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ABSTRACT

The formulation of history-dependent material laws has been a significant challenge in solid me-
chanics for over a century. Recently, data-driven techniques have generated accurate and reliable
surrogates for elasto-plastic constitutive laws. However, most of these methods are deeply rooted in
the big data domain and fail when only a few physically obtained experimental data points are avail-
able. To combat this, we propose a plasticity formulation with model-data-driven yield functions that
is designed to work in the small data regime. This is done by locally improving a phenomenolog-
ical yield function (model component) with a data-driven correction term (data component) which
only utilizes uniaxial and biaxial experimental data describing the shape of the initial yield surface.
This allows seamless merging of conventional material models with their data-driven counterparts
enabling the derivation of hybrid models that significantly improve the accuracy and robustness of
traditional approaches. In order to obtain convex yield functions in this framework, it is sufficient
for the data-driven correction to be convex. Strategies based on convex extensions to Support Vector
Regression (SVR), Gaussian Process Regression (GPR), and Neural Networks (NN) are analysed.
The proposed approach is tested on synthetic data of anisotropic yield functions commonly used for
rolled metal sheets.

Keywords Data-driven elasto-plasticity · Physics-informed machine learning · Machine learning · Convex yield
function · Anisotropic yield function

1 Introduction

Machine learning and data-driven techniques are currently one of the main drivers of advancement in engineering
science. They allow to make efficient use of available data while allowing to automate training processes aiding quick
prototyping. Hence, machine learning solutions have been employed in various fields to build surrogates or reduced-
order models for complex physical mappings [1, 2, 3]. On the other hand, in computational physics, they are also
extensively used as direct solvers for deterministic [4, 5] or uncertain [6, 7] partial differential equations.

Recently, machine learning approaches have also seen an increased interest in material modeling. Data-driven consti-
tutive modeling has been used to create surrogates of nonlinear path-independent material laws such as hyperelasticity
[8, 9, 10]. Alternatively, hybrid models have been proposed where known traditional phenomenological models are
locally improved with machine-learning-based correction terms when data is available [11, 12, 13]. In Ref. [12],
the term model-data-driven material modeling for these types of hybrid constitutive laws has been established. In
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contrast to path-independent material behavior where one-to-one mappings between the strain and stress significantly
simplify material modeling, path-dependent closure models rely on time- and/or history-evolution of the material. In
terms of plasticity, different theoretical frameworks for phenomenological approaches, such as hypo-plasticity [14] or
elasto-plasticity [15], have been developed over the years. Elasto-plasticity, for example, distinguishes between elastic
and inelastic constitutive responses by employing yield surfaces. On the other hand, hypo-plastic models make no
distinction between elastic and plastic strains and do not use yield functions to characterize the onset of yielding. The
divide between these two classical theories in phenomenological elasto-plastic modeling can also be found in their
data-driven counterparts.

The earliest machine-learning-based approaches for plasticity (see, e.g., [16, 17]) treat the material law as a problem
defined by sequential stress-strain data, which is in line with the ideas from hypo-plasticity. This idea has also been
applied to a majority of the current works. For example, [18] use recurrent neural networks to successfully map
between history-dependent stress-strain data points where the internal feedback connections are used to find embedded
internal variables implicitly. Other approaches, such as [19] utilize neural networks combined with an experimentally
obtainable internal history variable to generate a data-driven plasticity model in two- and three dimensions. However,
these approaches suffer from problems with interpretability since it is unclear how the model behaves on unseen data,
i.e. data outside the training range. Secondly, efficient sampling schemes are needed that generate representative data
that allows to extrapolate to other load cases. This last point has not yet been addressed in a sufficient manner.

Recently, [20] propose an approach that is more in line with elasto-plastic theory. Here, the material law is constructed
out of modular components, similar to what one would encounter in an analytical formulation, where the elastic and
plastic contributions (i.e., yield function) can be trained with separate but complementing predictive tools. This allows
for better interpretability and reliability than traditional black-box surrogates. With this idea in mind, [21] introduce a
framework to generate texture-dependent yield functions with neural networks which are strictly convex but can also
embed microstructural information. Other machine learning-based methods for yield functions have been proposed. A
correction term to a yield function was applied in [22]. [23] explores Support Vector Regression as a tool to determine
anisotropic yield functions. Symbolic regression is used in [24] and [25] to find interpretable expressions for isotropic
yield functions based on data. [26] introduce an approach that fits symbolic regression models to synthetic Digital
Image Correlation data. However, all of the discussed models are part of a big-data mindset where a significant
amount of data from computer simulations or from full-field measurements [27] is assumed to be available. Thus,
these approaches can not be directly applied using only experimental data that are commonly available from uniaxial
and biaxial test as these would probe only a small subset of the stress space.

In this work we propose a hybrid model-data-driven approach that can locally improve phenomenological yield func-
tions where experimental data is available. The framework is developed with data availability, and the idea of data-poor
modeling in mind. As a proof-of-concept we propose and study the framework on perfect plasticity. This restriction is
chosen deliberately since experimental data describing the shape of the yield function is (typically) only available for
the initial yield surface. In future works, we aim to extend it to include hardening.

Typically, it can be seen as a physical requirement that the yield function is convex with regard to its stress-dependent
arguments. Hence, in this work, special attention is given to ensure the convexity of the resulting model-data-driven
yield function. We recognize that the convexity of the correction term guarantees convexity of the final yield function
(assuming that the model component in the hybrid formulation is convex). Hence, the convex extensions to three
commonly applied machine learning methods are introduced. These include Input Convex Support Vector Regression,
Input Convex Gaussian Process Regression, and Input Convex Neural Networks. The framework is tested for mod-
eling rolled metal sheets which are typically characterized by anisotropic yield. The organization of the paper is as
follows. The concept of elasto-plasticity with model-data-driven yield functions in the context of the studied use-case
is thoroughly explained in Section 2. The considered convexity constrained machine learning techniques are reviewed
in Section 3. The numerical implementation of the framework is detailed in Section 4. Results of model-data-driven
elasto-plasticity utilized on rolled sheet metals and compared to pure-data-driven approaches are highlighted in Section
5. The consequences of these findings are discussed in Section 6. The paper is concluded in Section 7.

