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Abstract. We establish an algebraic rate of convergence in the large number of players limit of
the value functions of N-particle stochastic control problems towards the value function of the
corresponding McKean-Vlasov problem also known as mean field control. The rate is obtained in
the presence of both idiosyncratic and common noises and in a setting where the value function
for the McKean-Vlasov problem need not be smooth. Our approach relies crucially on uniform in
N Lipschitz and semi-concavity estimates for the N-particle value functions as well as a certain
concentration inequality.

1. Introduction

We consider an optimal control problem with a large number of particles. The value function for
this optimization problem reads

V
N (t0,x0) := inf

α∈AN
E

[
ˆ T

t0

(
1

N

N∑

k=1

L(Xk
t , α

k
t ) + F(mN

Xt
))dt + G(mN

XT
)

]
, (1.1)

where T > 0 is a finite horizon, t0 ∈ [0, T ] is the initial time, and x0 = (x10, . . . , x
N
0 ) ∈ (Rd)N is the

initial position of the N particles. The infimum is taken over the set AN of progressively measurable
(Rd)N -valued processes α = (αk)Nk=1 in L2([0, T ]×Ω; (Rd)N ) and X = (X1, . . . , XN) solves, for each
k ∈ {1, . . . , N},

Xk
t = xk0 +

ˆ t

t0

αk
sds+

√
2Bk

t +
√
2a0B

0
t t ∈ [t0, T ]. (1.2)

The (Bk)k≥0 are independent d-dimensional Brownian motions defined on the fixed filtered prob-

ability space (Ω,F,F,P) satisfying the usual conditions, and L2([0, T ] × Ω; (Rd)N ) denotes the set
of square-integrable and progressively measurable processes taking values in (Rd)N . Here δx is the
Dirac mass at x, and the empirical measure mN

Xt
is given by

mN
Xt

:=
1

N

N∑

k=1

δXk
t
. (1.3)

The cost function L : Rd × Rd → R is supposed to be convex in the second variable and smooth
while the maps F,G : P1(R

d) → R are assumed to be smooth and bounded over the space P1(R
d)

of Borel measures on Rd with a finite first-moment (precise assumptions will be given in section 2).
The constant a0 ≥ 0 is the level of the common noise, and the (Bk)k≥1 are viewed as independent
or idiosyncratic noises.

1.1. Our results. To describe our result we need to introduce the map U : [0, T ]× P2(R
d) → R,

where P2(R
d) is the space of Borel measures on Rd with a finite second-moment, given, for (t0,m0) ∈

[0, T ]× P2(R
d), by

U(t0,m0) := inf
α∈A

E[

ˆ T

t0

(
L(Xt, αt) + F(L(Xt|FB0

t ))
)
+ G(L(XT |FB0

T ))], (1.4)
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where the infimum is taken over an appropriate set A of admissible controls (this will be made

precise later), FB0

= (FB0

t )0≤t≤T denotes the filtration generated by B0, L(Xt|FB0

t ) is the law of

Xt conditioned upon FB0

t , and

Xt = Xt0 +

ˆ t

t0

αs(Xs)ds+
√
2(Bt −Bt0) +

√
2a0(B

0
t −B0

t0), (1.5)

with B another Brownian motion, Xt0 a random initial condition with law m0 and B0, B and Xt0

mutually independent.

Although it is known (more about this later in the introduction) that, as N tends to infinity, VN

converges to U, the existing convergence results come without any rate.

Our main result is the following algebraic convergence rate: there exists β ∈ (0, 1], depending
only on the dimension d, and C > 0, depending on the data of the problem, such that, for any
(t,x) ∈ [0, T ]× (Rd)N ,

∣∣VN (t,mN
x )− U(t,mN

x )
∣∣ ≤ CN−β(1 +M

1/2
2 (mN

x )), (1.6)

where M2(m
N
x ) = N−1

∑N
i=1 |xi|2 is the second-order moment of the measure mN

x .

Although the exact value of β could be traced back through the computation, it is clearly not
optimal. In particular, it is very far from the one obtained for standard particle system. Similarly,
even if some dependence with respect to a moment of the measure is expected, the dependence given
here is probably far from sharp.

1.2. Background and related literature. The convergence of VN to U was shown by Lacker [20]
in a very general framework and for suitable initial data but without common noise, that is, with
a0 = 0 in (1.2). Very recently, the results of [20] have been extended in Djete, Possamäı and Tan [13]
to problems with a common noise and interaction through the controls. Beside [13, 20] several other
papers have studied the question of the mean field limit of optimal control problems, for example,
Cavagnari, Lisini, Orrieri and Savaré [8] and Fornasier, Lisini, Orrieri and Savaré [14] investigate
the problem without noise using Γ−convergence techniques. The recent contribution of Gangbo,
Mayorga and Swiech [16] studies the mean field limit without idiosyncratic but with common noise
using partial differential equations (PDE for short) techniques. This is possible thanks to the fact
that VN solves the Hamilton-Jacobi equation




−∂tVN (t,x) −
N∑

j=1

∆xjVN (t,x)− a0

N∑

i,j=1

tr(D2
ijV

N (t,x)) +
1

N

N∑

j=1

H(xj , NDxjVN (t,x))

= F(mN
x ) in (0, T )× (Rd)N ,

V
N (T,x) = G(mN

x ) in (Rd)N ,

(1.7)

where

H(x, p) = sup
α∈Rd

[−p · α− L(x, α)],

while U is expected to solve (in some sense) the infinite dimensional Hamilton-Jacobi equation




−∂tU(t,m)− (1 + a0)

ˆ

Rd

divy(DmU(t,m, y))m(dy)

−a0
ˆ

R2d

tr(D2
mmU(t, x,m, y, y′))m(dy)m(dy′)

+

ˆ

Rd

H(y,DmU(t,m, y))m(dy) = F(m) in (0, T )× P2(R
d),

U(T,m) = G(m) in P2(R
d).

(1.8)
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For the definition of the derivatives DmU and D2
mmU we refer to the books of Cardaliaguet, Delarue,

Lasry and Lions [5] and Carmona and Delarue [7].

One of the reasons for introducing the value functions is that they provide optimal feedbacks for the
optimization problems. For the particle system, this optimal feedback is given (rigorously) by

α∗
i (t,x) = −DpH(xi, NDxi

VN (t,x)),

while for the limit system it takes the form (at least formally)

α∗
t (x,m) = −DpH(x,DmU(t,m, x)).

The difficulty in the PDE analysis of [16] is that, in the absence of the idiosyncratic noise, the value
functions VN are not smooth in general, and, thus, the equation (1.7) has to be interpreted in the
viscosity sense. A suitable notion of viscosity solution for the infinite dimensional Hamilton-Jacobi
equation (1.8) without idiosyncratic noise is introduced in [16] , and then is proven that VN converges
to this viscosity solution. In the presence of idiosyncratic noise the notion of viscosity solution to
(1.8) is not understood yet and we will not try to use this approach.

1.3. More about our results continued. While the existing results mentioned above demon-
strate the convergence of VN to U under many different technical hypotheses and using a variety
of techniques, none provides a rate of convergence. Our main result fills this gap in the literature,
by providing a rate of convergence of VN to U in the presence of both idiosyncratic and common noise.

The primary challenge we face is related to the (lack of) regularity of U. Indeed, if U is a smooth
solution solution to (1.8), then the projections UN : [0, T ]×(Rd)N → R given by UN (t,x) = U(t,mN

x )
are smooth solutions of the Hamilton-Jacobi equation




−∂tUN (t,x) −
N∑

j=1

∆xjUN (t,x)− a0

N∑

i,j=1

tr(D2
ijV

N (t,x)) +
1

N

N∑

j=1

H(xj , NDxjUN (t,x))

= F(mN
x ) + EN (t,x) in (0, T )× (Rd)N ,

UN (T,x) = G(mN
x ) in (Rd)N ,

(1.9)

with

EN (t,x) = − 1

N2

N∑

j=1

tr(DmmU(t,mN
x , xi, xi)).

If DmmU is bounded, then it is immediate that |En| = O(1/N). Thus, UN solves the same equation
as VN , up to a term of orderO(1/N). By a comparison argument, we conclude that |U−V| = O(1/N),
that is, there exists a constant C such that, for all t ∈ [0, T ] and x ∈ (Rd)N ,

|VN (t,x)− U(t,mN
x )| ≤ C

N
.

See also [17] for more on what convergence results can be obtained once (1.8) has a sufficiently
smooth solution. This argument is similar to the approach taken in [5, 7] to study the convergence
problem in the context of mean field games (see Lasry and Lions [24]) in situations where a classical
solution to the so-called master equation is known to exist; also see Bayraktar and Cohen [1] and
Cecchin and Pelino [10] for related results. In this setting, convergence is related to the propagation
of chaos for the optimal trajectories of the game.

Of course, the simple argument outlined above works only when the value function U is smooth. For
instance, this would be is the case if the maps F and G were convex and sufficiently smooth (see the
discussion in Chap. 3.7 of [5]). However, we do not assume such a convexity property and the map
U is expected to present discontinuities in its first-order derivative, as can be seen in, for instance,
Briani and Cardaliaguet [3]. Because of this, the techniques in [5, 7] break down.
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When the value function is not smooth, the convergence rate has been studied primarily in the
case of finite state space; see Kolokoltsov [19] and Cecchin [9]. We refer also to the recent work of
Bayraktar and Chakraborty [2], which adapts the arguments of [9] to the continuous state space
under a certain structural condition (see Assumption 2.2 in [2]) which loosely speaking guarantees
that the running cost depends on m only through finitely many of its moments. In this finite state
space setting, the convergence rate is of order 1/

√
N . Indeed, as explained in [9], the particle system

is then a kind of discretization of the continuous McKean-Vlasov equation.

The situation is different and much more difficult in the continuous state space setting. This might
come as a surprise since the convergence rate for particle systems is very well understood; see, for
instance, Fournier and Guillin, [15]. The main difficulty, however, is that, even though the optimal
feedback in the particle system remains bounded independently of N (see Lemma 3.1), it cannot be
expected to be uniformly continuous as a function of the empirical measure. Indeed, this uniform
continuity would imply the C1−regularity of the limit U, which does not hold in general. So it is
necessary to find a way to show that, despite the fact that the controls played by each particle might
be very different, a kind of concentration of measure takes place.

