundary method, for treatment of Signorini boundary conditions in the framework of FEM, was
presented. The method was developed for nonsmooth modal analysis purposes entailing the detection of periodic
solutions to the autonomous Signorini problem. Compared to application of Newton impact law in FEM or
WFEM, the resulting ODE from the NBM formulation for the varying area bar allows for existence of periodic
solutions with a continuous sticking phase at contact.

The NBM assumes different approximations of the contacting nodal displacement uN .t/ during inactive and
active contact phases. The state uN .t/ is dictated by (1) boundary conditions and (2) nodes that are not prone
to contact (internal nodes). While the treatment of active contact is done similarly to classical FEM (clamped
condition at end of bar), in the treatment of inactive contact, the homogeneous Neumann boundary condition is
enforced in a strong sense such that the approximation of the contact stress exactly vanishes, that is �N .t/ D 0,
throughout the entire inactive contact duration. The two associated approximations of the quantity uN .t/ can
be seen as constituting two distinct sets of shape functions. The residuals for the inactive and active motion
approximations are then projected onto their respective set of shape functions to form two distinct ODEs. The
Signorini problem is then solved by switching between the sets of shape functions both in trial and test functions.
At last, the full NBM-ODE consists of a nonsmooth set of equations which can be solved either analytically or
numerically.

Moreover, nonsmooth modal analysis via NBM resulted in valid backbone curves aligning with resonances
of forced-response diagrams. These results were obtained for three cases: the cantilever bar of uniform area, the
cantilever bar with soft support, and the cantilever bar of varying area.

The results presented for the uniform area bar and the bar with soft support have agreed with previous
research on the topic. Furthermore, the NBM has allowed for characterization of two distinct NSMs for the
bar with soft support. The two distinct curves seem to relate via an internal resonance as one of the curves
originates from a sub-harmonic of the motion. However, affirmation of this result could not be achieved with
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(a) Displacement field solution b (b) Velocity field solution b

(c) Displacement field solution c (d) Velocity field solution c

(e) Displacement field solution d (f) Velocity field solution d

Figure 12: Comparison of selected autonomous NBM motions from the backbone curves of all varying-area
bars. The locations of the selected motions on the FEP is noted in Figure 10 and Figure 11(b).

sequential continuation and the detection of internal resonances in nonsmooth modes is subject for future
research. Furthermore, application of the NBM to discover the modal space of the bar of varying area in
unilateral contact has been proven successful and the results show good agreement with the forced-response
curves.

8 Supplementary Material

Excerpts of scripts and algorithms used to perform the analysis and generate this manuscript are available on
Zenodo [34].
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A Appendix

A.1 Proof of � 0N .1/ > 0

Lemma 1. In the context of classical finite elements for the PDE (1) with Lagrangian shape functions �i .x/ for
i D 1; 2; : : : ; N consisting of uniformly spaced nodes on loci xi D i=N , the value of �0N .1/ depends on the
order of shape functions only.

Proof. The proof follows from the construction of shape functions in the FEM. In the classical finite element,
the structure is divided into elements and each element consists of a set of shape functions that are Lagrange
polynomials. These shape functions are local to the element and their definition depends only on the order of the
polynomial chosen for this specific element [22]. Thus, the value �0N .1/ is dependent only on the order of shape
functions used.

This lemma will be necessary in the generalization of the theorem below to any number of elements and any
order of shape functions.

Theorem 2. For the classical FE approximation for the PDE (1) with Lagrangian shape functions �i .x/
i D 1; 2; : : : ; N based on uniformly spaced nodes xi D i=N , the statement

�0N .1/ > 0 (70)

always holds.

Proof. The proof consists of first proving Inequality (70) for the case of a single element by inspecting the exact
expression of the Lagrangian function. Then, the proof is expanded to any number of elements and/or shape
functions by virtue of Lemma 1.

We start by approximating the bar’s displacement using a single element. It follows, then, that N � 1 stands
for the order of the shape function such that

�i .x/ D
Y

0�m�N
m¤i

x � xm
xi � xm

; x 2 Œ0; 1�: (71)

Then, for �N .x/, we can simplify the expression using xi D i=N to simplify the denominator

�N .x/ D
N�1Y
mD0

x � xm
xN � xm

D NN
N�1Y
mD0

x � xm
N �m : (72)

Then, we take the derivative of �N .x/ to obtain

�0N .x/ D NN
N�1X
jD0

1

N � j
Y

0�m�N�1
m¤j

x � xm
N �m : (73)
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To show �0N .1/ > 0, we simply evaluate every term in the expression

�0N .1/ D NN
N�1X
jD0

1

N � j
Y

0�m�N�1
m¤j

1 � xm
N �m D N

N
N�1X
jD0

1

N � j
Y

0�m�N�1
m¤j

1

N

N �m
N �m

D
� NN

NN�1
�N�1X
jD0

1

N � j D N
N�1X
jD1

1

N � j D N
NX
jD1

1

j
:

(74)

We note that all the quantities presented here are exclusively positive and that their sum and product will also
be positive such that �0N .1/ > 0 holds. By virtue of Lemma 1, we may conclude that if �0N .1/ > 0 holds for a
single element, it will hold for any number of elements.