2 Materials and Methods

This paper deals with the characterization and modeling of yield functions for metallic materials. The focus is in
particular on rolled metal sheets, where x, y and z denote the rolling, transverse, and normal directions (RD, TD,
and ND), respectively. These types of materials are generally subjected to a plane stress condition in the (x,y) plane.
With obvious notation, σx, σy and σxy respectively represent normal components along the RD and TD, as well as the
shear component in the RD-TD plane, of the Cauchy stress tensor σ.
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The total strain ε is additively split into an elastic εe and plastic εp part:

ε = εe + εp . (1)

and the the Cauchy stress is assumed to be linearly dependent on the elastic strain

σ = C : εe = C : (ε− εp) (2)

where C is the elasticity tensor.

2.1 Model-data-driven approach

In the proposed model-data-driven approach, plastic flow is described by the following yield function:

f(σ) = fmod(σ) + frem(σ) ≤ 0 , (3)

where fmod represents a given model component and frem is the remainder between the exact and model-based yield
functions.

In the present work, no hardening effects are accounted. These can be included by adding an explicit dependence on
εp. We restrict ourselves to perfect plasticity, since, data describing the shape of the yield surface is typically only
available for the initial surface.

An associative evolution law for the plastic strain is considered, that is

ε̇p =

{
λ̇
[
Rmod

σ (σ) +Rrem
σ (σ)

]
if f(σ) = 0

0 if f(σ) < 0
, (4)

where
Rmod

σ =
∂fmod

∂σ
, Rrem

σ =
∂frem
∂σ

, (5)

and λ is a scalar (positive) plastic multiplier, whose rate λ̇ is required to be positive, i.e. λ̇ ≥ 0, and different from
zero only in presence of plastic flow.

Traditionally, yield functions models are established from uniaxial and biaxial experimental data [28]. These two are
briefly recapitulated in the following.

2.2 Experimental data

Addressing uniaxial tension along direction t(θ) = x cos θ+y sin θ (at angle θ with respect to the x-axis in the (x,y)
plane), the applied stress tensor results in σuni

θ (s) = s(t(θ) ⊗ t(θ)). The corresponding yield limit, that is stress s
such that f(σuni

θ (s)) = 0, is denoted by σu
θ . Another loading case study relevant from the experimental point of view

is the application of a biaxial stress state in the RD-TD plane with tanβ being the stress ratio between TD and RD.
In this case, the stress tensor reads σbi

β (s) = s(x ⊗ x) + s tanβ(y ⊗ y)1, and the corresponding biaxial yield limit,
i.e. stress s such that f(σbi

β (s)) = 0, is denoted by σb
β . Superscripts T and C are employed for indicating tensile (i.e.,

σu
θ , σ

b
β > 0) or compressive (i.e., σu

θ , σ
b
β < 0) stress states, respectively.

From the kinematic point of view, plastic flow can be characterized by experimental observations on Lankford co-
efficients ruθ [28, 29]. These coefficients are obtained from uniaxial tension tests along t(θ). Defining t⊥(θ) =
− sin θx+cos θy as the orthogonal direction to t(θ), Lankford coefficients ruθ = −dp⊥/dpz represent the ratio between
the in-plane orthogonal dp⊥ = ε̇p : (t⊥ ⊗ t⊥) and through-thickness dpz = ε̇p : (z ⊗ z) plastic strain increments,
reading

ruθ (σ
u
θ ) = −

dpx sin
2 θ − dpxy sin(2θ) + dpy cos

2 θ

dpx + dpy

∣∣∣∣∣
σ=σu

θ (t⊗t)

, (6)

with

dpx = ε̇p : (x⊗ x) = λ̇
∂f

∂σx
, (7)

dpy = ε̇p : (y ⊗ y) = λ̇
∂f

∂σy
, (8)

dpxy = ε̇p : (x⊗ y) = λ̇
∂f

∂σxy
. (9)

1In the special case β = 90◦, it results in σbi
90(s) = s(y ⊗ y) = σuni

90 (s).

3
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2.3 Model component of the yield function

A general expression of fmod, adopted in what follows, is an invariant-based representation of the form [30]

fmod(σ) = 3J0
2 (σ)− σ̄2 , (10)

where J0
2 is the second generalized orthotropic invariant, reading

J0
2 (σ) =

a1
6
(σx − σy)

2 +
a2
6
(σy − σz)

2 +
a3
6
(σx − σz)

2+

+ a4σ
2
xy + a5σ

2
xz + a6σ

2
yz , (11)

with a1, . . . , a6 some material constants.

We use this specific model component since according to [30] it represents the ”most widely used orthotropic yield
criterion for describing the directionality in plastic properties (yield stresses, strains) of sheets and plates”.

It has been shown that J0
2 (σ) is pressure insensitive and so it depends only on the deviatoric stress σdev = σ − pI

with p = Tr(σ)/3, and reduces to its isotropic counterpart J2(σ) = Tr(σ2
dev)/2 for a1 = . . . = a6 = 1 (see, e.g.

[31]). Besides, it has been proven that fmod in eq. (10) corresponds to the orthotropic generalization of the von Mises
Isotropic Criterion [32]. In the literature, eq. (10) is occasionally reformulated as:

fmod(σ) =F (σy − σz)
2 +G(σz − σx)

2 +H(σx − σy)
2+

+ 2Lσ2
yz + 2Mσ2

xz + 2Nσ2
xy − σ̄2 , (12)

where F , G, H , L, M and N are material constants (univocally related to the constants a1, . . . , a6). Under plane stress
conditions (σz = σxz = σyz = 0) only 4 parameters (F , G, H and N ) have an impact which can be experimentally
characterized by means of 4 material tests, like for instance:

• RD-uniaxial tensile traction, providing σuT
0 ;

• TD-uniaxial tensile traction, providing σuT
90 ;

• uniaxial tensile traction at θ = 45◦, providing σuT
45 ;

• equi-biaxial tensile traction in the RD-TD plane, with σx = σy > 0 and σxy = 0, providing σbT
45 .