1.4. Strategy of the proof. We discuss briefly the strategy of the proof. We first point out that
we do not rely on a propagation of chaos, which we cannot prove at this stage. Indeed, as for a given
initial condition there might be several optimal trajectories for the limit problem, a propagation
of chaos is not expected to hold without additional assumptions on the initial data. The main
ingredients for the proof are, uniform in N , Lipschitz and semiconcavity estimates for VN , and a
concentration inequality. To bound from above VN by U is relatively easy, because VN can be
transformed into an approximate subsolution for the Hamilton-Jacobi equation (1.8). The opposite
inequality is much trickier, because it seems impossible to transform an optimal control for the VN ,
in which the control depend on each particle, into a feedback for U. We overcome this difficulty
by dividing the particles into subgroups in such a way that the optimal controls for the particles in
each subgroup are close and show a propagation of chaos, based on a concentration inequality, for
each subgroup. The proof being technical, we first show the result when there is no common noise,
that is, for a0 = 0, and, in a second step, extend the result to problems with common noise.

1.5. Organization of the paper. The paper is organized as follows. In the rest of the introduction
we fix notation. We state the assumptions and the main result in section 2. As the proof of the
convergence rate is technical, we start in section 3 with the problem without common noise. Indeed
this case contains the main ideas without the extra technicalities due to the common noise. We
first give some estimates on VN and U (subsection 3.1), then show the relatively easy bound from
above for VN in subsection 3.2. The main part of the proof, that is, the bound from below, which
is the aim of subsection 3.3 requires a concentration inequality proved in subsection 3.4. We finally
explain the adaptation of the proof to the case with common noise in section 4.

1.6. Notation. We work on Rd, write Id for the identity matrix in Rd, and BR for the ball in Rd

centered at the origin with radius R.

For x = (x1, ..., xN ) ∈ (Rd)N , mN
x ∈ P(Rd) stands for the empirical measure of x, that is, mN

x =
1
N

∑N
i=1 δxi .

If ϕ : [0, T ]×Rd → Rd is smooth enough, we write Dϕ, ∆ϕ and D2ϕ for the derivatives with respect
to space and ∂tϕ and ∂ttϕ the derivatives with respect to time. Similarly, for V = V(t, x1, ..., xN ) :
[0, T ]× (Rd)N → R, we define the derivatives DxkV, ∆xkV, ∂tV.

We denote by P(Rd) the set of Borel probability measures on Rd and note that, if m ∈ P(Rd) has
a density, for simplicity of notation, m is also be used to denote the density. Given m ∈ P(Rd)
and p ≥ 1, Mp(m) is the pth−moment of m, that is, Mp(m) =

´

Rd |x|pdm, and Pp(R
d) the set of
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m ∈ P(Rd) such that Mp(R
d) <∞. We endow Pp(R

d) with the Wasserstein metric dp, defined by

dp
p(m,m

′) := inf
π∈Π(m,m′)

ˆ

Rd

|x− y|pdπ(x, y),

where Π(m,m′) is the set of all π ∈ P(Rd × Rd) with marginals m and m′. We recall the duality
formula

d1(m,m
′) = sup

φ∈L

ˆ

Rd

φd(m−m′),

where L is the set of all 1-Lipschitz functions from Rd to R.

We write LR for the set of all 1-Lipschitz functions φ : BR ⊂ Rd → [−R,R]. For any φ ∈ LR, φ̃ is

the extension φ̃ : Rd → [−R,R] (note that φ̃ is also 1-Lipschitz) given by

φ̃(x) =





φ(x) |x| ≤ R,

2R−|x|
R φ( R

|x|x) R < |x| < 2R,

0 |x| ≥ 2R.

For U : P1(R
d) → R smooth enough,

δU

δm
: P1(R

d)×R → R denotes the linear functional derivative,

which satisfies, for all m,m′ ∈ P1(R
d) and all h ∈ (0, 1),

U(m′)− U(m) =

ˆ 1

0

ˆ

Rd

δU

δm
((1 − h)m+ hm′, x)(m′ −m)(dx)dh.

We use the standard convention
´

Rd

δU

δm
(m,x)m(dx) = 0 for all m ∈ P1(R

d). If
δU

δm
is differentiable

with respect to the space variable, we define the L-derivative of U by DmU(m,x) = Dx
δU

δm
(m,x).

Higher order derivatives are defined similarly. We refer to [5, 7] for the properties of the L-derivatives.

Finally, throughout the paper we use C for positive constants that depend, unless otherwise noted,
on the data and may change from line to line with this being made explicit.

1.7. Acknowlegments. Cardaliaguet was partially supported by the Air Force Office for Scientific
Research grant FA9550-18-1-0494 and the Institute for Mathematical and Statistical Innovation.
Daudin was partially supported by the Institute for Mathematical and Statistical Innovation. Jack-
son was partially supported by the National Science Foundation grant DGE-161040 and the Institute
for Mathematical and Statistical Innovation. Souganidis was partially supported by the National
Science Foundation grant DMS-1900599, the Office for Naval Research grant N000141712095 and
the Air Force Office for Scientific Research grant FA9550-18-1-0494. All authors would like to thank
the Institute for Mathematical and Statistical Innovation for its hospitality during the Fall 2021
program.

2. Assumptions and main result

2.1. Assumptions. We now state our standing assumptions on the maps H,F and G, which con-
stitute the data of our problem. We keep in mind that L : Rd ×Rd → R is a Legendre transform of
H with respect to the last variable:

L(x, a) = sup
p∈Rd

[−a · p−H(x, p)].

We assume that
{
there exist constants c, C > 0 such that

−C + c|p|2 ≤ H(x, p) ≤ C + 1
c |p|2 for all (x, p) ∈ Rd × Rd,

(2.1)
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H : Rd × R
d → R is of class C2, (2.2)





H is locally strictly convex with respect to the last variable,

that is, for any R > 0, there exists cR > 0 such that

D2
ppH(x, p) ≥ cRId for all (x, p) ∈ Rd ×BR,

(2.3)

{
there exists a constant C > 0 such that

|DxH(x, p)| ≤ C(|p|+ 1) for all (x, p) ∈ Rd × Rd,
(2.4)

{
for any R > 0, there exists CR > 0 such that

|D2
xxH(x, p)|+ |D2

xpH(x, p)| ≤ CR for all (x, p) ∈ Rd ×BR,
(2.5)

F : P1(R
d) → R is of class C2 with F, DmF, D2

ymF and D2
mmF uniformly bounded, (2.6)

and, finally,

G : P1(R
d) → R is of class C4 with all derivatives up to order 4 uniformly bounded. (2.7)

For simplicity, in what follows we put together all the assumptions above in

assume that (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7) hold, (2.8)

Remark 2.1. We make the following comments regarding (2.8).
(i) The strict convexity of H with respect to the gradient variable is standard in optimal control. In
particular, it implies that L has the same regularity as H .
(ii) Although (2.4), which is used to obtain, independent of N , Lipschitz estimates on the value
function VN (see Lemma 3.1), is somehow restrictive, we do not know if it is possible to avoid it. It
is, however, satisfied by, for instance, a Hamiltonian of the form H(x, p) = |p|2 + V (x) · p for some
smooth and globally Lipschitz continuous vector field V : Rd → Rd.
(iii) The fact that the “full” Hamiltonian (x, p,m) → H(x, p) − F(m) has a separate form is not
completely necessary. Some (small) extensions are possible, but we have decided to keep it in a
separate form in order to avoid unnecessary technicalities.
(iv) The uniform bounds on DmF and DmG imply that both maps are Lipschitz continuous in
P1(R

d). The additional smoothness is used to obtain, independent of N , semiconcavity estimates
on the value function VN (see Lemma 3.4).
(v) As L is the Legendre transform of H , (2.1) and (2.2) imply that

{
for any R > 0, there exists CR > 0 such that

|DaL(x, a)| ≤ CR for all (x, a) ∈ Rd ×BR

(2.9)

Although this is standard, we repeat its proof for completeness. Indeed, for |a| ≤ R, x ∈ Rd and
p = DaL(x, a), in view of (2.2), we have L(x, a) = −a · p−H(x, p). It then follows from (2.1), that

−R|p| − C + (1/c)|p|2 ≥ L(x, a) ≤ sup
p′

{−a · p′ + C − c|p′|2} ≤ C +
R2

4c
.

2.2. The formulation of the problem. For concreteness, we fix throughout the paper a filtered
probability space (Ω,F,F = (F)t≥0,P) satisfying the usual conditions and hosting independent d-
dimensional Brownian motions B0 and (Bk)k∈N.

2.2.1. The definition of VN . The definition of VN and the relevant quantities/functions were given
and discussed in the introduction–see (1.1), (1.2) and (1.3), where it was also explained that, as-
suming (2.8), VN is the unique classical solution to the Hamilton-Jacobi equation (1.7) and that the
infimum in (1.1) is achieved (in feedback form) by the function α = (αk)Nk=1 : [0, T ]× (Rd)N → RN

given by

αk(t,x) = −DpH(xk, NDxkVN (t,x)). (2.10)
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2.2.2. The definition of U without common noise. Suppose now that a0 = 0. To define U, we find it
more intuitive to work with closed-loop controls, and to view the problem in terms of deterministic
control of the associated Fokker-Planck equation.

For fixed (t0,m0) ∈ [t0, T ]×P2(R
d), letA(t0,m0) to be the set of pairs (m,α) withm = (mt)t∈[t0,T ] =

(m(t, ·))t∈[t0,T ] ∈ C0([t0, T ];P2(R
d)), α : [t0, T ]× Rd → Rd measurable and such that

(1) m solves (in the sense of distributions) the Fokker-Planck equation

∂tm = ∆m− div(mα) in (t0, T ]× R
d and m(t0, ·) = m0,

(2)
´ T

t0

´

Rd |α(t, x)|2m(t, dx)dt <∞.

Then we define U : [0, T ]× P2(R
d) → R by

U(t0,m0) = inf
(m,α)∈A(t0,m0)

{ˆ T

t0

( ˆ

Rd

L(x, α(t, x))m(t, dx) + F(mt))dt+ G(mT )
}
. (2.11)

One advantage to using this deterministic formulation of the McKean-Vlasov control problem is that,
at least in the absence of common noise, the dynamic programming principle is straightforward. In
particular, we can assert the following, which will be useful in what follows.

