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UNIVERSALITY, COMPLEXITY AND ASYMPTOTICALLY

UNIFORMLY SMOOTH BANACH SPACES

R.M. CAUSEY AND G. LANCIEN

Abstract. For 1 < p ≤ ∞, we show the existence of a Banach space
which is both injectively and surjectively universal for the class of all
separable Banach spaces with an equivalent p-asymptotically uniformly
smooth norm. We prove that this class is analytic complete in the class
of separable Banach spaces. These results extend previous works by
Kalton, Werner and Kurka in the case p =∞.

1. Introduction

The notion of asymptotic smoothness has become very important in the
recent developments of the geometry of Banach spaces. In this paper we
study the existence of universal spaces and the complexity, in the sense of
descriptive set theory, of a special class of asymptotically uniformly smooth
Banach spaces. For a given p ∈ (1,∞], we are interested in the class of sep-
arable Banach spaces that admit an equivalent p-asymptotically uniformly
smooth norm (we abbreviate p-AUS). In fact, it is one of the main results
from [4] that the existence of an equivalent p-AUS norm is characterized by
some `p upper estimates for weakly null trees or in terms of a two player
infinite asymptotic game. We denote this property Tp as a reference to the
`p tree upper estimates. In Section 2 we recall these definitions and the main
characterizations of Tp.

If we denote Sep the class of all separable Banach spaces, it is known that
T∞ ∩ Sep coincides with the class of all Banach spaces that are isomorphic
to a subspace of c0. This result was first explicitly proved in [9], but could
be readily extracted from ideas of N. Kalton and D. Werner in [13]. We also
refer to [11] for the optimal proof. One of the goals of this paper is to find
a space in Tp ∩ Sep which is both injectively and surjectively universal for
the class Tp ∩ Sep, with 1 < p ≤ ∞. This is achieved in Section 4, where we
prove.

Theorem A. For any p ∈ (1,∞], there exists a space Up in Tp ∩ Sep such
that every Banach space in Tp∩Sep is both isomorphic to a subspace and to
a quotient of Up.

We explain in Section 4 how this result can be deduced from previous
works by Odell and Schlumprecht [18] and Freeman, Odell, Schlumprecht
and Zsák [7]. However, we have chosen to explain the construction through
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the use of “press down” norms associated with spaces with finite dimen-
sional decompositions. All the necessary background on press down norms
is introduced in Section 3.

Finally, in Section 5, we address the question of the topological complexity
of the class Tp ∩ Sep. We first recall the framework built by B. Bossard in
[3] in which this problem can be rigorously formulated. Again, the question
was only open for p ∈ (1,∞), as O. Kurka proved in [16] that the class of all
Banach spaces that linearly embed into c0 is analytic complete. We extend
this result by showing the following.

Theorem B. For any p ∈ (1,∞], the class Tp ∩ Sep is analytic complete.
In particular it is not Borel.

2. Main characterizations of p-AUS-able spaces

All Banach spaces are over the field K, which is either R or C. We denote
BX (resp. SX) the closed unit ball (resp. sphere) of a Banach space X. By
subspace, we shall always mean closed subspace. Unless otherwise specified,
all spaces are assumed to be infinite dimensional.

We start with the definition of the modulus of asymptotic uniform smooth-
ness of X. If X is infinite dimensional, for τ > 0, we define

ρX(τ) = sup
y∈BX

inf
E∈cof(X)

sup
x∈BE

‖y + τx‖ − 1,

where cof(X) denotes the set of finite codimensional subspaces of X. For
the sake of completeness, we define ρX(τ) = 0 for all τ > 0, when X is finite
dimensional. We note that

ρX(τ) = sup{lim sup
λ
‖y + τxλ‖ − 1 : (xλ) ⊂ BX is a weakly null net}.

We say X is asymptotically uniformly smooth (in short AUS ) if

lim
τ→0+

ρX(τ)

τ
= 0.

We say X is asymptotically uniformly smoothable (AUS-able) if X admits
an equivalent AUS norm. For p ∈ (1,∞), the norm ‖ ‖ is said to be p-
asymptotically uniformly smooth (in short p-AUS) if there exists C > 0 such
that

∀τ ∈ [0,∞), ρX(τ) ≤ Cτp.
We say X is p-asymptotically uniformly smoothable (p-AUS-able) if X ad-
mits an equivalent p-AUS norm. We say X is asymptotically uniformly flat
(AUF ) if there exists τ0 > 0 such that ρX(τ0) = 0. We say X is asymp-
totically uniformly flattenable (AUF-able) if X admits an equivalent AUF
norm. Of course, p-AUS spaces and AUF spaces are AUS spaces.

The dual notion is provided by the following modulus defined on X∗ by

δ
∗
X(τ) = inf

x∗∈SX∗
sup
E

inf
y∗∈SE

{‖x∗ + τy∗‖ − 1},
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where E runs through cof∗(X∗), the set of all weak∗-closed subspaces of X∗

of finite codimension. The norm of X∗ is said to be weak∗ asymptotically
uniformly convex (in short AUC∗) if

∀τ > 0 δ
∗
X(τ) > 0.