From these experimental values, the yield function in eq. (12) can be straightforwardly calibrated via:

2F = (σ̄/σuT
90 )2 + (σ̄/σbT

45 )
2 − (σ̄/σuT

0 )2 , (13)

2G = (σ̄/σuT
0 )2 + (σ̄/σbT

45 )
2 − (σ̄/σuT

90 )2 , (14)

2H = (σ̄/σuT
0 )2 + (σ̄/σuT

90 )2 − (σ̄/σbT
45 )

2 , (15)

2N = 4(σ̄/σuT
45 )2 − (σ̄/σbT

45 )
2 , (16)

with σ̄ = σuT
0 . Alternative strategies based for instance on Lankford coefficients ruθ are available, for which the

interested reader is referred to, e.g., [30].

2.3.1 Limitations of model component fmod

The modeling component of the yield function fmod(σ) in eq. (12) can be effectively applied in a wide range of
applications, being, in fact, the most widely used orthotropic yield criterion for describing the directionality in plastic
properties of sheets and plates [30]. However, the orthotropic von Mises criterion is endowed by intrinsic limitations
given by its quadratic form and the relatively low number of available parameters (4 in plane stress), [33]. Therefore,
some typical experimental observations in metals cannot be accounted for, like:

• the fitting of additional uniaxial or biaxial yield stresses from the ones used for calibration, see e.g. Eqs.
(13)-(16);

• the simultaneous fitting of uniaxial yield stress values σu
θ and Lankford coefficients ruθ , since the calibration

can be based either on the former or the latter [30];
• typical tension-compression asymmetries experienced in material strength e.g. σuT

0 ̸= σuC
0 .

To better explain these aspects, an exemplary case study is presented in Fig. 1. Here, parameters F , G, H and N have
been calibrated using known data values at σuT

0 , σuT
45 , σuT

90 and σbT
45 . It can be seen that the calibration data is perfectly

4
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represented, but additional experimental tests cannot be incorporated, resulting in significant inaccuracies due to the
adopted yield function fmod(σ). The effect of these inaccuracies on the obtained constitutive responses are shown
in Fig. 2 in terms of a strain-driven uniaxial traction test along RD. We remark that, in order to obtain a rigorous
comparison between the predicted and true yield surfaces in the forthcoming numerical results, the calibration data in
this work is generated by means of an analytical orthotropic yield criterion by Cazacu and Barlat [33], presented in
detail in A.

The traditional approach would be to seek a refined formulation with more parameters. However, the fitting capabil-
ities of the generalized expression might anyway be too low due to intrinsic limitations of the chosen mathematical
relationship, and the modeler’s choices on the adopted relationship highly affect the outcome. Moreover, the number
of parameters is finite, and so will be the data that can be reproduced exactly via a proper calibration step. When
more data points than parameters are available, then the parameters are generally calibrated by minimizing an error
function, the form and weight factors of which introduce another impact due to decisions of the modeler.

Accordingly, in order to ensure a general accurate description of available information, the authors here propose to
introduce a surrogate model for the remainder term frem in eq. (3), built by machine learning. Hence, the remainder
term represents the data-driven component in the model-data-driven elasto-plastic approach.

2.4 Data-driven component

To introduce the data-driven part of our framework, first we discuss the type of data that could potentially be available
from experiments. In general, the data is given as discrete values of the remainder term at given stress states. Hence,
our data represents the (negative) effective value of the model yield function at the experimentally measured stress
positions.

Three datasets that combine uniaxial and biaxial experiments are generated and contemplated in order to investigate
the required and relevant amount of data. From biaxial experiments we get

frem(σbi
θ∗(σ

b∗
θ )) = −fmod(σ

bi
θ∗(σ

b∗
θ )) , ∗ = T, C, (17)

while from their uniaxial counterparts we obtain

frem(σuni
θ∗ (σu∗

θ )) = −fmod(σ
uni
θ∗ (σu∗

θ )) , ∗ = T, C. (18)

Combining N independent uniaxial and biaxial experiments, the datasetD = {xi, f i
rem}Ni=1 with xi = [σi

xx, σ
i
yy, σ

i
xy]

is hence employed to create the surrogate model f̂rem of the remainder term frem as detailed later in Section 3.
Remark 1. (Using Lankford coefficient data) We remark that there is potential to include Lankford coefficients in the
training data set.
For the same set of uniaxial tests, known values r̄uTθ and r̄uCθ of Lankford coefficients can be determined with:

rrem(σu∗
θ ) = r̄u∗θ − rmod(σ

u∗
θ ) , ∗ = T, C (19)

providing an implicit relationship on function derivative of ∂frem/∂σ at some stress states σuni
θT and σuni

θC . In order
to test the capabilities of the model-data approach, we consider a simpler data-regime scenario where no experimental
knowledge of the Lankford coefficients is required. This decreases the number of necessary experiments. However,
available information about the Lankford coefficients could be straightforwardly included.

3 Convexity constraints and machine learning approaches

In the middle of the last century Drucker [34, 35] argued that, based on a stability postulate, the yield surface must be
convex, i.e.

(σ⋆ − σ) :
∂f

∂σ
≤ 0 (20)

where σ⋆ is an arbitrary macroscopic stress on or inside the yield surface. Hence, ideally, any yield function obtained
through the model-data-driven approach of eq. (3) should fulfill this criterion. Because addition is a convexity-
preserving operation, if both components are convex, the model-data-driven yield function will inherit convexity. It
should be highlighted that the model component fmod can directly be chosen to be, as is the case here, a convex
function. Hence, the data regression model should aim to fit the best possible convex function to the available data
such that convexity of the remainder term frem is guaranteed.
We remark that this is a tighter constraint than strictly necessary (it is indeed a sufficient but not necessary condition,
cf. B). Different ways to enforce convexity in machine learning techniques are available, although they require some

5
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(a) Full stress space
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(c) Uniaxial tests

Figure 1: Comparison of the yield surfaces obtained considering the model fmod(σ) (eq. (12) with parameters ob-
tained from eq. (13)) and the true yield (obtained from the orthotropic yield criterion by Cazacu and Barlat [33], see
A). Since the true yield function here follows an analytical definition, the full surface is shown, but it has to be pointed
out that realistically the yield function would only be known at a few select points if it was obtained from experimental
testing.
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Figure 2: Comparison of the responses obtained along RD only considering the model contribution fmod(σ) of the
yield-function (eq. (12) with parameters obtained from eq. (13)) and the true response (obtained from the orthotropic
yield criterion by Cazacu and Barlat [33], see A) during a strain-driven uniaxial traction test: (a) stress-strain relation-
ship, (b) plastic strain.

generalizations for facing the problem at hand. Therefore, we decided to focus on the convexity condition, rather than
enforcing less standard constraints on the Hessian of the surrogate model which are out of the scope of the present
study.