Proposition 2.2. Assume (2.8). Then, for any 0 ≤ t0 ≤ t1 ≤ T ,

U(t0,m0) = inf
(m,α)∈A(t0,m0)

{ˆ t1

t0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F(mt))dt+ U(t1,mt1)
}
.

2.2.3. The definition of U with common noise. To define U when a0 > 0, we once again use a form
of closed-loop formulation, but this time the relevant Fokker-Planck equation becomes stochastic
and we work with a notion of weak solution.

For fixed (t0,m0) ∈ [0, T ]× P2(R
d), we define a control rule R ∈ A(t0,m0) to be a tuple

R = (Ω,F,F,P,W,m, α),

where

(1) (Ω,F,F = (Ft)0≤t≤T ,P) is a filtered probability space supporting the d-dimensional Brown-
ian motion W ,

(2) α = (αt)t0≤t≤T is a F-progressively measurable taking values in L∞(Rd;Rd) and such that
α is uniformly bounded, in the sense that

∥∥∥∥∥ sup
t∈[t0,T ]

‖αt‖L∞(Rd;Rd)

∥∥∥∥∥
L∞(Ω)

<∞. (2.12)

(3) m satisfies the stochastic McKean-Vlasov equation
{
dmt(x) = [(1 + a0)∆mt(x)− div(mtαt(x))] dt+

√
2a0Dmt(x) · dWt in (t0, T ]× Rd,

mt0 = m0 in Rd.
(2.13)

The last condition means that, P−a.s., for any smooth test function φ ∈ C∞
c ([0, T ] × Rd) with a

compact support and for any t ∈ [t0, T ] one has,
ˆ

Rd

φt(x)mt(dx) =

ˆ

Rd

φ0(x)m0(dx) +

ˆ t

t0

ˆ

Rd

(∂tφs(x) + αs(x) ·Dφs(x) + (1 + a0)∆φs(x))ms(dx)ds

+

ˆ t

t0

√
2a0
ˆ

Rd

Dφs(x)ms(dx) · dWs.



8 PIERRE CARDALIAGUET, SAMUEL DAUDIN, JOE JACKSON AND PANAGIOTIS E. SOUGANIDIS

Now we define

U(t0,m0) = inf
R∈A(t0,m0)

E
P

[ˆ T

t0

( ˆ

Rd

L(x, αt(x))mt(dx) + F(mt))dt+ G(mT )
]
. (2.14)

The connection to the informal description (1.4) of U is that, if α is a bounded L∞(Rd;Rd)-valued
process defined on some filtered probability space probability space (Ω,F,F = (Ft)0≤t≤T ,P) sup-
porting independent Brownian motions B and W , α is a adapted to the filtration of W and X is a
strong solution to the McKean-Vlasov equation

Xt = Xt0 +

ˆ t

t0

αs(Xs)ds+
√
2(Bt −Bt0) +

√
2a0(Wt −Wt0), (2.15)

then (Ω,F,FW ,W,m, α) ∈ A(t0,m0), where mt = L(Xt|W ), that is, m is the conditional law of X
given the filtration of the Brownian motion W .

As in the case a0 = 0, we have the following dynamic programming principle.

Proposition 2.3. Assume (2.8). Then, for any 0 ≤ t0 < t1 ≤ T , for U defined by (2.14), we have

U(t0,m0) = inf
(m,α)∈A(t0,m0)

E
P

[
ˆ t1

t0

(

ˆ

Rd

L(x, αt(x))mt(dx) + F(mt))dt+ U(t1,mt1)

]
.

Unlike in the case without common noise, where the control problem is deterministic and thus the
dynamic programming principle is straightforward, in the common noise case we will need to use
some machinery from Djete, Possamäı and Tan [12] and Lacker, Sholnikov and Zhang [21] to verify
that the dynamic programming principle holds in this setting. To streamline the presentation, we
present the proof of Proposition 2.3 as well as of some other technical results from [12, 13, 21] in
the Appendix.

Remark 2.4. We could have defined U using (2.14) when a0 = 0 as well, and, in the end, it would
be possible, thanks in part to Lemma 3.3 below, to prove that this is equivalent to the definition
(2.11). We chose to define things separately with and without common noise mostly to avoid some
unnecessary technicalities and to simplify the presentation for the reader interested in the case
without common noise. The only mathematical reason for splitting up the definitions is that, for
technical reasons, it is convenient to work with L∞−feedback controls in the case of common noise,
whereas without common noise we have no difficulty working with square-integrable controls.

2.3. The main result. With VN defined by (1.1), U defined by (2.11), if a0 = 0, or (2.14), if
a0 > 0, we have the following result.

Theorem 2.5. Asume (2.8). Then there exists β ∈ (0, 1] depending only on d and C > 0 depending

on the data such that, for any (t,x) ∈ [0, T ]× (Rd)N ,

∣∣VN (t,x)− U(t,mN
x )
∣∣ ≤ C

1

Nβ
(1 +M2(m

N
x )).

For the convenience of the reader we repeat here the strategy of the proof. We detail in section 3 the
proof of Theorem 2.5 when a0 = 0, the adaptation to the case a0 > 0 being the aim of section 4. The
proof of Theorem 2.5 requires several steps: We first obtain uniform in N regularity estimates on
VN , namely Lipschitz and semiconcavity estimates in Lemma 3.1 and Lemma 3.4 respectively. Then
we show how to bound from above VN by U plus an error term (Proposition 3.7). This estimate
is relatively easy and boils down to transforming the map VN into a subsolution of the Hamilton-
Jacobi equation (1.8). The converse estimate, which is more involved, is the aim of Proposition
3.8. The technical reason is that we found no way to embed U into the equation for VN as a
subsolution. Actually, since U is semiconcave, it is naturally a supersolution of that equation and
the remaining term is a priori large. We overcome this issue by using locally optimal feedback of
the N−problem for the continuous one, the main difficulty being to compare the empirical measure
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in the N−problem to the solution of the Fokker-Planck equation. This step, which is difficult, relies
on a key concentration result (Lemma 3.11).

3. The proof of Theorem 2.5 without common noise

We assume that a0 = 0 and, throughout the proof, we use the fact that VN is the unique solution
of the uniformly parabolic backward PDE (1.7) and, therefore, is smooth.

3.1. Some regularity estimates. We first establish the, uniform in N , regularity estimates for
VN .

Lemma 3.1. Assume (2.8). There exists a constant C > 0 such that, for any N ≥ 1,

‖VN‖∞ +N sup
j

‖DxjVN‖∞ + ‖∂tVN‖∞ ≤ C.

Remark 3.2. The estimate on DxjVN implies that the optimal feedback of the problem, given by
αk(t, x) = −DpH(xi, NDxjVN (t,x)) remains uniformly bounded.

Proof. The bound on VN is obvious.

We note that wi = DxiVN satisfies




−∂twi(t,x) −
N∑

k=1

∆xkwi(t,x) +
1

N
DxH(xi, Nwi(t,x))

+

N∑

k=1

DpH(xk, NDxkVN (t,x)) ·Dxkwi(t,x) =
1

N
DmF(mN

x , x
i) in (0, T )× (Rd)N ,

wi(T,x) =
1

N
DmG(mN

x , x
i) in (Rd)N ,

(3.1)

and observe that the maximum principle gives that the N‖DxjVN‖∞’s are bounded uniformly in N
and j.

In the same way, wt = ∂tV
N satisfies





−∂twt(t,x) −
N∑

k=1

∆xkwt(t,x)+

+

N∑

k=1

DpH(xk, NDxkVN (t,x)) ·Dxkwt(t,x) = 0 in (0, T )× (Rd)N ,

wt(T,x) = − 1

N

N∑

k=1

tr

[
D2

y,mG(mN
x , x

k) +
1

N
[D2

m,mG(mN
x , x

k, xk)

]

+
1

N

∑

k

H(xk, DmG(mN
x , x

k)− F(mN
x ) in (Rd)N ,

(3.2)

and the uniform bound on ‖∂tVN‖∞ follows again from the maximum principle. �

Lemma 3.3. Assume (2.8). There is C > 0 such that, for all t0, s0 ∈ [0, T ] and m0,m0 ∈ P2(R
d),

|U(t0,m0)− U(s0,m0)| ≤ C
(
|t0 − s0|1/2 + d1(m,m)

)
.

Moreover, if (t0,m0) ∈ [0, T ]× P1(R
d) and (m,α) is optimal in the definition of U(t0,m0) in (1.4),

then ‖α‖∞ ≤ C.

Proof. The result is standard so we only sketch the argument and refer to [3] and [11] for more
details. Fix (t0,m0) ∈ [0, T ]× P1(R

d). It follows from (2.8) that there exists at least a pair (m,α)
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optimal in the definition of U(t0,m0). Moreover, for such optimal pair (m,α), there exists a map
u : [t0, T ]× Rd → R with αt(x) = −DpH(x,Du(t, x)) and such that (u,m) solves the system





−∂tu(t, x)−∆u(t, x) +H(x,Du(t, x)) =
δF

δm
(mt, x) in (t0, T )× R

d

∂tmt(x) −∆mt(x) − div(DpH(x,Du(t, x))mt(s)) = 0 in (t0, T )× R
d,

mt0 = m0, u(T, x) =
δG

δm
(mT , x) in R

d.

Arguing as for the Lipschitz estimate in Lemma 3.1, one can check that there exists a constant
C > 0 such that ‖Du‖∞ ≤ C and, since α = −DpH(x,Du), ‖α‖∞ ≤ C. By the standard parabolic
regularity this implies that ‖Dα‖∞ = ‖D[DpH(·, Du(·, ·))]‖∞ ≤ C.

Fix m1 ∈ P1(R
d) and let µ be the solution to

∂tµ−∆µ+ div(µα) = 0 in (t0, T )× R
d with µ(t0) = m1.

It is easy to check that there exists C = C(‖Dα‖∞, T ) such that

sup
t∈[t0,T ]

d1(µ(t),m(t)) ≤ Cd1(m1,m0).

Thus, for some constant C depending on T , on the regularity of L, F and G and on ‖Dα‖∞,

U(t0,m1) ≤
ˆ T

t0

(

ˆ

Rd

L(x, αt(x))µ(t, dx) + F(µ(t)))dt + G(µ(T ))

≤
ˆ T

t0

(

ˆ

Rd

L(x, αt(x))m(t, dx) + F(m(t)))dt + G(m(T )) + C sup
t∈[t0,T ]

d1(µ(t),m(t))

≤ U(t0,m0) + Cd1(m1,m0).

