N
N

N

HAL

open science

Dataflow modelling in distributed diagnostic processing
systems: a closed queuing network model with multiple

servers
Vidhyacharan Bhaskar, Kondo Hloindo Adjallah, Laurie Joiner

» To cite this version:

Vidhyacharan Bhaskar, Kondo Hloindo Adjallah, Laurie Joiner. Dataflow modelling in distributed
diagnostic processing systems: a closed queuing network model with multiple servers. International

Journal of Pure and Applied Mathematics, 2005, 19 (1), pp.25-42. hal-03618693

HAL Id: hal-03618693
https://hal.science/hal-03618693
Submitted on 27 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons CCO - Public Domain Dedication 4.0 International License


https://hal.science/hal-03618693
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
https://hal.archives-ouvertes.fr

Datafl w Modelling in Distributed Diagnostic-Processing Systems
A Closed Queuing Network Model Appoach with Multiple Servers

V. Bhaskar!, K.H. H. Adjallah? and L. Joiner®

'Departement Genie des Systemes d’Information et Mecaniques
%Institute of Computer Science and Engineering of Troyes
Universite de Technologie de Troyes
10010 Troyes Cedex, FRANCE
3Department of Electrical Engineering and Computer Engineering
University of Alabama Huntsville, 35899 AL, USA

Abstract— In this paper, a closed queuing network model with
multiple servers has been proposed to model dataflow in dis-
tributed diagnostic-processing systems. Multi-threading is useful
in reducing the latency by switching among a set of threads in
order to improve the processor utilization. Two sets of processors,
synchronization and execution processors exist. Synchronization
processors handle load/store operations and execution processors
handle arithmetic/logic and control operations. A closed queuing
network model is suitable for large number of job arrivals. The
normalization constant is derived using a recursive algorithm
for the given model. Performance measures such as average
response times and average system throughput are derived and
plotted against the total number of processors in the closed
queuing network model. Other important performance measures
like processor utilizations, average queue lengths, average waiting
times and relative utilizations are also derived.

Index Terms— Synchronization and Execution processors,
Multi-programming, Queue lengths, Response times, Utilizations,
Throughputs.

I. INTRODUCTION

In an open-queuing network model, a job is scheduled to
the main-memory and is able to compete for active resources
such as synchronization and execution processors immediately
on its arrival [1]. In practice, the number of main-memory
partitions are limited. So, the existence of an additional queue
is necessary. This queue is called a job-scheduler queue [1].
However, such a network is said to be multiple-resources
holding. This is because a job cannot simultaneously hold
main-memory and an active device. Such a network cannot
be solved by product-form methods.

If the external arrival rate is low, then the probability that the
job has to wait in the scheduler queue is low. So, the open-
queuing network model is a good solution when the arrival
rate is low. In other words, an open-queuing network model
is a light-load approximation.

If the external arrival rate is high, the probability that there
is at least one customer in the job-scheduler queue is very high.
The departure of a job from the active-set immediately triggers
the scheduling of an already waiting job into main-memory.
Thus, a closed-queuing network model becomes imminent.

Input to the synchronization processor is in the form of
threads and comprises a statistically determined sequence of
RISC-style instructions [2]. Threads (sequence of instructions)

ICorresponding Author: Member of Departement Genie des Systemes
d’Information et de Telecommunications (GSIT).

are scheduled dynamically to be executed by execution pro-
cessors. The threads have a bounded execution time [2]. Our
model also represents a distributed shared memory system
(DSM) model in which all processors share a common address
space [3]. So, the memory access time depends on the location
of the accessed data.

Multithreading can also achieve higher instruction rates
on processors which contain multiple functional units (e.g.
superscalars) or multiple-processing elements (e.g. chip mul-
tiprocessors) [4]. To achieve higher performance, it is therefore
necessary to optimize the number of synchronization and
execution units (or) to fin an appropriate multi-threaded
model.

In [5], each thread is comprised of conventional control-
fl w instructions. These instructions do not retain functional
properties and need a Write-after-Write (WAW) and Write-
After-Read (WAR) dependencies [6].

In [7], a few limitations of the pure datafl w model are
presented. They are: 1) too-fin grained (instruction level)
multithreading and 2) difficult in exploiting the memory
hierarchies and registers [7]. However, in the model devel-
oped in [8], the instructions within a thread retain functional
properties of datafl w model and thus eliminates the need for
complex hardware. Our work models the datafl w instructions
appearing in [8].

Section II shows the block diagram of the closed queuing
network model with multiple servers, and describes the model
in detail. Section III discusses the performance measures
related to the system model with multiple servers. Section IV
discusses the simulation results of the multiple-server system
model. Finally, Section V presents the conclusions.