For q ∈ [1,∞), it is said to be q-weak∗ asymptotically uniformly convex (in
short q-AUC∗) if there exists c > 0 such that

∀τ ∈ [0, 1), δ
∗
X(τ) ≥ cτ q.

It is well known that the dual Young function of ρX is equivalent to δ
∗
X .

Here is the precise version of this (Proposition 2.1 in [6]).

Proposition 2.1. There exists a universal constant C ≥ 1 such that for
any Banach space X and any 0 < σ, τ < 1,

(1) If ρX(σ) < στ , then δ
∗
X(Cτ) ≥ στ .

(2) If δ
∗
X(τ) > στ , then ρX( σC ) ≤ στ .

(3) Let p ∈ (1,∞] and q be its conjugate exponent. Then ‖ ‖X is p-AUS
if and only if ‖ ‖X∗ is q-AUC∗.

We now define the fundamental property, which turns out to characterize
p-AUS renormability, through a two-players game on a Banach space X.
Fix 1 < p 6∞ and let q be its conjugate exponent. We denote by WX the
set of weak neighborhoods of 0 in X. For c > 0, we define the T (c, p) game
on X. In the T (c, p) game, Player I chooses a weak neighborhood U1 ∈WX ,
and Player II chooses x1 ∈ U1 ∩BX . Player I chooses U2 ∈WX , and Player
II chooses x2 ∈ U2 ∩ BX . Play continues in this way until (xi)

∞
i=1 has been

chosen. Player I wins if ‖(xi)∞i=1‖wq 6 c, and Player II wins otherwise, where

‖(xi)∞i=1‖wq = inf
{
c ∈ (0,∞], ∀a = (ai)

∞
i=1 ∈ `p ‖

∞∑
i=1

aixi‖ ≤ c‖a‖p
}
.

It is known (see [4], section 3) that this game is determined. That is, either
Player I or Player II has a winning strategy. We now let tp(X) denote the
infimum of those c > 0 such that Player I has a winning strategy in the
T (c, p) game, provided such a c exists, and we let tp(X) =∞ otherwise. We
can now define our class Tp.

Definition 2.2. Let p ∈ (1,∞]. We denote Tp the class of all Banach spaces
X such that tp(X) <∞.

Let D be a set. We denote ∅ the empty sequence and D6n = {∅} ∪
∪ni=1D

i, D<ω = ∪∞n=1D
≤n, Dω the set of all infinite sequences whose mem-

bers lie in D and D6ω = D<ω ∪Dω. For s, t ∈ D<ω, we let s a t denote the
concatenation of s with t. We let |t| denote the length of t. For 0 6 i 6 |t|,
we let t|i denote the initial segment of t having length i, where t|0 = ∅. If
s ∈ D<ω, we let s ≺ t denote the relation that s is a proper initial segment
of t.



4 R.M. CAUSEY AND G. LANCIEN

Given D a weak neighborhood basis of 0 in X and (xt)t∈D<ω ⊂ X, we say
(xt)t∈D<ω is weakly null provided that for each t ∈ {∅} ∪D<ω,
(xta(U))U∈D is a weakly null net. Here D is directed by reverse inclusion.

We can now recall the main characterizations of this class, which are
proved in full generality in [4] and can be extracted from the proof of The-
orem 3 of [18] in the separable case.

Theorem 2.3. Fix 1 < p 6 ∞ and let q be conjugate to p. Let X be a
Banach space. The following are equivalent

(i) X ∈ Tp.
(ii) There exists a constant c > 0 such that for any weak neighborhood

basis D at 0 in X and any weakly null (xt)t∈D<ω ⊂ BX , there exists
τ ∈ Dω such that ‖(xτ |i)∞i=1‖wq 6 c.

(iii) X is p-AUS-able (resp. AUF-able if p =∞).
(iv) X admits an equivalent norm whose dual is q-AUC∗.

Moreover, if X ∈ Tp, then any separable subspace of X has a separable dual.

3. Press down and lift up norms

We introduce in this section two constructions of norms on a Banach
space with a finite dimensional decomposition (we abbreviate FDD). We will
recall the necessary background on FDD’s, shrinking FDD’s or boundedly
complete FDD’s. However, we refer the reader to [15] for possibly missing
information. One can trace back the use of lift up norms in the works of
S. Prus [19]. As we will see, it has also been widely exploited in the work
of Odell and Schlumprecht [18] or Freeman, Odell, Schlumprecht and Zsák
[7]. For the press down norm, we refer for instance to [5] for a general
presentation.

We let (ui)
∞
i=1 denote the canonical basis of c00 (the space of finitely

supported scalar sequences). For subsets E,F of N, we let E < F denote the
relation that E = ∅, F = ∅, or maxE < minF . For f =

∑∞
i=1 aiui ∈ c00,

we let supp (f) = {i ∈ N : ai 6= 0}. For f, g ∈ c00, we let f < g denote
the relation that supp (f) < supp (g). For n ∈ N, E ⊂ N, and f ∈ c00, we
let n 6 E denote the relation that either E = ∅ or n 6 minE, and we let
n 6 f denote the relation that n 6 supp (f).