This establishes the estimate

|U(t0,m0)− U(t0,m0)| ≤ Cd1(m0,m0). (3.3)

Finally, we fix s0 < t0, and we choose (m,α) optimal in the definition of U(s0,m0). By dynamic
programming (Proposition 2.2), we have

U(s0,m0) =

ˆ t0

s0

(ˆ

Rd

L(x, α(t, x))mt(dx) + F(mt)
)
dt+ U(t0,mt0),

and so

|U(s0,m0)− U(t0,m0)| ≤ |
ˆ t0

s0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F(mt)
)
dt|+ |U(t0,mt0)− U(t0,m0)|

≤ C(t0 − s0) + Cd1(mt0 ,m0) ≤ C(t0 − s0) + C(t0 − s0)
1/2 ≤ C(t0 − s0)

1/2,

where we have used (3.3) and the boundedness of α, together with the fact that Assumption 2.1
implies a similar inequality for L. This completes the proof. �

The key estimate on VN is discussed next.

Lemma 3.4. Assume (2.8). There exists an independent of N constant C, such that, for any

N ≥ 1, ξ = (ξi) ∈ (Rd)N and ξ0 ∈ R,

N∑

i,j=1

D2
xixjV

N (t,x)ξi · ξj +2

N∑

i=1

D2
xitV

N (t,x) · ξiξ0+D2
ttV

N (t,x)(ξ0)2 ≤ C

N

N∑

i=1

|ξi|2+C(ξ0)2. (3.4)
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Remark 3.5. Inequality (3.4) plays a crucial role in the proof of Lemma 3.13 below. Since

VN converges to U, it follows that (3.4) implies the semi-concavity of the extension Ũ : [0, T ] ×
L2((Ω̃, F̃, P̃);Rd) → R defined, for X ∈ L2(Ω̃,Rd), by

Ũ(t,X) := U(t,L(X)),

where (Ω̃, F̃, P̃) is a fixed atomless probability space and L(X) is the law of the random variable X .

Proof. For 1 ≤ i, j, k ≤ N , let
{
ωi = DxiVN · ξi, ωi,j = D2

xixjV
Nξi · ξj , ω0 = ∂tV

Nξ0, ω0,i = ωi,0 = ∂tDxiVN · ξ0ξi

ω0,0 = ∂ttV
N (ξ0)2, ω̃ =

∑N
i,j=0 ω

i,j and σk =
∑N

i=0Dxkωi.

A straightforward computation gives

− ∂tω̃ −
N∑

k=1

∆xk ω̃ +

N∑

k=1

Dxk ω̃.DpH(xk, NDxkVN (t,x))

=−N
N∑

k=1

D2
ppH(xk, NDxkV

N (t,x))σk · σk − 2
N∑

k=1

D2
xpH(xk, NDxkV

N (t,x))ξk.σk

− 1

N

N∑

i=1

D2
xxH(xi, nDxiVN (t,x))ξi.ξi

+
1

N2

N∑

i,j=1

D2
mmF(mN

x , x
i, xj)ξi.ξj +

1

N

N∑

i=1

DyDmF(mN
x , x

i)ξi.ξi

Denote by γ the right-hand-side of the equality above. Recalling that H is strictly convex in the p
variable and that N∂xkVN is bounded, we have, for all 1 ≤ k ≤ N ,

−ND2
ppHσk · σk − 2D2

xpHξ
k.σk ≤ C

N
|ξk|2.

We can use again the Lipschitz bounds on VN and (2.5) to deduce that

γ(t,x) ≤ C

N

N∑

k=1

|ξi|2.

Next, fix (t0,x0) and consider the weak solution mN to




∂tm
N (t,x)−

N∑

k=1

∆xkmN (t,x)−
N∑

k=1

div(DpH(xk, NDxkVN (t,x))mN ) = 0 in (t0, T )× (Rd)N ,

mN (t0, ·) = δx0
in (Rd)N .

Integrating the equation satisfied by ω̃ against mN we deduce that, for all (t0,x0) ∈ [0, T ]× (Rd)N ,

ω̃(t0,x0) ≤ sup
x

‖ω̃(T,x)‖∞ +
C

N

N∑

k=1

|ξk|2.

In order to bound the right-hand side of the inequality above, we first note that, by the equation
satisfied by VN , we have

∂tV
N (T,x) = −

N∑

k=1

∆xkGN (x) +
1

N

N∑

k=1

H(xk, NDxkGN (x)) − FN (x),
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where FN (x) := F(mN
x ) and GN (x) := G(mN

x ), and, similarly,

∂2ttV
N (T,x) = −

N∑

k=1

∆xk∂tV
N (T,x) +

N∑

k=1

DpH(xk, NDxkGN (x)) ·Dxk∂tV
N (T,x).

Recalling the expressions of the derivatives of FN and GN in function of the derivatives of F and G

in Proposition 5.35 of [7], we find, after a tedious but straightforward computation that, under our
standing assumptions on F and G, that, for some C,

sup
x

‖ω̃(T,x)‖∞ ≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2.

�

3.2. The easy estimate. The second step in the proof of Theorem 2.5 is an upper bound of VN

in terms of U. Our strategy will be to first compare U to V̂N , where

V̂N (t,m) :=

ˆ

(Rd)N
VN (t,x)

N∏

j=1

m(dxj). (3.5)

We start with a Lemma, whose proof is a straightforward computation which is essentially the same
as the one carried out in the proof of Proposition 3.1 in Cardaliaguet and Masoero [6]. Hence, we
omit the details.

Lemma 3.6. Let V̂N be given by (3.5). Then V̂N is smooth and satisfies the inequality




−∂tV̂N (t,m)−
ˆ

Rd

div(DmV̂
N (t,m, y))m(dy)

+

ˆ

Rd

H(y,DmV̂N (t,m, y))m(dy) ≤ F̂N (m) in (0, T )× P1(R
d),

V̂N (T,m) = ĜN (m) in P1(R
d),

where

F̂N (m) =

ˆ

(Rd)N
F(mN

x )

N∏

j=1

m(dxj) and ĜN (m) =

ˆ

(Rd)N
G(mN

x )

N∏

j=1

m(dxj).

Next we prove the easier inequality in Theorem (2.5).

Proposition 3.7. There exist constants C depending on the data and β depending only on d such

that, for all (t,x0) ∈ [0, T ]× (Rd)N ,

V
N (t,mN

x0
) ≤ U(t,mN

x0
) +

C

Nβ
(1 +M

1/2
2 (mN

x0
)). (3.6)

Proof. Theorem 1 in [15] gives constants C and β depending only on d such that, for anym ∈ P2(R
d)

and for all N ∈ N,
ˆ

(Rd)N
d1(m

N
x ,m)

N∏

i=1

m(dxi) ≤ C

Nβ
M

1/2
2 (m).

Fix (t0,m0) ∈ [0, T ) × P2(R
d) and let α∗ be optimal in the definition of U(t0,m0). Using Lemma

(3.6) together with a standard verification argument, for example, using Itô’s formula in [7], we see
that

V̂N (t0,m0) ≤ inf
α∈A(t0,m0)

{ˆ T

t0

( ˆ

Rd

L(x, α(t, x))mt(dx) + F̂N (mt)
)
dt+ ĜN (mT )]

}

and, hence,

V̂N (t0,m0) ≤
ˆ T

t0

( ˆ

Rd

L(x, α∗(t, x)) + F̂N (mt)
)
dt+ ĜN (mT ). (3.7)
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Since, in view of Lemma 3.3, α∗ is uniformly bounded by a constant independent of N , an easy
computation shows that the corresponding state process satisfies

sup
t∈[t0,T ]

ˆ

Rd

|x|2m(t, dx) ≤ (1 + CT )

ˆ

Rd

|x|2m0(dx) + CT.

It then follows from the Lipschitz continuity of F with respect to d1 that

F̂N (m(t)) ≤ F(m(t)) + C

ˆ

(Rd)N
d1(m

N
x ,m(t))

N∏

j=1

m(t, dxj) ≤ F(m(t)) +
C

Nβ
(1 +M

1/2
2 (m0)),

and, similarly,

Ĝ
N (m(T )) ≤ G(m(t)) +

C

Nβ
(1 +M

1/2
2 (m0)).

So, by the optimality of α∗, we can use (3.7) together with the estimates of F̂N and Ĝ to obtain

V̂N (t0,m0) ≤ E[

ˆ T

t0

(
L(Xt, α

∗
t ) + F(L(Xt))

)
dt+ G(L(XT ))] +

C

Nβ
(1 +M

1/2
2 (m0))

≤ U(t0,m0) +
C

Nβ
(1 +M

1/2
2 (m0)).

Fix now x0 ∈ (Rd)N . Then the Lipschitz estimate on VN and the same argument as above yield
∣∣∣VN (t0,x0)− V̂

N (t0,m
N
x0
)
∣∣∣ ≤ C

Nβ
(1 +M

1/2
2 (mN

x0
)).

Putting together the last two estimates gives (3.6). �

3.3. The main estimate. The main step of the proof is to show the opposite inequality.

Proposition 3.8. Assume (2.8). There exists β ∈ (0, 1] depending only on the dimension and

C > 0 depending on the data, such that, for any N ≥ 1 and any (t,x) ∈ [0, T ]× (Rd)N ,

U(t,mN
x )− VN (t,x) ≤ C

Nβ
(1 +

1

N

N∑

i=1

|xi|2). (3.8)

Proof. Following a viscosity solutions-type argument, we double the variables and, for θ, λ ∈ (0, 1),
we set

M := max
(t,x),(s,y)∈[0,T ]×(Rd)N

es(U(s,mN
y )− VN (t,x))− 1

2θN

N∑

i=1

|xi − yi|2 − 1

2θ
|s− t|2 − λ

2N

N∑

i=1

|yi|2.

We denote by ((t0,x0), (s0,y0)) a maximum point in the expression above and we continue estimating
in the next lemma the error related to the penalization. Its proof is postponed for later.

Lemma 3.9. Assume (2.8). There exists C > 0 such that, for any i ∈ {1, . . . , N},

1

N

N∑

i=1

|xi0 − yi0|2 + |s0 − t0|2 ≤ Cθ2 and
1

N

N∑

i=1

|yi0|2 ≤ C

λ
.

We continue with the ongoing proof.