Guaranteeing the convexity of the surrogate f̂rem is equivalent to ensuring that the Hessian matrix of the prediction
for any input x is at least positive semi-definite, i.e., the predictor is subject to the following continuous constraint

H(f̂rem)(x) ⪰ 0 (21)

with

H(f̂rem)ij(x) =
∂2f̂rem(x)

∂xi∂xj
(22)

where the sign ” ⪰ ” is used to symbolize positive semidefiniteness. Generally, two distinct concepts can be employed
to fulfill this requirement in machine learning frameworks:

• Intrinsically convex regression functions.
Some machine learning frameworks allow for a direct fulfillment of the convexity constraint by employing
specialized designs.

• Reduction of constraints to finite dimensionality.
Instead of ensuring the convexity requirements globally, they are only enforced (with soft or hard constraints)
on a finite number of points. Different strategies have been used in the literature to choose the set of points
which the requirements should be fulfilled on [36]. For instance, constraints could hold only on training
samples [37, 38], on sample points in a domain of interest [39], or on a set of points that was iteratively
selected [40].

The literature on convex constrained regression models using least-squares estimators is vast, see e.g. [41, 42, 43].
However, these works are mostly concerned with piecewise-linear surfaces which do not allow for the necessary
differentiability at the training samples that is required for numerical evaluation of elasto-plastic calculations. In
the following, convex extensions to three commonly applied smooth regression techniques are briefly discussed, in
particular Support Vector Regression (SVR), Gaussian Process Regression (GPR), and Neural Networks. The first two
methods are reliant on the specification of a kernel function r : Rd × Rd → R which is typically user chosen. The
respective kernel matrix R(X,Y ) with X ∈ Rn×d and Y ∈ Rm×d maps Rn×d × Rm×d → Rm×n and is built with
r(X,Y )i,j = r(Xi, Yj).

7
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3.1 Input convex Support Vector Regression

In Support Vector Regression, the value of the regression model at an input x can be obtained by

f̂rem(x) =

N∑
i=1

αir(x,x
i) + b (23)

where both α = [α1, . . . , αN ] and b are unknown parameters. The parameters that best fit the observations are
typically determined following an ϵ-insensitive loss approach [44] where no weight is put onto small residuals. This
is typically done by specifying a zone ±ϵ ∈ R+ where the residual is not accounted for. The trainable parameters
can then be found by solving a linear programming problem [45]. In order to enforce convexity of the SVR predictor
in a non-intrinsic manner on a finite number of points {xi

c}
Nc
i=1, Wang and Ni [36] proposed to reformulate these

optimization problems by including the requirement that the Hessian matrix should be positive semi-definite. Since
the prediction value of eq. (23) is linear this requirement can be included such that the optimization problem takes the
form of a semi-definite program

argmin
α,b,ξ,a

1

N
1T ξ + C1Ta

s.t. diag (Rα+ b1+ ξ − frem,−Rα− b1+ ξ + frem,

ξ − 1ϵ,α− a,−α+ a,

N∑
i=1

αiFi) ⪰ 0

(24)

where C is used to tune the trade-off between the empirical error minimization and the regularization term maximiza-
tion, and where the set of trainable parameters now includes the N -dimensional vectors ξ and α and

Fj = diag(H(k(x1
c ,xj))(x

1
c), . . .H(k(xNc

c ,xj))(x
Nc
c )). (25)

3.2 Input convex Gaussian process regression

Using some prior assumptions [46], predictions with Gaussian process regression can be made using the analytical
formulation

f̂rem(x) = µ̂+ rT⋆ (x)R
−1(frem − 1µ̂), (26)

with 1 an all-ones vector and µ̂ = (1TR−11)−11TR−1frem. Furthermore, the elements of r read

r⋆,i(x) = r(x,xi) for i = 1, . . . , N. (27)

The kernel function is typically also dependent on a d-dimensional hyperparameter vector θ which needs to be deter-
mined based on the available data, e.g. by minimizing the concentrated negative marginal log-likelihood

− ln(frem|X,θ)) =
1

2

[
N ln

(
σ2(θ)

)
+ ln(detR(θ))

]
(28)

where
σ̂2 =

1

N
(frem − 1µ̂)

T
R−1 (frem − 1µ̂) . (29)

In order to constrain the prediction of eq. (26) to be strictly positive it was proposed in [39] to find the hyperparameters
by postulating a constrained optimization problem on the negative marginal log-likelihood over a finite number of
points {xi

c}
Nc
i=1. We reformulate this approach to find the hyperparameters such that the Hessian matrix of the mean

prediction value is positive semi-definite on a number of constraining sample points

argmin
θ

− ln(frem|X,θ)),

s.t. H(f̂rem)(xi
c) ⪰ 0, i = 1, . . . , Nc

(30)

A noise term can be included as a trainable parameter to improve the flexibility of the GRP regression model, see
[47]. To combat that the noise of the model impacts its accuracy, [39] add an additional restriction to the constrained
optimization model that penalizes noise values that would result in large discrepancies of the trained model and the
actual ground truth data. This approach is also followed here. Following [39] the discrepancy parameter value is set
to 0.03.

Other methods for constraining GPR exist but they generally do not guarantee that the posterior is analytically known
or are only applicable for simple constraints such as output bounds. For more information and an overview over
available techniques we refer to [48].