We recall that a finite dimensional decomposition for a Banach space Z
is a sequence H = (Hn)∞n=1 of finite dimensional, non-zero subspaces of Z
such that for any z ∈ Z, there exists a unique sequence (zn)∞n=1 ∈

∏∞
n=1Hn

such that z =
∑∞

n=1 zn. Then, we let PH
n denote the canonical projections

PH
n (z) = zn, where z =

∑∞
n=1 zn and (zn)∞n=1 ∈

∏∞
n=1Hn. For a finite or

cofinite subset I of N, we let PH
I = IH =

∑
n∈I P

H
n . When no confusion can

arise, we omit the superscript and simply denote IH by I. It follows from the
principle of uniform boundedness that sup{‖IH‖, I ⊂ N is an interval} is
finite. We refer to this quantity as the projection constant of H in Z. If the
projection constant of H in Z is 1, we say H is bimonotone. It is well-known
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that if H is an FDD for Z, then there exists an equivalent norm | | on Z
such that H is a bimonotone FDD of (Z, | |). Finally, we denote c00(H) the
space of finite linear combinations of elements in H1, . . . ,Hn, . . .

Assume now that Z is a Banach space with FDD (Hj)
∞
j=1 = H and p ∈

[1,∞]. We first define the lift up norm associated with Z,H and p and the
corresponding Banach space Z∨,p(H) as the completion of c00(H) under the
norm

‖z‖∨,p = sup
{∥∥∥(‖Jiz‖Z)∞i=1

∥∥∥
`p

: Ji 6= ∅, J1 < J2 < . . . ,N = ∪∞i=1Ji

}
.

We now define the press down norm associated with Z,H and p and the
corresponding Banach space Z∧,p(H). For z ∈ c00(H), we set

[z]∧,p = inf
{∥∥∥(‖Jiz‖Z)∞i=1

∥∥∥
`p

: Ji 6= ∅, J1 < J2 < . . . ,N = ∪∞i=1Ji

}
.

Note that the conditions imposed on the Ji’s imply that they are intervals.
Then we define

‖z‖∧,p = inf
{ m∑
n=1

[zn]∧,p : m ∈ N, zn ∈ c00(H), z =
m∑
n=1

zn

}
.

It is easily checked that ‖ ‖∧,p is a norm and we denote Z∧,p(H) the comple-
tion of c00(H) under ‖ ‖∧,p. It is clear that H is a FDD for Z∧,p(H) and that
it is bimonotone if H is a bimonotone FDD of Z. We shall use the following
easy technical simplification.

Proposition 3.1. Let Z be a Banach space with FDD H and p ∈ (1,∞].
Then for any l ≤ m in N and any z ∈ ⊕mj=lHj, there exist intervals I1 <

. . . < In such that ∪ni=1Ii = [l,m] and

[z]∧,p =
∥∥∥(‖Iiz‖Z)ni=1

∥∥∥
`p
.

The following lemma will be useful for our estimates.

Lemma 3.2. Assume moreover that H is a bimonotone FDD of Z. Let
I1 < I2 intervals of N and z1, z2 ∈ c00(H) with supp (zi) ⊂ Ii, then

z1 + z2 ∈ conv
{
y1 + y2, supp (yi) ⊂ Ii, [yi]∧,p ≤ ‖zi‖∧,p

}
.

Proof. It follows from standard arguments that the closed unit ball of Z∧,p(H)
is the closed convex hull of those z ∈ c00(H) such that [z]∧,p ≤ 1. Since H
is bimonotone, we clearly have that for any interval I ⊂ N and z ∈ Z,
[Iz]∧,p ≤ [z]∧,p. Combining these two facts, we get that any z in the closed
linear span of {Hj , j ∈ I} is in the closed convex hull of those y’s in the
closed linear span of {Hj , j ∈ I} satisfying [y]∧,p ≤ ‖z‖∧,p. This finishes the
proof. �

We now detail a simple but crucial effect of the press down procedure.
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Proposition 3.3. Let Z be a Banach space with bimonotone FDD H. Fix
1 < p 6 ∞. Then, the FDD H of the space Z∧,p(H) satisfies upper p block
estimates, with constant 1. More precisely, for all x, y ∈ c00(H) so that
x < y, we have

‖x+ y‖p∧,p ≤ ‖x‖
p
∧,p + ‖y‖p∧,p, if p ∈ (1,∞)

and

‖x+ y‖∧,∞ = max{‖x‖∧,∞, ‖y‖∧,∞}, if p =∞.
In particular Z∧,p(H) has Tp.