As pointed out in the introduction, the main difficulty is that it does not seem possible, at least to
us, how to transform an optimal control for the VN depends on each particle into a feedback for U.
We overcome this difficulty by dividing the players into subgroups in such a way that the optimal
controls for the agents in each subgroup are close and showing a propagation of chaos-type result
for each subgroup using a a concentration inequality.

We begin explaining how to create the subgroups based on an appropriate partition of {1, . . . , N}.
Since we will use it again in the next section, state and prove the following lemma.
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Lemma 3.10. For each δ > 0 there exist a constant C depending only on the data, and a partition

(Cj)j∈{1,...,J} of {1, . . . , N} and, for j = 1, . . . , J , αj ∈ Rd such that J ≤ Cδ−d and, for all k ∈ Cj,

∣∣H(xk0 , NDxkVN (t0,x0)) + αj · (NDxkVN (t0,x0)) + L(xk0 , α
j)
∣∣ ≤ Cδ. (3.9)

Proof. Let α̂k(t,x) = −DpH(xk, NDxkVN (t,x))be the optimal feedback for particle k, and recall
(see Remark 3.2),that there exists R depending only on the data such that |α̂k(t,x)| ≤ R.

Given δ > 0, we can find a δ-covering of BR ⊂ Rd consisting of J ≤ Cδ−d balls of radius δ entered
at (αj)j∈{1,...,J} ⊂ BR.

Then, we choose the partition (Cj)j∈1,...J so that, for each k ∈ Cj , |α̂k(t,x) − αj | ≤ δ. It follows
using (2.9)that, for each k ∈ Cj ,

|H(xk0 , NDxkV
N (t0,x0)) + αj · (NDxkV

N (t0,x0)) + L(xk0 , α
j)|

= |
(
αj − α̂k(t0,x0)

)
· (NDxkV

N (t0,x0)) + L(xk0 , α
j)− L(xk0 , α̂(t0,x0))|

≤
(
NDxkV

N (t0,x0)) + ‖DaL‖L∞(Rd×BR)

)
|α̂k(t0,x0)− αj | ≤ Cδ.

�

Fix j ∈ {1, . . . , J}, set αk = αj if k ∈ Cj , let

Xk
t0+τ = xk0 + ταk +

√
2Bk

τ and Y k
s0+τ = yk0 + ταk +

√
2Bk

τ ,

mj
Xt0+τ

=
1

nj

∑

k∈Cj

δY k
s0+τ

and mj
Ys0+τ

=
1

nj

∑

k∈Cj

δXk
t0+τ

,

consider the solution mj to

∂tm
j −∆mj + αj ·Dmj = 0 in (s0, T )× R

d and mj(s0, ·) = mj
y0

in R
d,

and, finally, set m(s) =
1

N

∑
j∈J n

jmj(s).

We state next the concentration inequality we need for the proof.

Lemma 3.11. There exist positive constants β ∈ (0, 1/2) depending on d and C, which depends

only on supj |αj |, d and T , such that, for all h ≥ 0,

E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]
≤ C(1 +M

1/2
2 (mj(s0)))

hβ

(nj)β
, (3.10)

and

E

[
d1(m

j(s0 + h),mj
Xt0+h

)
]
≤ 1

nj

∑

k∈Cj

|xk0 − yk0 |+ C(1 +M
1/2
2 (mj(s0)))

hβ

(nj)β
,

and, as a consequence,

E

[
d1(m(s0 + h),mN

Ys0+h
)
]
≤ Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ

and

E

[
d1(m(s0 + h),mN

Xt0+h
)
]
≤ Cθ + Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
.

We postpone the proof of Lemma 3.11 to subsection 3.4 except for the one of the third inequality,
since it contains an argument is needed for the ongoing proof.
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Proof of the third inequality in Lemma 3.11. Using the first two inequalities of Lemma 3.11 as well
as the Cauchy-Schwarz inequality, the concavity of the maps n→ n1−β and n→ n1−2β, the fact that∑

j n
j = N , and the assumption that β ∈ (0, 1/2), and recalling that J ≤ Cδ−d and the estimate of

M2(m(s0)) in Lemma 3.9 we obtain the following string of inequalities which prove the claim.

E

[
d1(m(s0 + h),mN

Ys0+h
)
]
≤
∑

j∈J

nj

N
E

[
d1(m

j(s0 + h),mj
Ys0+h

)
]

≤ C
∑

j∈J

nj

N
(1 +M

1/2
2 (mj(s0)))

hβ

(nj)β

≤ Chβ
∑

j∈J

(nj)1−β

N
+ Chβ(

∑

j∈J

nj

N
M2(m

j(s0)))
1/2(

∑

j∈J

nj

N(nj)2β
)1/2

≤ Chβ
|J |
N



∑

j∈J

nj

|J |




1−β

+ CM
1/2
2 (m(s0))h

β

√
|J |
N

(
∑

j∈J

1

|J | (n
j)1−2β)1/2

≤ C(
Jh

N
)β
(
1 +M

1/2
2 (m(s0))

)
.

�

We proceed with the ongoing proof.

The Lipschitz regularity of U in Lemma 3.3 and the definition of Xt and Yt give

M ≥ E

[
es0+h(U(s0 + h,mN

Ys0+h
)− VN (t0 + h,Xt0+h))

− 1

2θ

(
1

N

N∑

k=1

|Y k
s0+h −Xk

t0+h|2 + (t0 − s0)
2

)
− λ

2N

N∑

i=1

|Y i
s0+h|2

]

≥ E

[
es0+h(U(s0 + h,m(s0 + h))− VN (t0 + h,Xt0+h))

]
− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ

− 1

2θ

(
1

N

N∑

k=1

|yk0 − xk0 |2 + (s0 − t0)
2

)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2.

To continue, we need a dynamic programming-type argument, which is stated next. Its proof is
postponed for later in the paper.

Lemma 3.12. With the notation above, we have

U(s0 + h,m(s0 + h)) ≥ U(s0,myN
0
)

−
ˆ s0+h

s0

(

J∑

j=1

ˆ

Rd

1

N
njL(x, αj)mj(s, x)dx + F(m(s)))ds.
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Using Itô’s formula for VN we find

M ≥ es0+hU(s0,m
N
y0
)− es0+h

ˆ s0+h

s0

(

ˆ

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dx + F(m(s)))ds

− es0+h
E

[
VN (t0,x0) +

ˆ t0+h

t0

(∂tV
N (t,Xt) +

N∑

k=1

(∆xkV
N (t,Xt) + αk ·DxkV(t,Xt)))dt

]

− Cδ−dβ(1 + λ−
1
2 )
hβ

Nβ
− 1

2θ

(
1

N

N∑

k=1

|yk0 − xk0 |2 + (s0 − t0)
2

)
− λ

2N

N∑

i=1

(|yi0|+ Ch1/2)2.

Since the αj are uniformly bounded, the map L(·, αj) is uniformly Lipschitz independently of j.
Hence, using Lemma 3.11 and Lemma 3.9, we find

ˆ s0+h

s0

ˆ

Rd

J∑

j=1

1

N
njL(x, αj)mj(s, x)dxds

≤ E



ˆ s0+h

s0

J∑

j=1

(
∑

k∈Cj

1

N
L(Xk

t0−s0+s, α
j) + C

1

N
njd1(m

j(s),mj
Xt0−s0+s

))ds




≤ E

[
ˆ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ C

J∑

j=1

1

N
nj(1 +M

1/2
2 (mj

s0))
hβ

(nj)β

≤ E

[
ˆ t0+h

t0

N∑

k=1

1

N
L(Xk

s , α
k)ds

]
+ Cθh+ Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
.

Note that in the last inequality we used exactly the same argument as for the proof given above for
the third inequality of Lemma 3.11.

Hence, recalling the optimality of (x0,y0) and employing the equation for VN , we get

0 ≥ (es0+h − es0)(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
− Cλh1/2N−1

N∑

i=1

|yi0| − Cθh

− es0+h
E

[
ˆ s0+h

s0

(F(m(s)) − F(mN
Xs0−t0+s

))ds

]

− es0+h
E

[
1

N

ˆ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV(s,Xs)) +H(Xk
s , NDxkV(s,Xs)))ds

]
.

Using the Lipschitz regularity of F and Lemma 3.11 to deal with the difference of the F and Lemma
3.9 to deal with the term in

∑
i |yi0|, we find

0 ≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
− Cλ1/2h1/2 − Cθh− Ch2

− es0+h
E

[
1

N

ˆ t0+h

t0

N∑

k=1

(L(Xk
s , α

k) + αk · (NDxkV(s,Xs)) +H(Xk
s , NDxkV(s,Xs))ds)ds

]
.
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The regularity of L and H and the uniform boundedness of the αk and of NDxkVN allow to infer
that

0 ≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
− Cλ1/2h1/2 − Cθh− Ch2

− es0+h
E

[
1

N

ˆ t0+h

t0

N∑

k=1

(L(xk0 , α
k)ds+ αk · (NDxkV(s,Xs)) +H(xk0 , NDxkV(s,Xs)))ds

]
− Ch3/2.

and, in view of (3.9),



0 ≥ es0h(U(s0,m

N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 ) hβ

Nβ − Cλ1/2h1/2 − Cθh− Ch3/2

−CE
[

1
N

´ t0+h

t0

∑N
k=1 |NDxkVN (s,Xs)) −NDxkVN (s,x0))|ds

]
− Chδ.

(3.11)

The semiconcavity of VN and the penalization by the term in θ give the next lemma. The proof is
postponed to end of the section.

Lemma 3.13. For any (t,x) ∈ [0, T ]× (Rd)N ,

N∑

k=1

|DxkV
N (t,x)−DxkV

N (t0,x0)|

≤ C

N

N∑

k=1

|xk − xk0 |+
(
C

Nθ

N∑

k=1

(|xk − xk0 |+ |xk − xk0 |2)
)1/2

+
C

θ1/2
|t− t0|1/2.

We continue with the ongoing proof. Inserting the estimate of Lemma 3.13 in (3.11), we obtain

0 ≥ es0h(U(s0,m
N
y0
)− V

N (t0,x0))− Cδ−dβ(1 + λ−
1
2 )
hβ

Nβ
− Cλ1/2h1/2 − C(θ + δ)h− Ch3/2

− CE



ˆ t

t0

(
C

N

N∑

k=1

|Xk
s − xk0 |+

(
C

Nθ

N∑

k=1

(|Xk
s − xk0 |+ |Xk

s − xk0 |2)
)1/2

+
1

θ1/2
|s− t0|1/2)ds




≥ es0h(U(s0,m
N
y0
)− VN (t0,x0))− Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ

− C(θ + δ)h− Cλ1/2h1/2 − Cθ−1/2h(h1/2 + h)1/2.