8
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3.3 Input convex neural networks

In contrast to SVR and GPR, constraining neural networks intrinsically to be convex is possible in a simple and
efficient manner to build input convex neural networks (ICNN). Following [49], the standard update formula of neural
networks can be rewritten to

zi+1 = gi(W
z
i zi +W x

i x+ bi), (31)

where W z
0 = 0, z0 = 0 and zk = frem. The set of trainable parameters is given by {W z

1:k−1,W
x
0:k−1, b0:k−1}.

Contrary to traditional feed-forward neural networks, this network architecture includes ”passthrough” layers, i.e. the
input x is directly connected to the hidden and output layers. These layers are needed to increase the expressiveness
of the network since in order to guarantee convexity with regard to the inputs all weights {W z

i }
k−1
i=1 are required to

be non-negative and the activation functions gi are chosen to be non-decreasing and convex. Rectified Linear Unit
(ReLU) are the common choice of activation function in this context.

Figure 3: Visual representation of the network architecture of input convex neural networks.

The optimal values of the trainable parameters are generally determined by solving an optimization problem over a
loss function where for regression problems the mean-squared error is a common choice.

4 Numerical implementation

The state S of an elasto-plastic material at time t is described by the current values of the total strain, as well as by a
set of internal plastic variables Spl(t), here chosen to be plastic-strain, kinematic-hardening stress variables, and scalar
plastic multiplier that is

S(t) = {ε(t),Spl(t)} with Spl(t) = {εp(t), λ(t)} . (32)

For a given loading path, updating the material state requires the solution of an evolution problem, which is here
faced by means of a time-incremental strategy based on the backward first-order Euler scheme. Accordingly, let us
assume that all quantities are known at time tk and denoted with subscript k, and unknowns at the next time step
tk+1 = tk +∆t are indicated without subscripts.

A displacement-driven loading path is addressed. Therefore, the variation of the total strain ε = εk + ∆ε is given.
The evolution of material state is hence fully characterized by finding the value of the following vector of unknowns:

h = vec [{εp, λ}] , (33)

which collects the values of Spl at time tk+1.

In the proposed model-data-driven strategy, updating the material state during the evolution of the plastic state, i.e.,
when Spl(tk+1) ̸= Spl(tk), requires to solve:

1. the evolution equation (4) for εp, yielding the following algebraic expression:

Qε(ε,h) = εp − εp,k − (λ− λk)
[
Rmod

σ (σ) +Rrem
σ (σ)

]
= 0 ; (34)

2. the yield condition:
qλ(ε,h) = fmod(σ) + frem(σ) = 0 . (35)

The dependency of Qε and qα on ε and h is highlighted, since the knowledge of these latter quantities allows to
uniquely characterize σ from Eqs. (2). The evolution of material state is then fully characterized by finding h such
that Eqs. (34) and (35) are satisfied, that is:

Find h such that qpl(ε,h) = vec [{Qε, qα}] = 0 . (36)

9
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Algorithm 1 Pseudocode for the predictor-corrector scheme.

1: Trial value: htr = hk ▷ Initialization
2: if qλ(ε,htr) < 0 then ▷ Predictor (elastic step)
3: return with h = htr

4: else ▷ Corrector (plastic step)
5: while ∥qpl(ε,htr∥ > tol do
6: ∆h = − [A(ε,htr)]

−1
qpl(ε,htr)

7: htr ← htr +∆h
8: end while with h = htr

9: end if

The solution of the non-linear problem (36) for a given value ε is obtained by a predictor-corrector algorithm detailed
in Algorithm 1. To this aim, the linearization of the algebraic expression qpl(ε,h) with respect to h is required, i.e.

A(ε,h) =
∂qpl

∂h
. (37)

The latter can be obtained by combining partial derivatives of Qε and qλ with respect to εp and λ. Most of these
relationships follow standard definitions in the field of elasto-plastic numerical models, and are hence not detailed
here. Only those modified by the use of the model-data-driven approach are specified here:

∂Qε

∂εp
=

Amod
εε︷ ︸︸ ︷

I+ (λ− λk)
∂2f

∂σ∂σ
:
∂σ

∂εp
+

Arem
εε︷ ︸︸ ︷

(λ− λk)
∂2frem
∂σ∂σ

:
∂σ

∂εp
, (38a)

∂Qε

∂λ
=

Amod
ελ︷ ︸︸ ︷
− ∂f

∂σ

Arem
ελ︷ ︸︸ ︷

−∂frem
∂σ

, (38b)

∂qλ
∂εp

=

Amod
λε︷ ︸︸ ︷

∂f

∂σ
:
∂σ

∂εp
+

Arem
λε︷ ︸︸ ︷

∂frem
∂σ

:
∂σ

∂εp
, (38c)

noting that ∂σ/∂εp = −C and ∂q/∂α = −H . In conclusion, the tangent operator for the plastic state evolution
can be regarded as the sum of a classical one Amod associated with the model component, and a remainder Arem

computed from the first and second derivatives of frem with respect to stress variables, cf., eq. (38). These derivatives
can either be obtained as analytical derivatives of the machine learning models by hand or using automatic differen-
tiation techniques. Since all the models used in this work were implemented in Pytorch [50] we employed automatic
differentiation. For more information we refer to [51].

5 Numerical tests

The proposed approach is tested in this section. The ICNN as well as the unconstrained neural network use ReLU
activation functions, are implemented in Pytorch [50] and the network parameters were optimized using the Adam
optimizer [52]. The network consist of 3 hidden layers with 30 neurons each. The input convex Support Vector
Regression models and their unconstrained counterparts where trained using the linear and semi-definite solvers of-
fered by the CVXPY framework [53]. We used a fifth-order polynomial kernel for all the following results when not
specified otherwise [54]. Following Wang and Ni [36] we choose C = 10−4 and ϵ = 10−3.

The constrained and unconstrained Gaussian Process Regression models employ a Matérn 3/2 kernel [46]. The neces-
sary optimization problems are solved using an interior point method [55].