Proof. We only detail the case p ∈ (1,∞). Let x, y ∈ c00(H) so that x < y
and I < J intervals such that supp (x) ⊂ I, supp (y) ⊂ J and I ∪ J is
an interval containing 1. By Proposition 3.1, there exist m,n ∈ N and
I1 < . . . < Im+n such that ∪mi=1Ii = I, ∪m+n

i=m+1Ii = J and

[x]p∧,p =
m∑
i=1

‖Iix‖pZ and [y]p∧,p =
m+n∑
i=m+1

‖Iiy‖pZ .

We complete with (Ij)j>m+n an arbitrary interval partition of N \ (I ∪ J).
Then

‖x+ y‖p∧,p 6 [x+ y]p∧,p 6
∞∑
i=1

‖Ii(x+ y)‖pZ =
m∑
i=1

‖Iix‖pZ +
∞∑

i=m+1

‖Iiy‖pZ

= [x]p∧,p + [y]p∧,p.

The conclusion now follows from Lemma 3.2.
These upper p block estimates, with constant 1 clearly imply that ‖ ‖∧,p is
p-AUS and therefore that Z∧,p(H) ∈ Tp. �

We now need to recall some basics on dual FDD’s. If Z is a Banach space
with FDD H = (Hn)∞n=1, we let H∗ denote the sequence (H∗n)∞n=1. Here, H∗n
is identified with the sequence ((PH

n )∗(Z∗))∞n=1. This identification does not

need to be isometric if H is not bimonotone in Z. We let Z(∗) = c00(H
∗) ⊂

Z∗. The FDD H is said to be shrinking if Z(∗) = Z∗, which occurs if and
only if any bounded block sequence with respect to H is weakly null. The
FDD H is said to be boundedly complete if H∗ is a shrinking FDD of Z(∗)

(in that case Z is canonically isomorphic to (Z(∗))∗).
The duality between press down and lift up norms is described by the

following proposition, which is a special case of Proposition 2.1 in [5].

Proposition 3.4. Let Z be a Banach space with bimonotone shrinking FDD
H. Let p ∈ (1,∞] and q be its conjugate exponent. Then Z∧,p(H)∗ is canon-
ically isometric to Z∨,q(H

∗).

The following is an immediate corollary of Proposition 3.3.

Corollary 3.5. Let Z be a Banach space with bimonotone FDD H and
p ∈ (1,∞], then H is a shrinking FDD of Z∧,p(H).
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Remark 3.6. Note that for p =∞, it follows from Proposition 3.3 that if Z is
a Banach space with bimonotone FDD H, then Z∧,∞(H) is simply isometric
to the (

∑∞
i=1Hi)c0 . In particular, for any ε > 0, it is (1 + ε)-isomorphic to

a subspace of c0.

4. A universal space for separable p-AUS-able spaces

4.1. The main result. The statements from this section can all be found
either explicitly or implicitly in [7]. We recall the main steps. The only
difference with [7] is the emphasis that we choose to put on press down
instead of lift up norms.

Theorem 4.1. Let p ∈ (1,∞] and X be a separable Banach space with Tp.
Then

(i) There exists a Banach space Z with a bimonotone shrinking FDD H
such that X is isomorphic to a subspace of Z∧,p(H).

(ii) There exists a Banach space Y with a bimonotone shrinking FDD N
such that X is isomorphic to a quotient of Y∧,p(N).

Proof. Assume that X ∈ Tp ∩ Sep. Then, by Theorem 2.3, X∗ is separable
and X satisfies `p upper tree estimates (condition (ii) in Theorem 2.3). This
easily implies that X satisfies subsequential `p upper tree estimates in the
sense of [7], from which we just have to apply Theorem 1.1 in [7] to conclude.
To be more accurate, this information is in the proof of this Theorem 1.1,
where the authors actually show the existence of weak∗ isomorphisms from
X∗ onto a quotient of Z∗∨,q(H

∗) by a weak∗ closed subspace (resp. onto a
weak∗ closed subspace of Y∨,q(N

∗)), where q is the conjugate exponent of p.
The conclusion then follows from Proposition 3.4. �

The next idea from [7] is to use the complementably universal space for
Banach spaces with an FDD built by Schechtman in [20]. More precisely,
Schechtman proved the following: for a given sequence J = (Jn)∞n=1 of finite
dimensional normed spaces which is dense in the space of all finite dimen-
sional normed spaces for the Banach-Mazur distance, there exists a Banach
space W (J) with bimonotone FDD J such that if Z is any Banach space
with bimonotone FDD H, then there exist integers m1 < m2 < . . . and a
bounded, linear operator A : Z → W (J) such that A(Hn) = Jmn for all
n ∈ N and

∀z ∈ Z, 1

2
‖z‖Z 6 ‖Az‖W (J) 6 2‖z‖Z

and such that A(Z) = span{Jmn : n ∈ N} is 1-complemented in W (J) via
the map P : w 7→

∑∞
n=1 P

J
mn
w. Then one can prove:

Proposition 4.2. Let p ∈ (1,∞].
Keeping the above notation, we have that A : c00(H) → c00(J) extends to

an isomorphic embedding Ã : Z∧,p(H)→W∧,p(J), the range of which is still
1-complemented in W∧,p(J) by P .
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Combining Theorem 4.1 and Proposition 4.2, we deduce the following
ultimate result. We insist on the fact that it can be extracted from [7],
although it is only stated there for embeddings (Corollary 3.3) and the
construction is made in terms of lift up norms in the dual FDD’s.