Dividing by h we find, for each choice of θ, λ, δ > 0 and 0 < h ≤ (T − s0) ∧ (T − t0), that

es0(U(s0,m
N
y0
)− VN (t0,x0)) ≤ C

hβ−1

Nβδdβ
(1 + λ−1/2) + C(θ + δ) + Cλ1/2h−1/2 + Ch1/4θ−1/2.

We take

θ = hα1 , δ = (
λ−1/2hβ−1

Nβ
)α2 , λ = N−α3 and h = N−α4 .

Making appropriate choices of α1, α2, α3 and f α4 we deduce that

es0(U(s0,m
N
y0
)− VN (t0,x0)) ≤ CN−β̃ (3.12)

holds for some β̃ = β̃(β) ∈ (0, 1/2) and for all values of N such that h = N−α4 ≤ (T − s0)∧ (T − t0).
For those values of N such that h = N−α4 ≥ (T − s0) ∧ (T − t0), we have by Lemma 3.9 that
(T − s0) ∨ (T − s0) ≤ h+ Cθ, and, so, using Lemmas 3.1 and 3.3, we find
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|U(s0,mN
y0
)− VN (t0,x0)| ≤ |U(s0,mN

y0
)− G(mN

y0
)|+ |G(mN

y0
)− G(mN

x0
)|+ |G(mN

x0
)− VN (t0,x0)|

≤ C(h+ θ)1/2 + Cθ + C(h+ θ) ≤ CN−β̃ ,

where in the last line we choose β̃ even smaller if necessary. With this choice of β̃, we have now
established that (3.12) holds for all values of N .

Finally, we conclude that, for all (t,x) ∈ [0, T ]× (Rd)N ,

et(U(t,mN
x )− VN (t,x)) ≤ es0(U(s0,m

N
y0
)− VN (t0,x0)) +

λ

2N

N∑

i=1

|xi|2

≤ CN−min(β̃,α3)(1 +
1

N

N∑

i=1

|xi|2).

�

Before proving the various lemmas used in the proof of Proposition 3.8, we complete the proof of
the main result.

Proof of Theorem 2.5. Combining Proposition 3.7 and Proposition 3.8 we know that there exist
β ∈ (0, 1] depending on dimension and C > 0 depending on the data such that, for any (t,x) ∈
[0, T ]× (Rd)N ,

∣∣U(t,mN
x )− VN (t,x))

∣∣ ≤ CN−β(1 +M
1/2
2 (mN

x ) +M2(m
N
x )) ≤ CN−β(1 +M2(m

N
x )).

�

We continue with the proofs of the several auxiliary results sated earlier.

Proof of Lemma 3.9. The proof of the first statement is an immediate consequence of the uniform
bound on U and VN and of the Lipschitz estimate for VN . �

Proof of Lemma 3.12. For K ∈ N and any nonnegative integrable functions m1
0, . . . ,m

K
0 on R

d such

that
∑K

k=1m
k
0 ∈ P(Rd), let

U
K(t0,m

1
0, . . . ,m

K
0 ) := inf

(m1,β1),...,(mK ,βK)

ˆ T

t0

(

ˆ

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, dx)
)mk(t, x)dx + F(

K∑

k=1

mk(t)))dt

+ G(

K∑

k=1

mk(T )),

where the infimum is taken over the tuple of measures (mk, βk) (the βk being a vector measure)
with βk << mk such that (mk, βk) solve in the sense of distributions,

∂tm
k −∆mk + div(βk) = 0 in (t0, T ]× R

d and mk(t0) = mk
0 in R

d.

We establish next that

UK(t0,m
1
0, . . . ,m

K
0 ) = U(t0,m

1
0 + · · ·+mK

0 ),

and the result will then follow from Proposition 2.2.

Since obviously UK(t0,m
1
0, . . . ,m

K
0 ) ≤ U(t0,m

1
0 + · · · + mK

0 ), next we concentrate on the reverse
inequality.

Fix ε > 0, let (m1, β1, . . . ,mK , βK) be ε−optimal for UK(t0,m
1
0, . . . ,m

K
0 ), and set β =

∑N
k=1 β

K

and m(t) =
∑N

k=1m
k(t). Then (m,β) solves

∂tm−∆m+ div(β) = 0 in (t0, T ]× R
d and m(t0) = m0 in R

d.
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and we have

ε+ UK(t0,m
1
0, . . . ,m

K
0 )

≥
ˆ T

t0

(

ˆ

Rd

K∑

k=1

L(x,
βk(t, x)

mk(t, x)
)
mk(t, x)

m(t, x)
m(t, x)dx + F(

K∑

k=1

mk(t)))dt + G(

K∑

k=1

mk(T ))

≥
ˆ T

t0

(

ˆ

Rd

L(x,

∑K
k=1 β

k(t, x)

m(t, x)
)m(t, x)dx + F(m(t)))dt + G(m(T ))

≥ U(t0,m0),

where the second inequality follows from the convexity of the map (β,m) → mL(x,
β

m
) and the

third one by the definition of U. �

Proof of Lemma 3.13. Set pk = DxkV(t0,x0) and p
t = ∂tV(t0,x0). Then, in view of Lemma 3.4, we

have, for any (t,x), (t0,x0) ∈ [0, T ]× (Rd)N ,

VN (t,x)− VN (t0,x0)−
N∑

k=1

pk · (xk − xk0)− pt(t− t0) ≤
C

N

N∑

k=1

|xk − xk0 |2 + C(t− t0)
2.

The optimality of (t0,x0, s0,y0) also gives, for any (t,x),

1

2θN

N∑

i=1

|xi− yi0|2+
1

2θ
(t− s0)2+VN(t,x) ≥ 1

2θN

N∑

i=1

|xi0− yi0|2+
1

2θ
(t0− s0)2+VN (t0,x0). (3.13)

From (3.13), we conclude that

pk =
yk0 − xk0
θN

and pt =
s0 − t0
θ

.

Furthermore, rearranging (3.13) yields

VN (t, x)− VN (t0, x0) ≥
1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN

N∑

k=1

|xk − yk0 |2 +
1

2θN
|t0 − s0|2 −

1

2θN
|t− s0|2

=
1

2θN

N∑

k=1

|xk0 − yk0 |2 −
1

2θN

N∑

k=1

|(xk − xk0) + (xk0 − yk0 )|2 +
1

2θN
|t0 − s0|2 −

1

2θN
|(t− t0) + (t0 − s0)|2

=

N∑

k=1

pk · (xk − xk0) + pt(t− t0)−
N∑

k=1

1

2θN
|xk − xk0 |2 −

1

2θ
(t− t0)

2.

and, after some elementary manipulations,

VN (t,x)− VN (t0,x0)−
N∑

k=1

pk · (xk − xk0)− pt(t− t0) ≥ − 1

2θN

N∑

k=1

|xk − xk0 |2 −
1

2θ
(t− t0)

2.

Assuming that θ ≤ (2C)−1, it follows that

w(t,x) = VN (t0,x0)− VN (t,x) +
N∑

k=1

pk · (xk − xk0) + pt(t− t0) +
C

N

N∑

k=1

|xk − xk0 |2 + C(t− t0)
2

is convex and satisfies

0 ≤ w(t,x) ≤ 1

θN

N∑

k=1

|xk − xk0 |2 +
1

θ
(t− t0)

2.
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Thus, for any (t,x) and any (s,y), we have

N∑

k=1

Dxkw(t,x) · (yk − xk) + ∂tw(t,x)(s − t) ≤ w(t,x) +

N∑

k=1

Dxkw(t,x) · (yk − xk) + ∂tw(t,x)(s − t)

≤ w(s,y) ≤ 1

θN

N∑

k=1

|yk − xk0 |2 +
1

θ
(s− t0)

2.

Letting yk = xk0 +
1
2θNDxkw(t,x) and s = t0 +

1
2θ∂tw(t, x) in the inequality above, we obtain

θN

4

N∑

k=1

|Dxkw(t,x)|2 ≤
N∑

k=1

Dxkw(t,x) · (xk − xk0) + ∂tw(t, x)(t − t0), (3.14)

and, after using the Cauchy-Schwarz inequality,

N∑

k=1

|Dxkw(t,x)| ≤ N1/2

(
N∑

k=1

|Dxkw(t,x)|2
)1/2

(3.15)

≤ N1/2

(
4

Nθ

N∑

k=1

|xk0 − xk||Dxkw(t,x)| + 4

Nθ
|∂tw(t, x)||t − t0|

)1/2

.

Recalling the definition of w and that |DxkVN | ≤ C/N and |∂tVN | ≤ C, we find

|Dxkw(t,x)| = | −DxkV
N (t,x) + pk +

2C

N
(xk − xk0)| ≤ CN−1 +

2C

N
|xk − xk0 |

and
|∂tw(t, x)| = | − ∂tV

N (t0,x0) + 2C(t− t0)| ≤ C.

Returning to (3.15), we have

N∑

k=1

|−DxkVN (t,x)+pk +
2C

N
(xk −xk0)| ≤

(
C

Nθ

N∑

k=1

|xk0 − xk|+ C

Nθ

N∑

k=1

|xk0 − xk|2 + C

θ
|t− t0|

)1/2

,

from which we deduce the result by the definition of pk. �

3.4. Proof of the concentration inequality. To complete the proof of Proposition 3.8, we are
need to show Lemma 3.11. For this, it is convenient to introduce a few more facts.

Let L(ǫ, R) be the ǫ-covering number of LR with respect to the L∞-distance, that is,

L(ǫ, R) = inf{k ∈ N : there exist φ1, ..., φk ∈ LR such that for all φ ∈ LR, ‖φ− φj‖L∞ < ǫ for some j}.
It is known (see, for example, [18]) that

L(ǫ, 1) ≤ exp{Cǫ−d}, (3.16)

and, after a rescaling argument,

L(ǫ, R) ≤ exp{C
(R
ǫ

)d}. (3.17)

Indeed, if {φ1, ..., φn} ∈ L is ǫ/R-dense in L, then {φ̃1, ..., φ̃n} is ǫ-dense in LR, where φ̃i(x) = Rφ( x
R ).