A.2 Conservation of energy away from instant of switch

We introduce two lemmas on the energy conservation during active and inactive contact motions, away from the
moment of switch (ts such that S.uo.ts// D g).

Lemma 3. For the FEM-NBM ODE (35) developed for a cantilever bar in inactive contact conditions, the
energy (involving boundary nodes and non reduced matrices) term

2E.t/ D Ru>.t/M Ru.t/C u>.t/Ku.t/ (75)

is conserved, that is PE.t/ D 0 for S.uo.t// < g.

Proof. This lemma is proven by developing the term PE from Equation (75) and plugging the solution of
Equation (35).

First, we differentiate equation (75) with respect to t , and for symmetric M and K (as they are in the given
in the FE formulation [22]) we obtain

2 PE.t/ D Ru>.t/.M Ru.t/CKu.t//: (76)

Next, we note that for inactive contact S.uo.t// < g, the NBM formulation of uN in (28) admits PuN D S. Puo.t//.
Under this restriction, the relationship between Pu.t/ and Puo.t/ can be described via Pu.t/ D B Puo.t/. Next,
substitution of the previous identity into expression (76) admits PE.t/ D Puo>.t/.MN Ruo.t/CKNuo.t// D 0,
for S.uo.t// < g where the last equality completes this proof by virtue of (35).

Lemma 4. For the FEM-NBM ODE (43) developed for a cantilever bar with non-homogeneous Dirichlet
conditions, the energy metric (75) (similar to the energy metric used in lemma 3) is conserved, that is PE.t/ D 0
for S.uo.t// > g.

Proof. This theorem is proven by developing the term PE.t/ from equation (75) and plugging the solution of
equation (43). We note that application of (36) implies that

PuN .t/ D 0: (77)

We can conclude that u.t/ belongs to the same space as w in (40), ie

Pu.t/ D Bd Puo.t/: (78)

Thus, we plug-in the identities (40) and (78) into (76) such that PE.t/ D Puo>.t/.MD Ruo.t/CKDu
o.t/CgfD/ D

0, for S.uo.t// > g where the last equality is obtained by virtue of (43).
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A.3 Derivation of energy jump at switch

The term �E in Equation (54) is derived for the case for the transition between inactive and active contact. This
procedure can be then replicated for the case of transition between active and inactive contact. The latter will not
be detailed in this paper but rather its conclusion will be presented here, culminating in term (54).

We assume that the state of switch is denoted by uo.ts/. At time ts , we expect that PS.uo.ts// ¤ 0 such that a
transition between inactive and active contact occurs. At the time ts , for the switch from active to inactive contact
to occur, uo.ts/ satisfies S.uo.ts// D g, S. Puo.ts// < 0 where it is presumed that S. Puo.ts// < 0 to guarantee a
transition to inactive contact (ie, the stress at the wall will become positive immediately after ts). Just before the
moment of switch, t�s , the system is established to be in active contact, ie uN .t�s / D g and PuN .t�s / D 0. The
energy of the system at this stage can be described as follows

2E.t�s / D
� Puo.ts/> 0

� �Moo MoN

M>oN MNN

� � Puo.ts/
0

�
C �uo.ts/> g

� �Koo KoN
K>oN KNN

� �
uo.ts/
g

�
(79)

where M and K are shown as block matrices to simplify the presentation of later calculations. Next, the energy
of the system at tCs , presuming that the bar is in inactive contact motion, is given as follows

2E.tCs / D
� Puo.ts/> S. Puo.ts//

� �Moo MoN

M>oN MNN

� � Puo.ts/
S. Puo.ts//

�
C : : :

�
uo.ts/

> g
� �Koo KoN

K>oN KNN

� �
uo.ts/
g

�
; S. Puo.ts// < 0

(80)

Then, the term �E is given as follows (where calculations where omitted for sake of conciseness)

�E D E.tCs / �E.t�s / D S. Puo.ts//
�
M>oN Puo.ts/C 1

2
MNNS. Puo.ts//

�
; S. Puo.ts// < 0: (81)

Similarly, if we would have started our derivation with the assumption that ts denotes a switch from inactive to
active contact, we would have reached the conclusion

�E D �S. Puo.ts//
�
M>oN Puo.ts/C 1

2
MNNS. Puo.ts//

�
; S. Puo.ts// > 0: (82)

We can therefore generalize and say that

�E D �jS. Puo.ts//j
�
M>oN Puo.ts/C 1

2
MNNS. Puo.ts//

�
: (83)

This term is presented using the elements of M in Equation (54).
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