Theorem 4.3. Let p ∈ (1,∞] and J be a Banach-Mazur dense sequence
of finite dimensional normed spaces. Then every space in Tp ∩ Sep is both
isomorphic to a subspace and to a quotient of W∧,p(J). In other words,
W∧,p(J) is both universal and surjectively universal for Tp ∩ Sep.

Remark 4.4. We conclude this section with the following elementary and well
known remark: one cannot expect an analogous statement for p-uniformly
smoothable spaces. Indeed, for all q ∈ [2,∞), the space `q is 2-uniformly
smooth. Now let X be a Banach space containing an isomorphic copy of
all 2-uniformly smooth separable Banach spaces. Then X isomorphically
contains `q for 2 ≤ q <∞. It follows from standard arguments that X has
trivial cotype, therefore is not super-reflexive and thus does not admit any
equivalent uniformly smooth norm.

4.2. A few remarks on this universal space. .
For a Banach space X, we denote by S(X) the class of all Banach spaces

isomorphic to a subspace of X and by Q(X) the class of all Banach spaces
isomorphic to a quotient of X. In the following proposition, the case p =∞
is an old result by W. B. Johnson and M. Zippin [12].

Proposition 4.5. Let p ∈ (1,∞] and J be a Banach-Mazur dense sequence
of finite dimensional normed spaces. Then

Tp ∩ Sep = S(W∧,p(J)) = Q(W∧,p(J)).

Proof. By Proposition 3.3, W∧,p(J) has Tp. The property Tp passes clearly to
subspaces and also passes to quotients, by characterization (iv) of Theorem
2.3. The other inclusions are insured by Theorem 4.3.

Remark 4.6. Note that W∧,∞(J) is not isomorphic to c0. For instance,
because W∧,∞(J)∗ uniformly contains the `n∞’s while `1 does not. We recall
in passing that T∞ ∩ Sep = S(c0) and also that Q(c0) ( S(c0). See [12] for
the inclusion Q(c0) ⊂ S(c0) and note that the dual of a quotient of c0 has
cotype 2 unlike the dual of Y = (

∑∞
n=1 `

n
1 )c0 and Y linearly embeds into c0.

�

Proposition 4.7. Let p ∈ (1,∞] and J be a Banach-Mazur dense se-
quence of finite dimensional normed spaces. Then, the space `p(W∧,p(J))
(c0(W∧,∞(J)) if p =∞) is isomorphic to W∧,p(J).

Proof. We treat the case p ∈ (1,∞) (the case p = ∞ is identical). Denote
X = W∧,p(J). We first show that Z = `p(X) is isomorphic to a comple-
mented subspace of X. Indeed, there exists a bijection Φ : N → N × N
such that the space Z has an FDD K with the property that, Kn = Jk if
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Φ(n) = (i, k) and ‖x + y‖pZ ≤ ‖x‖
p
Z + ‖y‖pZ , whenever x, y ∈ c00(K) with

x < y. Clearly, this upper `p block estimate implies that Z∧,p(K) is isomor-
phic to Z. It then follows from Proposition 4.2 that Z is isomorphic to a
complemented subspace of X.

We now conclude the proof with Pe lczynski’s classical decomposition
method. Let E be a subspace of X such that X ' `p(X)⊕ E. Then

`p(X) ' `p(`p(X)⊕p E) ' `p(`p(X))⊕p `p(E) ' `p(`p(X))⊕p `p(E)⊕p E
' `p(`p(X)⊕p E)⊕p E ' `p(X)⊕p E ' X.

�

We conclude this section by showing that W∧,p(J) does not depend (up
to isomorphism) on the choice of the dense sequence J.

Proposition 4.8. Let p ∈ (1,∞] and J and K be two Banach-Mazur dense
sequences of finite dimensional normed spaces. Then W∧,p(J) is isomorphic
to W∧,p(K).

Proof. Denote X = W∧,p(J) and Y = W∧,p(K). As in the previous proof,
we deduce from Proposition 4.2 that Y is isomorphic to a complemented
subspace of X and X is isomorphic to a complemented subspace of Y . Let
E be a subspace of X such that X ' Y ⊕E. We can now apply Pe lczynski’s
decomposition method together with the previous proposition to get:

X ⊕p Y ' `p(Y ⊕p E)⊕p Y ' `p(Y )⊕p Y ⊕p `p(E) ' `p(Y )⊕p `p(E)

' `p(Y ⊕p E) ' `p(X) ' X.
For symmetric reasons, X ⊕p Y ' Y . This finishes the proof. �

5. Complexity of the class of separable p-AUS-able spaces

5.1. Preliminaries. We recall the setting introduced by B. Bossard in [3]
in order to apply the tools from descriptive set theory to the class Sep of
separable Banach spaces. We also refer the reader to the more recent paper
by G. Godefroy and J. Saint-Raymond [10], where an even more complete
topological frame is presented.