Thus (3.17) follows from (3.16).

We need two preliminary estimates and note that, without loss of generality, we can take t0 = 0 in
what follows. Finally, we recall the notation after Lemma 3.9.

Lemma 3.14. There exists a constant C > 0 such that, for any φ ∈ L and any j ∈ {1, ..., J},

P[

ˆ

Rd

φ(mj(h)−mj
Yh
) > x] ≤ exp

{
−n

jx2

Ch

}
.
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Proof. Let u the solution of

−∂tu−∆u− αj ·Du = 0 in (0, h)× R
d and u(h) = φ in R

d,

and note that, since ‖Dφ‖ ≤ 1, ‖Du‖∞ ≤ 1.

Using Itô’s formula and the equation for mj , we get
ˆ

Rd

φ(mj(h)−mj
Yh
) = −

√
2
1

nj

∑

k∈Cj

ˆ h

0

Du(s, Y k
s ).dB

k
s

The random variables h−1/2
´ h

0 Du(s, Y
k
s )dB

k
s are independent and sub-Gaussian, uniformly in k.

Indeed, viewing h−1/2
´ ·
0
Du(·, Y k)dBk as a time-changed Brownian motion, we have that Bτ =

h−1/2
´ h

0
Du(t, Y k

t )dB
k
t , where B is a standard Brownian motion and τ ≤ 1 is a stopping time (we

use here that ‖Du‖∞ ≤ 1). In particular,

P[

ˆ h

0

Du(s, Y k
s )dB

k
s > x] ≤ P[ sup

0≤t≤1
|Bt| > h1/2x],

from which the claim follows easily.

We may now apply Hoeffding’s inequality (see, for example, Proposition 2.5 in [26]) to complete the
proof. �

Lemma 3.15. There exists a constant C such that, for any j ∈ {1, ..., J} and R > 0,

E[ sup
φ∈LR

ˆ

Rd

φ̃
(
mj(h)−mj

Yh

)
] ≤ C(1 +R

d
d+2 )(nj)

−1

d+2h
1

d+2 .

Proof. We fix ǫ > 0 and use the estimate on L(ǫ, R) to choose K ≤ exp{C
(
R
ǫ

)d} and φ1, ..., φK in
LR such that, for each φ ∈ LR, there exists k ∈ {1, ...,K} such that ‖φ− φk‖L∞(BR) < ǫ, and hence∥∥∥φ̃− φ̃k

∥∥∥
L∞(Rd)

≤ ǫ.

Then, using Lemma 3.14 and the upper bound on K, for any x > ǫ, we have

P[ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
) > x] ≤ P[ ∃k such that

ˆ

Rd

φ̃k(m
j(h)−mj

Yh
) > x− ǫ]

≤
K∑

k=1

P[

ˆ

Rd

φ̃k(m
j(h)−mj

Yh
) > x− ǫ] ≤ exp

{
C
(R
ǫ

)d − nj(x− ǫ)2

Ch

}
. (3.18)

We fix a small positive parameter γ, and note that, if

ǫ = γ−
1
dRh1/dx−2/d(nj)−1/d,

then

R exp

{
C
(R
ǫ

)d − njx2

Ch

}
= R exp

{
Cγ

njx2

h
− nj(x − ǫ)2

Ch

}
. (3.19)

Further computations reveal that there is a constant C such that x > 2ǫ as soon as

x ≥ C
R

d
d+2h

1
d+2

γ
1

d+2 (nj)
1

d+2

. (3.20)

By choosing γ even smaller, we deduce, in view of (3.18) and (3.19), that, for some constant C and
all R, x as in (3.20),

P [ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
) > x] ≤ exp

{
−n

jx2

Ch

}
.
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It follows that

E[ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
)] ≤
ˆ C(Rdh

nj )
1

d+2

0

1dx+

ˆ ∞

C(Rdh

nj )
1

d+2

exp{−n
jx2

Ch
}dx

≤ C(1 +R
d

d+2 )(nj)
−1

d+2h
1

d+2 .

�

Finally, we give the proof of the concentration inequality.

Proof of Lemma 3.11. Throughout this argument, C denotes a positive constant which, although
changing from line to line, depends only on d, T , and supj |αj |.
Next, we prove (3.10) in the case t0 = 0. We fix R > 0, and note that, any ψ ∈ L normalized with

ψ(0) = 0, can be written as ψ = φ̃+ ϕ, with φ ∈ LR and |ϕ| ≤ |x|1Bc
R
.

Thus, for any h ∈ (0, 1], we get

E[d1(m
j(h),mj

Yh
)] = E[sup

φ∈L

ˆ

Rd

φ(mj(h)−mj
Yh
)]

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
)] +

ˆ

Rd

|x|1Bc
R
mj(h) + E[

ˆ

Rd

|x|1Bc
R
mj

Yh
]

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
)] +

M2(m
j(h))

R
+

E[M2(m
j
Yh
)]

R

≤ E[ sup
φ∈LR

ˆ

Rd

φ̃(mj(h)−mj
Yh
)] + C

(1 +M2(m
j(0)))

R
. (3.21)

Using Lemma 3.15, we find that

E[d1(m
j(h),mj

Yh
)] ≤ C(1 +R

d
d+2 )(nj)

−1

d+2h
1

d+2 + C
(1 +M2(m

j(0)))

R

≤ C(1 +R)(nj)
−1

d+2h
1

d+2 + C
(1 +M2(m

j(0)))

R
.

Optimizing in R, that is, taking R = (nj)
1

2d+4h−
1

2d+4

√
1 +M2(mj(0)), gives the result with β =

1
2d+4 . �

4. The proof of Theorem 2.5 with a common noise

We now show that the method developed above can be adapted to problems with a common noise,
that is, for a0 > 0. Recall that VN and U are defined by (1.1) and (2.14) respectively.

Proof of Theorem 2.5 when a0 > 0. Since the proof follows closely the one in the case a0 = 0, here
we emphasize and explain the main differences.

We first note that the estimates of Lemma 3.1 and 3.4 remain valid (with the same proof), that is,
there exists C > 0 such that

‖VN‖∞ +N sup
j

‖DxjV
N‖∞ + ‖∂tVN‖∞ ≤ C,

and, for any (t,x) ∈ [0, T ]× (Rd)N , (ξi)i=1,...,N ∈ (Rd)N and ξ0 ∈ R,

N∑

i,j=1

D2
xixjV

N (t,x)ξi · ξj + 2

N∑

i=1

D2
xitV

N (t,x)ξiξ0 +D2
ttV

N (t,x)(ξ0)2 ≤ C

N

N∑

i=1

|ξi|2 + C(ξ0)2.
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We note for later use that the observation above implies that the conclusion of Lemma 3.13 still
holds, because its proof relies only on the above estimates.

However, the proof of Lemma 3.3 does not adapt to the case a0 > 0. Hence, we need a new argument
which relies on some results of [13].

In particular, we have the following analogue of Lemma 3.3.

Lemma 4.1. Assume (2.8). There exists a constant C > 0 depending only on the data such that,

for all s, t ∈ [0, T ] and all m,m′ ∈ P4(R
d)

|U(s,m)− U(t,m′)| ≤ C
(
d1(m,m

′) + |t− s|
)
,

and, moreover, for any ǫ > 0 and (t0,m0) ∈ [0, T ]× P2(R
d), there exists an ǫ-optimal control rule

R = (Ω,F,F,W,m, α) ∈ A(t0,m0) for U(t0,m0) such that

‖α‖∞ ≤ C.

Proof. Fix R > 0 and let VN,R and UR denote the values of the problems defining VN and U when
controls are restricted to the ball BR ⊂ Rd.

More precisely, define AN,R to be the set of α = (αk)Nk=1’s such that |αk| ≤ R for each R, and
AR(t0,m0) to be the set of (Ω,F,F,P,m, α) ∈ A(t0,m0) such that |α| ≤ R. Then define VN,R

exactly as in (1.1) but with AN,R replacing A and define UR exactly as in (2.14) but with AR(t0,m0)
replacing AR.

Then Proposition 5.1 and Theorem 3.6 of [13] give

lim
N→∞

VN,R(t,xN ) = UR(t,m)

where xN = (x1, ..., xN ), m ∈ P4(R
d) and x1, ..., xN ∈ Rd are such that

sup
N

1

N

N∑

i=1

|xi|4 <∞ and
1

N

N∑

i=1

δxi →
N→∞

m ∈ P2(R
d).

It follows from Lemma 3.1 and Lemma 5.2, that there is R0 > 0 such that VN,R0 = VN and UR0 = U,
and so we infer that, for all xi and m as above,

lim
N→∞

V
N (t,xN ) = U(t,m).

Hence, the uniform regularity on VN established in (3.3), which, as noted above, holds equally well
when a0 > 0, is enough to conclude that, for some C > 0,

|U(t,m) − U(t,m′)| ≤ Cd1(m,m
′) for all m,m′ ∈ P4(R

d).

Finally, for any ǫ > 0 and (t0,m0), we can choose an ǫ-optimal pair (m,α) for UR0 , and that this
control is also ǫ-optimal for U. This completes the proof. �

Let V̂N be defined in Lemma 3.7. Then it is easily checked that V̂N is smooth and satisfies, with

F̂N and ĜN as in Lemma 3.7,




−∂tV̂N (t,m)− (1 + a0)

ˆ

Rd

divy(DmV̂N (t,m, y))m(dy)

−a0
ˆ

R2d

tr(D2
mmV̂

N (t, x,m, y, y′))m(dy)m(dy′)

+

ˆ

Rd

H(y,DmV̂N (t,m, y))m(dy) ≤ F̂(m) in (0, T )× P1(R
d),

V̂N (T,m) = Ĝ(m) in P1(R
d),
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Then, as in the proof of Lemma 3.7, it is possible to use Itô’s formula for conditional measures (see,
for example, [7]) to infer that, for any solution (m,α) to (2.13),

V̂N (t0,m0) ≤ E

[
ˆ T

t0

(

ˆ

Rd

L(x, αt(x))mt(x)dx + F̂N (mt))dt+ ĜN (mT )

]
.

Using the same argument as in the proof of Lemma 3.7 with Lemma 4.1 replacing Lemma 3.11, we
arrive at

VN (t0,m
N
x0
) ≤ U(t0,m

N
x0
) + C(1 +M

1/1
2 (mN

x0
))N−β .