All these hyperparameter and parameter choices were not the results of any elaborate study. Differences between
the machine learning techniques presented in the next sections might not be accurately representing their best per-
formances as data-driven predictive tools and should not necessarily be judged as such. Thorough studies would be
required to optimize the performance of each machine learning technique, and the number of investigations and case
studies to be shown would explode. Such study would hamper to reach the main take-home message of the paper,
that is a proof of concept on the integration of model- and data-driven predictions. Clearly, it is however true that the
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following results can be seen as a broad guidance on possible advantages and disadvantages of the presented machine
learning methods by using the techniques for the same tasks and on the same datasets.

We then define three correction datasets for the yield function, c.f. eqs. (17) and (18):

DN =

([
σuni
θ∗ (σu∗

θ )
σbi
θ∗(σ

b∗
θ )

]
,

[
frem(σuni

θ∗ )
frem(σbi

θ∗)

])
∀θ∈ΘN

(39)

consisting of N = 28, 16 and 8 data points respectively by defining

Θ28 = [0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦]

Θ16 = [0◦, 45◦, 90◦, 120◦, 150◦]

Θ8 = [0◦, 45◦, 90◦].

(40)

Hence, the subscripts on Di and Θi refer to distinct datasets that contain 28, 16 and 8 unique data points. As for the
case study in Section 2.3.1, training data is generated here by means of the orthotropic yield criterion by Cazacu and
Barlat [33] (see A), so as to allow a consistent comparison of the final shape of the yield surfaces. However, this data
can alternatively be straightforwardly obtained from well-established testing procedures.

In order to both decrease training time and increase training reliability [56], we employ Min-max feature scaling such
that each feature lies inside the range [0, 1].

In the following, 1, 000 randomly sampled points in the three-dimensional domain [σxx, σyy, σxy] ∈ [−800, 800]3
MPa were used to enforce convexity in a discrete way for the surrogate modeling techniques that rely on a finite
number of points where convexity should be enforced, i.e., SVR and GPR. This particular domain was chosen to
strictly include all relevant information of the modeling yield function component (c.f. Figure 1(a)).

First, we study the performances of a series of machine learning techniques in a pure data-driven context for predicting
the shape of the true yield function given the experimental data points. Afterwards, we compare these results to the
ones obtained using the proposed machine learning techniques for the model-data-driven framework.

5.1 Fitting with pure data-driven approaches

In this preliminary study, we take the input data of the 28 point dataset (eq. (39)) but assume the output is the true
yield function we aim to fit, i.e.

D⋆
28 =

([
σuni
θ∗ (σu∗

θ )
σbi
θ∗(σ

b∗
θ )

]
,

[
0.0
0.0

])
∀θ∈Θ28

(41)

where Θ28 is given in eq. (40). Among the machine learning techniques reviewed in Section 3 only Support Vector
Regression and Neural Networks allow a reasonable fit of a function with a constant output (due to the hyperparameters
of Gaussian Process Regression representing correlation lengths). Hence, GPR will be excluded here. Additionally,
the data will be also be fitted using generalized yield function fitting via Fourier series representations. This method is
summarized in C. In this method the convexity is also soft-constrained by enforcing the requirement on 1, 000 points in
the relevant domain mentioned above. Here, we cut off the series after its first 6 components and solve for the trainable
parameters using a stochastic gradient descent scheme (ADAM) and use L0.25 regularization to generate sparsity in
the parameter set, similarly to [57].

Figure 4 plots the resulting fitted yield functions employing 28 data points of D⋆
28 using two unconstrained techniques

(an unconstrained Neural Network and unconstrained Support Vector Regression) and three constrained approaches
(the input convex Neural Networks formulation, the input convex Support Vector Regression, and the input convex
Fourier series approach). It is clear that unconstrained machine learning techniques, see Figs. 4(a) and 4(b), do not
generate well-defined predictive tools for yield function representations. They are accurate at predicting zero at the
required input points of the dataset, however, due to the missing convexity, the scalar output value fluctuates signifi-
cantly above and below zero for out-of-sample predictions, their usage appears highly compromised. The advantage
of enforcing convexity is visible when looking at the remaining approaches, see Figs. 4(c) and 4(e). The yield surface
shapes appear to satisfy convexity. However, we can note that none of the techniques manage to fit the true yield func-
tion in an acceptable fashion. The Fourier series representation seems to capture the anisotropy of the yield surface.
Among them, the input convex Neural Network appears to generate the most accurate fit of the data points. Results
obtained with input convex Neural Network will be used as benchmark performances for data-driven approaches.
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(a) Neural Network (b) Support Vector Regression

(c) Input convex neural network (d) Input convex Support Vector Regression

(e) Input convex Fourier series

Figure 4: Yield surface in the three-dimensional stress space using data-driven approaches (a-b) without convexity
constraint, (c-d-e) with convexity constraint based on the experimental datasetsD⋆

28 comprising 28 points, the positions
of which are visualized by dots. Comparison with true and model-driven yield functions.
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(a) 28 points
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(b) 16 points
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(c) 8 points
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Figure 5: Yield function in uniaxial and biaxial directions using the model-data-driven approach with input convex
Gaussian Process Regression as the data-driven component based on experimental datasets comprising (a,d) 28,
(b,e) 16 and (c,f) 8 points, the positions of which are visualized by dots. Comparison with true and model-driven yield
functions.

5.2 Fitting with model-data-driven approach

We employ the three datasets D28, D16 and D8 in eq. (39) to build model-data-driven yield functions based on the
model component of eq. (12). Moreover, we sequentially test the performance of the three suggested machine learning
approaches.

First we discuss the performance of input convex Gaussian Process Regression in the model-data-driven framework.
Figure 5 plots the model-response, the response of the true model and the output of the model-data-driven approach
with input convex Gaussian Process Regression in uniaxial and biaxial directions for the three datasets. The respective
positions (in this projection) of the input training points are highlighted in each plot. First of all, it can be seen that by
locally improving the model component the predicted output of the model-data-driven approach is able to capture the
true function. Here, a larger dataset (naturally) helps to improve the accuracy of the predicted output. However, even
in the case of 8 (experimental) points the difference between the model-data-driven framework and the true function
is still relatively small but in regions where no data is available there are clear deviations. The yield surfaces plotted
in three dimensions for Gaussian Process Regression (Figure 6) reveal that a similar pattern can be seen for the whole
stress space.