A Polish space (resp. topology) is a separable completely metrizable space
(resp. topology). A set X equipped with a σ-algebra is called a standard
Borel space if the σ-algebra is generated by a Polish topology on X. A
subset of such a standard Borel space X is called Borel if it is an element
of the corresponding σ-algebra and it is called analytic (or a Σ1

1-set) if there
exist a standard Borel space Y and a Borel subset B of X×Y such that A is
the projection of B on the first coordinate. The complement of an analytic
set is called a coanalytic set (or a Π1

1 set). A subset A of a standard Borel
space X is called Σ1

1-hard if for every Σ1
1 subset B of a standard Borel space

Y , there exists a Borel map f : Y → X such that f−1(A) = B and it is
called Σ1

1-complete if it is both Σ1
1 and Σ1

1-hard. We refer the reader to the
textbook [14] for a thorough exposition of descriptive set theory.
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Let X be a Polish space. Then, the set F(X) of all closed subsets of
X can be equipped with its Effros-Borel structure, defined as the σ-algebra
generated by the sets {F ∈ F(X), F ∩ U 6= ∅}, where U varies over the
open subsets of X. Equipped with this σ-algebra, F(X) is a standard Borel
space.

Following Bossard [3], we now introduce the fundamental coding of sepa-
rable Banach spaces. It is well known that C(∆), the space of scalar valued
continuous functions on the Cantor space ∆ = {0, 1}N, equipped with the
sup-norm, contains an isometric linear copy of every separable Banach space.
We equip F(C(∆)) with its corresponding Effros-Borel structure. Then, we
denote

SB = {F ∈ F(C(∆)), F is a linear subspace of C(∆)},
considered as a subspace of F(C(∆)). Then SB is a Borel subset of F(C(∆))
([3], Proposition 2.2) and therefore a standard Borel space, that we call the
standard Borel space of separable Banach spaces.

Let us now denote ' the isomorphism equivalence relation on SB. The
fundamental coding of separable Banach spaces is the quotient map c : SB→
SB/ '. We can now give the following definition.

Definition 5.1. A family G ⊂ SB/ ' is Borel (resp. analytic, coanalytic)
if c−1(G) is Borel (resp. analytic, coanalytic) in SB.

It is worth noting that there are other natural codings of separable Banach
spaces, for instance as quotients of `1. They yield the same definition of Borel
or analytic classes of separable Banach spaces, as it is shown in [3].

5.2. The class Sep ∩ Tp is analytic complete. It is easily seen that the
class of separable Banach spaces that linearly embed into a fixed separable
Banach space Z is Σ1

1 (see Lemma 3.6. in [2] for instance). So, it follows
immediately from the existence of a universal space for the class Sep ∩ Tp
that Sep ∩ Tp is Σ1

1. The main purpose of this section will be to show that
this is optimal.

Theorem 5.2. Let p ∈ (1,∞]. Then, the class Sep ∩ Tp is Σ1
1-complete.

The case p = ∞ was settled by O. Kurka in [16], where he showed that
the class of all Banach spaces that linearly embed into c0 (which coincides
with Sep∩T∞) is Σ1

1-complete. Our result will follow from an adaptation of
Kurka’s argument, which relies in particular on the use of a Tsirelson-type
Banach space constructed by S. A. Argyros and I. Deliyanni in [1] that we
shall describe now. We denote K(2N), the set of compact subsets of 2N,
the power set of N. Then we equip K(2N) with its Hausdorff topology. For
M∈ K(2N), one can define a space, denoted T s∗[M, 12 ] in [16], but that we
will just denote TM here. Let us gather here the properties of TM that we
shall need (see [16]).

Proposition 5.3. Let M∈ K(2N). Then



11

(1) The canonical basis (un)∞n=1 of TM is normalized and 1-unconditional.
(2) If M contains all 3 elements sets, then (un)∞n=1 is shrinking.
(3) IfM consists only of finite sets, then (un)∞n=1 is boundedly complete.
(4) If M contains an infinite set, then TM is isomorphic to a c0-sum

of finite dimensional spaces. More precisely, there exists an infinite
sequence 1 = m0 < m1 < . . . < mk < . . . such that for all x = (xn) ∈
c00:

sup
k∈N

∥∥∥ mk−1∑
n=mk−1

xnun

∥∥∥
TM
≤
∥∥∥ ∞∑
n=1

xnun

∥∥∥
TM
≤ 2 sup

k∈N

∥∥∥ mk−1∑
n=mk−1

xnun

∥∥∥
TM

.

A key tool in Kurka’s argument is the following particular case of a the-
orem due to Hurewicz (see [16] and references therein).