We now turn to the opposite inequality. As before, for θ, λ ∈ (0, 1), let

M := max
(t,x),(s,y)∈[0,T ]×(Rd)N

es(U(s,mN
y )− V

N (t,x))− 1

2θN

∑

i

|xi − yi|2 − 1

2θ
|s− t|2 − λ

2N

N∑

i=1

|yi|2,

and denote by ((t0,x0), (s0,y0)) a maximum point in the expression above.

As in Lemma 3.9 we have

1

N

N∑

i=1

|xi0 − yi0|2 + |t0 − s0|2 ≤ Cθ2
1

N

N∑

i=1

|yi0|2 ≤ Cλ−1.

Next, for δ > 0, we use the partition (Cj)j∈{1,...,J} of {1, . . . , N} constructed in Lemma 3.10.

We set αk = αj if k ∈ Cj , and let

Xk
s0+τ = xk0 + ταk +

√
2Bk

τ +
√
2a0B0

τ , Y k
s0+τ = yk0 + ταk +

√
2Bk

τ +
√
2a0B0

τ ,

and mj
Ys0+τ

=
1

nj

∑

k∈Cj

δY k
s0+τ

,

and mj be the solution to

dmj
t =

[
(1 + a0)∆mj

t − αj ·Dmj
t

]
+
√
2a0Dm

j
t · dB0

t in (s0, T ]× R
d and mj

s0 = mj
y0

in R
d.

Finally, we set ms = N−1
∑

j∈J n
jmj

s, and claim that, for all h ≥ 0 and j ∈ {1, . . . , J},

E

[
d1(m

j
s0+h,m

j
Ys0+h

)
]
≤ C(1 +M

1/2
2 (mj

s0))
hβ

(nj)β
, (4.1)

and

E

[
d1(ms0+h,m

N
Xt0+h

)
]
≤ Cθ + Cδ−dβ(1 + λ−

1
2 )
hβ

Nβ
. (4.2)

The proof follows from Lemma 3.11. Indeed, to establish (4.1), we first note that the process
(mt)t∈[s0,T ] solves (2.13) in the sense of distribution (with B0 replacing W ) if and only if the

process m̃t = (Id−
√
2a0(B0

t −Bt0))♯mt solves P−a.s. in the (classical) sense of distributions, with

α̃t(x) = αt(x+
√
2a0(B0

t −B0
t0), the equation

dm̃t(x) = [∆m̃t(x)− div(m̃tα̃t(x))] dt in (t0, T ]× R
d m̃t0 = m0 in R

d, (4.3)

Next, we consider

m̃j
t0+τ = (Id−

√
2a0B0

τ )♯m
j
t0+τ and Ỹk

t0+τ = Yk
t0+τ −

√
2a0B0

τ ,

and notice that m̃j and Ỹk solve the same equations as in Lemma 3.11, and, hence, (4.1) holds with

m̃j
t0+h replacing mj

t0+h and mj

Ỹt0+h

replacing mj
Yt0+h

.

Since
mj

t0+r = m̃j
t0+τ ⋆ δ

√
2α0Bτ

,
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and

mj
Yt0+τ

=
1

nj

∑

k∈Cj

δ
Ỹk

t0+τ
+
√
2aoB0

τ
=
( 1

nj

∑

k∈Cj

δ
Ỹk

s0+τ

)
⋆ δ√2aoB0

τ
= m̃j

Ys0+τ
⋆ δ√2aoB0

τ
,

we can conclude that

E

[
d1(m

j
s0+h,m

j
Ys0+h

)
]
= E

[
d1(m

j
s0+h ∗ δ√2α0B0

h

, mj
Ys0+h

∗ δ√2α0B0
h

)
]
= E

[
d1(m̃

j
s0+h,m

j

Ỹs0+h

)

]
,

and so (4.1) holds. The proof for (4.2) is similar.

We proceed with the proof noticing that the dynamic programming principle in Lemma 3.12 still
holds but with an expectation, since now the measures are random, and with Proposition 2.3 re-
placing Proposition 2.2.

Moreover, since the conclusion of Lemma 3.13 also holds as already pointed out, we can argue as in
the proof of Proposition 3.8 (the time-regularity provided by Lemma 4.1 replacing that in Lemma
3.3) that

U(t,mN
x )− VN (t,x)) ≤ C

1

Nβ
(1 +

1

N

N∑

i=1

|xi|2).

The conclusion then follows as in the proof of Theorem 2.5. �

5. Appendix

The purpose of this appendix is to adapt some technical results from [12] and [13] to our setting.
Most importantly, we need to infer the dynamic programming principle (Proposition 2.3) in our
setting from the dynamic programming principle which is stated in Theorem 3.1 of [13]. Most of the
arguments here are straightforward adaptations of the superposition and mimicking results achieved
in [21], and so the proofs are only sketched.

Following Definition 2.1 in [12] and Definition 2.3 [13] we define, for each (t0,m0) ∈ [0, T ]×P2(R
d),

the set of weak controls Aw(t0,m0) to be the set of tuples

R = (Ω,F,P,F = (Ft)0≤t≤T ,G = (G)0≤t≤T , X,B,W,m, α)

such that

(1) (Ω,F,P) is a probability space equipped with filtrations G, F such that, for all 0 ≤ t ≤ T ,
Gt ⊂ Ft and Ft ∨ FB

T ⊥ GT |Gt.
(2) X = (Xt)0≤t≤T is a continuous, F-adapted Rd valued process.
(3) α = (αt)t0≤t≤T is a bounded, F-predictable process taking values in Rd.
(4) (B,W ) is a Rd×Rd-valued standard F Brownian motion, W is G-adapted, and Ft∨σ(B) ⊥

GT .
(5) m = (mt)t0≤t≤T is a G-predictable process taking values in P2(R

d) and such that mt =
L(Xt|Gt) for dP⊗ ds-a.e. (s, ω) ∈ [t, T ]× Ω.

(6) the state equation

Xt = Xt0 +

ˆ t

t0

αsds+
√
2(Bt −Bt0) +

√
2a0(Wt −Wt0), L(Xt0) = m0

holds for all t0 ≤ t ≤ T .

We also let

Uw(t0,m0) := inf
R∈Aw(t0,m0)

E
P[

ˆ T

t0

(L(Xt, αt) + F(mt))dt+ G(mT )]

In our context, a superposition principle is a result asserting the following: given a control rule R =

(Ω,F,F,P,W,m, α) ∈ A ∈ R(t0,m0), we can find an extension (Ω̃, F̃,G) of (Ω,F,F) hosting another

Brownian motion B independent of F and a processX such that dXt = αt(Xt)dt+
√
2dBt+

√
2a0dWt
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such that mt = L(Xt|Ft). We refer to [21] for details. The superposition results of [21] are useful to
us because we need to apply some technical results from [12, 13], and the superposition allows us to
check that our formulation is equivalent to the one used in [12, 13].

In what follows, for technical reasons, that is, to have the coercivity condition on the cost appearing
in Assumption 2.1 of [13], we will work with a truncated version of the weak formulation defined
here. Namely, we define AR

W (t0,m0) just as Aw(t0,m0), but with the controls α required to take
values in BR ⊂ Rd. Then, we write

UR
w(t0,m0) := inf

R∈AR
w(t0,m0)

E
P[

ˆ T

t0

(L(Xt, αt) + F(mt))dt + G(mT )]

We also truncate the original form of the problem, by defining UR just like U, but with controls α
required to take values in BR ⊂ R

d.

The following can be obtained using the superposition and following results of [21], as in the proof
of Theorem 8.3 of [21].

Proposition 5.1. For each R, UR
w = UR.

It is also useful to note that the regularity results of Lemma 3.1, which holds also in the case a0 > 0,
can be used to infer that UR = U for all R ≥ R0.

Lemma 5.2. There exists R0 depending on the data such that, for each R ≥ R0, U
R = U.

Proof. Theorems 3.1 and 3.6 in [13] together with Proposition 5.1 allow to conclude that, for each
R > 0, we have the following form of convergence of VN,R to UR.

For all t ∈ [0, T ], µ ∈ P4(R
d) and xi ∈ Rd such that

sup
N

1

N

N∑

i=1

|xi|4 <∞ and
1

N

N∑

i=1

δxi
→

N→∞
m in P2(R

d)

we have, for xN = (x1, ..., xN ) ∈ (Rd)N ,

lim
N→∞

VR,N (t,xN ) = UR(t,m). (5.1)

Next, notice that, by (3.1) (see Remark 3.2), there is R0 depending only on the data such that, for
all R ≥ R0, V

N,R = VN . Thus (5.1) actually gives, for all R ≥ R0,

lim
N→∞

VN (t,xN ) = UR(t,m).

It follows that

U = UR0 .

Indeed, clearly U ≤ UR0 .

For the other inequality, for any (t0,m0), we can choose R = (Ω,F,F,P,W,m, α) to be ǫ-optimal
in the definition of U(t0,m0). Since α is bounded by hypothesis, there exist R ≥ R0 such that
R ∈ AR(t0,m0), and, hence,

U
R0(t0,m0) = U

R(t0,m0) ≤ U(t0,m0) + ǫ.

Letting ǫ→ 0 gives U(t0,m0) = UR0(t0,m0). �

Now, we turn to the dynamic programming principle, that is, Proposition 2.3.
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Proof of Proposition 2.3. We combine Theorem 3.1 of [12] with Proposition 5.1 to conclude that,
for all 0 ≤ t0 ≤ t1 ≤ T and any R ≥ R0,

U(t0,m0) = UR(t0,m0) = UR
W (t0,m0) = inf

R∈AR
W

(t0,m0)
E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ UR
W (t1,mt1)]

= inf
R∈AR

W
(t0,m0)

E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ UR(t1,mt1)]

= inf
R∈AR

W
(t0,m0)

E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt+ U(t1,mt1)].

Since R can be arbitrarily large, it is easy to see that the above imply

U(t0,m0) = inf
R∈Aw(t0,m0)

E
P[

ˆ t1

t0

(L(Xt, αt) + F(mt))dt + U(t1,mt1)].

To get from here to

U(t0,m0) = inf
R∈A(t0,m0)

E
P

[ˆ t1

t0

( ˆ

Rd

L(x, αt(x))mt(dx) + F(mt)
)
dt+ U(t1,mt1)

]
,

we again use the superposition and adapt arguments results from [21]. �
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