Following, the relevant uniaxial and biaxial curves using input convex Neural Networks for the correction term are
compared to the true function and the modeling component in Figure 7 for all three datasets. We can highlight again
that the accuracy of the modeling component is clearly improved by adding the data-driven remainder part. With a
decreasing number of points the accuracy reduces which is especially noticeable in areas that are further away from
the experimental data. The corresponding approximations of the yield surfaces over the full stress field using input
convex Neural Networks are displayed in Figure 8.

13



Elasto-plasticity with convex model-data-driven yield functions A PREPRINT

(a) 28 points (b) 16 points

(c) 8 points

Figure 6: Yield function in the three-dimensional stress space using the model-data-driven approach with input
convex Gaussian Process Regression as data-driven component based on experimental datasets comprising (a) 28,
(b) 16 and (c) 8 points, the positions of which are visualized by dots. Comparison with true and model-driven yield
functions.
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(a) 28 points
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(b) 16 points (c) 8 points
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Figure 7: Yield function in uniaxial and biaxial directions using the model-data-driven approach with input convex
Neural Networks as data-driven component based on experimental datasets comprising (a,d) 28, (b,e) 16 and (c,f) 8
points, the positions of which are visualized by dots. Comparison with true and model-driven yield functions.

Lastly, the same observations can be made when using input convex Support Vector Regression as the data-driven
component, see Figures 9 and 10. However, we can see that, compared to the other two approaches, the accuracy of
the prediction suffers more with a low amount of data.

In order to highlight the accuracy of the model-data-driven approach in terms of elasto-plastic constitutive responses,
Figure 11 plots the stress-strain curves for two different loading paths and for the three different input convex machine
learning techniques using the D28 dataset. It can be seen that, by employing the proposed approach, the corrected
curves capture more accurately the true response than the phenomenological model alone. By visual inspection the
input convex Neural Network seems to perform slightly better than the other two approaches.

Consider a cycle with ϵxx oscillating from 0 to +0.1 and - 0.1, i.e. load paths as employed in Figures 11 (a-c) as
reference. The average residual norm error of the applied Newton-Raphson loop over the number of iterations is
plotted in Figure 12. We can see that adding a data-driven component to the phenomenological model decreases the
convergence speed and final error of the root finding method. Here, input convex Neural Networks offer a performance
that most closely resembles the traditional analytical model.

Finally, Figure 13 plots the Lankford coefficients along the rolling directions for the model, the model-data-driven
approaches and the ground truth response. This allows us to investigate how well the model-data-driven framework
captures the plastic anisotropy. It can be seen that, except for the low data case test of SVR, all model-data-driven
yield functions improve the accuracy of this plastic flow characterization compared to the pure model component.
Additionally, it is clearly visible that adding more points increases the quality of the trained yield functions.
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(a) 28 points (b) 16 points

(c) 8 points

Figure 8: Yield function in the three-dimensional stress space using the model-data-driven approach with input
convex Neural Networks as data-driven component based on experimental datasets comprising (a) 28, (b) 16 and (c)
8 points, the positions of which are visualized by dots. Comparison with true and model-driven yield functions.
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(a) 28 points

0 25 50 75 100 125 150 175
Angle from rolling direction [ ]

600

400

200

0

200

400

600

Un
ia

xi
al

 y
ie

ld
 st

re
ss

 
u

model fmod

true f
corrected f

(b) 16 points
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(c) 8 points
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Figure 9: Yield function in uniaxial and biaxial directions using the model-data-driven approach with input convex
Support Vector Regression as data-driven component based on experimental datasets comprising (a,d) 28, (b,e)
16 and (c,f) 8 points, the positions of which are visualized by dots. Comparison with true and model-driven yield
functions.

6 Discussion

The results of the previous section show that, for the chosen true response and model component assumptions, the
model-data-driven component significantly improves the accuracy of the yield function compared to the pure model
counterpart. Additionally, using the proposed approach, the shape of the true yield function is far better approximated
in comparison with the purely data-driven techniques (cf., Fig. 4 with Figs. 6, 8 and 10). We can see that the model-
data-driven prediction on 8 training points in all presented methods is significantly more accurate than the data-driven
approaches fitted on 28 experimental points.

Convexity constrained Gaussian Process Regression and Neural Network seem to outperform Support Vector Regres-
sion specifically when less data is available. However, this might change when a different kernel function is applied.
But based on the presented results GPR and NNs have to be the preferred choice. One major advantage of Gaussian
Process Regression which has not played a role in this paper is that it allows access to posterior variances. This might
be helpful in application cases where the next most effective experiments need to be located in order to improve the
accuracy of the prediction based on the currently available information by using for example an active learning ap-
proach [58]. Furthermore, due to the fact that GPR is deeply rooted in statistical analysis theory, the approach enjoys
access to mathematical convergence guarantees. However, as pointed out constraining a GPR model to be convex is
a complex task and is only approximate. On the other hand, input convex NNs always fulfill convexity and are more
expressive than GPR when a lot of data is available. Even though, using GPR for big data problems has also been
explored [10]. However, the focus of the present work is experimental data which from standard measurement setups
generally only allow to acquire small, restrictive data sets. Therefore, this common criticism of GPR might not be
valid in the context of the present work.
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(a) 28 points (b) 16 points

(c) 8 points

Figure 10: Yield function in the three-dimensional stress space using the model-data-driven approach with input
convex Support Vector Regression as data-driven component based on experimental datasets comprising (a) 28, (b)
16 and (c) 8 points, the positions of which are visualized by dots. Comparison with true and model-driven yield
functions.
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(a) GPR
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(b) ICNN
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(c) SVR
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(d) GPR
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(e) ICNN
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(f) SVR

Figure 11: Stress-strain curves for different machine learning techniques employing the model-data-driven frame-
work with D28 dataset: (a-c) σxx over ϵxx ± 0.1, (d-f) σxx over ϵyy ± 0.1.