Theorem 5.4 (Hurewicz). Let I be the set of all infinite subsets of N. Then
{M ∈ K(2N),M∩ I 6= ∅} is Σ1

1-complete.

We also need to recall the construction of the q-convexification of a Banach
space X. So let q ∈ [1,∞) and X be a Banach space with a normalized 1-
unconditional basis (en)∞n=1. Let

Xq =
{
x = (xn)∞n=1 ∈ RN, xq =

∞∑
n=1

|xn|qen ∈ X
}

and endow it with the norm ‖x‖Xq = ‖xq‖1/qX . We also denote (en)∞n=1 the
sequence of coordinate vectors in Xq. It is clear that (en)∞n=1 is a normalized
1-unconditional basis of Xq and that X1 is isometric to X. Also, the triangle
inequality implies that Xq is q-convex with constant 1, meaning that for any
x1, . . . , xn ∈ Xq

∥∥∥ ∞∑
j=1

(
|x1j |q + · · ·+ |xnj |q

)1/q
ej

∥∥∥
Xq
≤
(
‖x1‖qXq + · · ·+ ‖xn‖qXq

)1/q
.

Note that it follows that if x1, . . . , xn ∈ Xq have disjoint supports with
respect to (en)∞n=1, then

‖x1 + · · ·+ xn‖qXq ≤ ‖x1‖qXq + · · ·+ ‖xn‖qXq .

In particular, the norm of Xq is clearly q-AUS and therefore Xq ∈ Tq. Note
also that, if q > 1, the above inequality implies that (en) is a shrinking basis
of Xq.

We shall need a few other properties of Xq that we list in the next lemmas,
in which we will always assume that (en)∞n=1 is a normalized 1-unconditional
basis of the Banach space X and q ∈ [1,∞).

Lemma 5.5. Assume moreover that there exist a constant C ≥ 1 and an
infinite sequence 1 = m0 < m1 < . . . < mk < . . . such that for all x =
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(xn) ∈ c00:

1

C

∑
k∈N

∥∥∥ mk−1∑
n=mk−1

xnen

∥∥∥
X
≤
∥∥∥ ∞∑
n=1

xnen

∥∥∥
X
≤ C

∑
k∈N

∥∥∥ mk−1∑
n=mk−1

xnen

∥∥∥
X
.

Then Xq is isomorphic to an `q-sum of finite dimensional spaces.

Proof. It is clear that for all x = (xn) ∈ c00,

1

C

∑
k∈N

∥∥∥ mk−1∑
n=mk−1

xnen

∥∥∥q
Xq
≤
∥∥∥ ∞∑
n=1

xnen

∥∥∥q
Xq
≤ C

∑
k∈N

∥∥∥ mk−1∑
n=mk−1

xnen

∥∥∥q
Xq
.

�

Assume now that (en)∞n=1 is a boundedly complete basis of X. It is
immediate to check that the coordinate vectors, still denoted (en)∞n=1, form
a boundedly complete basis of Xq. In this situation, we shall denote (Xq)∗
the predual of Xq given by the closed linear span in (Xq)∗ of the dual basis
of (en)∞n=1. Recall that, if q > 1, (en) is also a shrinking basis of Xq, which
is therefore reflexive. We can now prove the following.

Lemma 5.6. Let q ∈ (1,∞) and p be its conjugate exponent. Assume that
X is reflexive. Then `q is not isomorphic to any subspace of Xq. Moreover
(Xq)∗ does not belong to Tp.

Proof. Assume that `q is isomorphic to a subspace of Xq. Then we can
find a normalized sequence (xn) in Xq which is equivalent to the canonical
basis of `q. Since this sequence is weakly null in Xq, we can as well assume
that the xn’s have finite consecutive disjoint supports with respect to the
basis (en). Denote now yn = xqn ∈ X, which is normalized in X. Using the
1-unconditionality of (en) in X, it follows from our assumptions that there
exists C > 0 such that for any a1, . . . , an ∈ R:∥∥∥ n∑

i=1

aiyi

∥∥∥
X

=
∥∥∥( n∑

i=1

|ai|1/qxi
)q∥∥∥

X
=
∥∥∥ n∑
i=1

|ai|1/qxi
∥∥∥q
Xq
≥ C

n∑
i=1

|ai|.

This implies that (yn) is equivalent, for the norm of X, to the canonical
basis of `1, which contradicts the fact that X is reflexive. We have proved
that `q is not isomorphic to any subspace of Xq.