Figure 12: Average error norm values over increasing Newton-Raphson-loop iterations employing the model-data-
driven approach with three alternative input convex machine learning techniques as data-driven component. Com-
parison with convergence for the true and model-driven yield functions.
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(a) GPR - 8 points
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(b) GPR - 28 points
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(c) ICNN - 8 points
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(d) ICNN - 28 points
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(e) SVR - 8 points
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(f) SVR - 28 points

Figure 13: Lankford coefficient curves for different machine learning techniques employing the model-data-driven
framework with D8 and D28 datasets. Comparison with the true response and the model component.
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We believe that the differences between the convergence results of the Newton-Raphson loop residual stem from
the different levels of fulfillment of the convexity requirement. Since, input convex Neural Networks are convex
by design they show very good convergence properties when using them in gradient-based solvers. On other hand,
Gaussian Process Regression and Support Vector machines are only approximately convex on a finite number of points.
However, GPR has (including noise) only 4 trainable parameters whereas SVR has at least 3N + 1 (where N is the
number of data points). We speculate, that this in addition to the fact that SVR can be phrased as a simple semi-definite
program which allows to exactly fulfill convexity on all constrained points allows SVR to find a function representation
that is convex in a wider range of the domain than GPR, which leads to the evident difference in convergence of the
residual norm error.

The predicted curves of the Lankford coefficient over the rolling direction angle (Figure 13) highlight that adding
experimental values of the Lankford coefficients to the training dataset might even further increase the accuracy of the
proposed approach. We will investigate this in future studies.

Overall, the framework seems to yield significant improvements compared to traditional approaches especially in the
data-poor regime which is commonly encountered when physical experiments are necessary.

7 Conclusion

We present a hybrid extension to classical phenomenological model-based elasto-plasticity which allows to locally
improve the chosen analytical yield function model where experimental data is available. Our framework is developed
with data availability, and the idea of data-poor modeling in mind. The application case studied in this work is related
to rolled metal sheets, which exhibit a clear anisotropy in the yield surface which in turn makes fitting accurate yield
surfaces more complex. In order to ensure convexity of the predicted yield function in the presented approach, we
establish a direct connection to the convexity of the data-driven correction component. Input convex extensions of
three classical machine learning techniques are reviewed and applied to the problem at hand. It can be seen that the
presented approach significantly improves the accuracy of the standalone model component while achieving better
performances than purely data-driven models as well. Furthermore, we are able to generate surprisingly accurate yield
surfaces in the data-poor regime.

In future works, the framework can be applied to other use cases which might include a dependence of the yield
function on hydrostatic pressure and on actual experimental data. Furthermore, we envision using adaptive sampling
techniques in order to determine the best possible next experiment [58] that allows to improve the representation of
the yield function the most. Additionally, we aim to extend this framework by adding hardening.

Overall, we believe that the presented approach shows a lot of potential to tackle problems in elasto-plasticity modeling
where data availability is a concern.
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A Orthotropic yield criterion by Cazacu and Barlat [33]

Cazacu and Barlat [33] propose an anisotropic and asymmetric yield criterion of the form

ftrue = (J0
2 )

3/2 − cJ0
3 − σ̄3 , (42)

where c ∈ R, J0
2 is defined in eq. (11) and
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3 =
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[2b10σzz − b5σyy − (2b10 − b5)σxx]

(43)

where {ai}6i=1 (in J0
2 ) and {bi}11i=1 are two sets of anisotropic coefficients that can be determined when data of

experimental yield loci is available.
For thin-sheet metals these sets reduce to {ai}3i=1 and {bi}4i=1. The authors get them and the additional unknown
value c from experimental yield loci data for Mg-4% Li alloys (see Table 1). The yield function estimated by eq. (A)
is assumed as the ground truth model in the current study.

a1 a2 a3 b1 b2 b3 b4 c σ̄

0.896 3.371 3.509 -1.591 5.414 3.957 0.259 2.01 300 MPa
Table 1: Anisotropy coefficients and values for c and σ̄ for Mg-4% Li alloy as established in [33].

B Convexity requirements on yield function

Consider a split of the yield function into the model and the remainder part

f(σ) = fmod(σ) + frem(σ). (44)

Assume a two-dimensional stress space and define x = [σx, σxy, σy]. The yield function is convex if its symmetric
Hessian matrix H with

Hij =
∂2f

∂xi∂xj
(45)

is at least positive semi-definite which can be denoted by

H(f) ⪰ 0. (46)

This is equivalent to (see for example [59])

aTH(f)a ≥ 0, ∀a ∈ R3. (47)

Since the model component is user-chosen, we can pick a convex function fmod. Hence, we know that

aTH(fmod)a ≥ 0, ∀a ∈ R3. (48)

In order to ensure the convexity of f , the remainder term has then to fulfill the following condition

aTH(fmod)a+ aTH(frem)a ≥ 0

aTH(frem)a ≥ −aTH(fmod)a
(49)

for all a ∈ R3. To (computationally) simplify this constraint, we tighten the condition on the remainder term to the
following instead

aTH(frem)a ≥ 0

⇐⇒H(frem) ⪰ 0
(50)

which includes the condition of eq. (49).
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C Fitting of generalized yield function with Fourier series

Recently, there have been attempts in the literature to fit yield surface data based on Fourier series representations
[60, 57]. The regression model is of the following form

f =

√
3

2
r −

M∑
i=0

[αi cos(iα) + βi sin(iα)] (51)

with
r =

√
π2
1 + π2

2 , α = arctan 2(π2, π1) (52)

and
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1

6
σ2 −

√
1

6
σ3, π2 =
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1

2
σ2 −

√
1

2
σ3. (53)

Here σ1 ≤ σ2 ≤ σ3 are the principal stresses in increasing order and {αi, βi}Mi=1 with M ≥ 0 are the trainable
parameters. Here M is a user-chosen positive integer value that sets the number of used terms in the approximation.
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