Assume now that (Xq)∗ ∈ Tp. We already explained that Xq ∈ Tq.
Then we can inductively construct two normalized sequences (xn) in Xq

and (x∗n) in (Xq)∗ with consecutive supports with respect to the respective
bases of Xq and (Xq)∗, that are biorthogonal to each other and such that
(xn) is dominated by the canonical basis of `q and (x∗n) is dominated by the
canonical basis of `p (also use the fact the bases are 1-unconditional). It
then readily follows from Hölder’s inequality that (xn) is equivalent to the
canonical basis of `q, which is a contradiction. �

We are now ready to prove our result.
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Proof of Theorem 5.2. Fix p ∈ (1,∞) and denote q its conjugate exponent.
Let us denote A3 the set of all subsets of N of cardinality at most 3. For

M ∈ K(2N), we denote XM = TM∪A3 . For any M ∈ K(2N), the basis (un)
of XM is 1-unconditional and shrinking. Note also thatM∪A3 contains an
infinite element if and only if M does. So XM is reflexive if and only if M
contains no infinite element and otherwise XM is isomorphic to a c0-sum
of finite dimensional spaces. The space YM := X∗M has a 1-unconditional
boundedly complete basis (en) and so does Y q

M (the q-convexification of

YM). We then set ZM = (Y q
M)∗. By abuse of notation, for anyM∈ K(2N),

we shall denote (en) the canonical basis of YM or Y q
M and (un) the canonical

basis of XM or ZM.
If M∩I 6= ∅, then we apply property (4) of Proposition 5.3 and Lemma

5.5 to deduce that Y q
M is isomorphic to an `q-sum of finite dimensional

spaces. Then ZM is isomorphic to an `p-sum of finite dimensional spaces
and therefore is in Tp. On the other hand, ifM∩I = ∅, then XM is reflexive
and, by Lemma 5.6, ZM /∈ Tp. Our next goal is to show the existence of a
Borel map Θ : K(2N)→ SB such that for allM∈ K(2N), Θ(M) is isometric
to ZM. For this, we only have to slightly modify Kurka’s argument. We
shall first use the following.

Lemma 5.7 (Fact 3.4 in [16]). Let M1,M2 ∈ K(2N) and l ∈ N so that{
A ∩ {1, . . . , l}, A ∈M1

}
=
{
A ∩ {1, . . . , l}, A ∈M2

}
.

Then ‖x‖TM1
= ‖x‖TM2

, for all x ∈ span {u1, . . . , ul}.

We claim that the spaces ZM satisfy the same property. Indeed, assume
as above that{

A ∩ {1, . . . , l}, A ∈M1

}
=
{
A ∩ {1, . . . , l}, A ∈M2

}
.

Then,{
A ∩ {1, . . . , l}, A ∈M1 ∪ A3

}
=
{
A ∩ {1, . . . , l}, A ∈M2 ∪ A3

}
.

So, ‖x‖XM1
= ‖x‖XM2

, for all x ∈ span {u1, . . . , ul}. Thus, for all y ∈
span {e1, . . . , el}, ‖y‖YM1

= ‖y‖YM2
. Here we just use the definition of a

dual norm and the fact that the basis (un) is monotone. Clearly we then
have that ‖y‖Y q

M1
= ‖y‖Y q

M2
for all y ∈ span {e1, . . . , el}, and using Hahn-

Banach Theorem and the fact that the basis (en) is also monotone we get
that ‖x‖ZM1

= ‖x‖ZM2
, for all x ∈ span {u1, . . . , ul}. Now we can deduce

from [16] (see argument in the proof of Lemma 3.8) that for every x ∈ c00,
the map M 7→ ‖

∑∞
i=1 xiui‖ZM is continuous from K(2N) to R. It finally

follows from Lemma 2.4 in [16] that there exists a Borel map Θ : K(2N)→ SB
such that for all M∈ K(2N), Θ(M) is isometric to ZM.

By Hurewicz’s Theorem, C = {M ∈ K(2N),M∩ I 6= ∅} is Σ1
1-complete

in K(2N) and we have that Θ(M) ∈ Tp if and only ifM∈ C. This is known
to imply that Tp ∩ Sep is Σ1

1-hard (see Lemma 2.1 in [16]) and therefore
Σ1
1-complete, as we already know that it is Σ1

1. �
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We conclude this paper with a remark that has been kindly suggested to
us by the referee. Recall first that it follows easily from Kwapien’s theorem
that the isomorphism class of `2 is Borel. In [8], G. Godefroy proved that,
for 1 < p <∞, the isomorphism class of `p is also Borel. On the other hand,
O. Kurka showed in [17] that the isomorphism class of c0 is not Borel. The
following statement is due to O. Kurka [16] (Remarks 3.10 (ii) and (vii)) for
p = 1 and the same proof combined with our construction can be applied to
obtain the following.

Proposition 5.8. Let p ∈ (1,∞) and J = (Jn)∞n=1 be a Banach-Mazur
dense sequence of finite dimensional spaces. Then, the isomorphism class of(∑∞

n=1 Jn)`p is not Borel.

Proof. Recall that for M ∈ K(2N), ZM is isomorphic to an `p-sum of finite
dimensional spaces if M contains an infinite subset of N and not in Tp
otherwise. It follows easily that ZM is isomorphic to

(∑∞
n=1 Jn)`p if and

only ifM contains an infinite subset of N. The conclusion then follows from
the previous arguments. �

Acknowledgements. We are very grateful to the referee for her/his sugges-
tions that helped improve the presentation of this paper and for indicating
to us Proposition 5.8.
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