II. SYSTEM MODEL

Figure 1 represents a good approximation to an open-
queuing network model having multiple servers (for each
queue) under heavy-load conditions.

Each job circulating in the closed network is said to be an
active job and must be allocated a partition of main memory.
The number of active jobs, k;, at server i among the SPs, is
the number of jobs (tasks) currently being served by server 1.
The number of active jobs, k}, at server j among the EPs, is
the number of jobs (tasks) currently being served by server
J. For a closed queuing model with m servers for SPs and n
servers for EPs, NV is the total number of tasks currently being



New program path

Fig. 1. Multiple servers - Closed queuing model with feedback

served by servers i (1 < i< m) and servers j (1 < j< n). Or,
N=k+k+.. +ky+&+K+.. +K, where N> (m+n)
is the total number of jobs in the system. The total number of
active jobs, N, is called the degree of multi-programming [1].

The number of jobs in the system is restricted to NV due
to the constraints of finit main memory [9]. Ready jobs will
wait at their terminals until some job leaves from the active
set, at which time one of the ready jobs enters the active set
and is allowed to compete for the system resources [9].

Let the external arrival rate be A, arrival rate to all SPs be
Ao, and the arrival rate to the EPs be A. So,

7\.1 = }\.()pl. (1)

The total arrival rate to all SPs is equal to sum of the external
arrival rate and the arrival rate to all EPs. Hence,

A=A+ 2)
Substituting Equation 1 in Equation 2 and rearranging,
A
Ao = : 3)
I—p
Also, we have
potp=1. (4)
Substituting Equation 4 in Equation 3, we have
A
ho=—. (%)
Jo
The arrival rate to the EPs is
M o= hop
A
= —p. (6)
Po

Let p; be the service rate (rate at which tasks are being served)
of server i among the SPs, and let i/, be the service rate of
server j among the EPs. The utilization of each SF; (1 <i< m)
is

Ao

Hi
A
= ; 7
PoHi

and the utilization of each EP; (1 < j<n) is

pi =

/ M
Py = -
"
_ o ®)
i
Consider the closed network of queues shown in Figure 1.
The state of the network is given by an (m+n)-tuple, s =
(ki ko, ki KK, K.

Assuming that the service times of all servers are exponen-
tially distributed, the stochastic process modelling the behavior
of the network is a finite-stat homogeneous continuous-time
Markov chain (CTMC), which can be shown to be irreducible
and recurrent non-null [1] (assuming that 0 < pg <1 and 0 <
p<1).

The transient probability matrix, T, of the Discrete-time
Markov chain (DTMC) is given by

P P
T_h 0}.

The DTMC is finite and if we assume that 0 < pp <1 and
0 < p1 <1, then the DTMC can be shown to be irreducible
and periodic. Then, the unique relative visit count vector v =
(vo,v1) can be obtained by solving the system of equations,

®

v=vT

(10)

If we observe the system for a real-time interval of duration
T, then v;T can be interpreted to be the average number of visits
to node i in the interval [1].

The terms T and v T represent the average number of visits
to SPs and EPs respectively. In this sense, v can be thought
of as a relative visit count in the SPs (or the relative arrival
rate to the SPs through the new program path), and v; as a
relative visit count in the EPs. Thus, vy (and v;) represent the
relative throughputs of the respective nodes.

For the network of queues shown in Figure 1, Equation 10
becomes

[ww]=[wwn]T.

(1)

The system of linear equations represented by Equation 11
is

w = wpt+v=v=w(l-p)
W P1-
12)
It is clear that both the equations shown above are identical
because py+ p1 = 1. w can be chosen as any real value that

will aid us in our computations. The usual choices for vy are
%, 11, and 1. If we choose v = %, then from Equation 12,

we have
()
n=|——].
o

The relative utilization of device 7 is (SPs only)

(13)



120 1
pi=— = (14)
Hi Pofi
vV i=1,2,...,m. The relative utilization of device j is (EPs
only)
Vi oD
o= =L (15)
AT
vV j=12,...,n

Substituting p; and p’j from Equations 14 and 15 in

P(k17k27 km7kjl7]{27 71‘111) =

N)Hp, ﬁ (0,

(16)
we have
p(k17k27‘"7km71‘117](27"'7]{n)
1 m 1 ki n P k;
E 11 (popi) =i \ ol
17)
The normalization constant can be expressed as
m k n 1{
) =XT1ei' TI(P))™ (18)
sel i=1 J=1
where = {(ki,k,...,km K, %,...,K,)} and s is as define

earlier.

A. Normalization constant: Recursive algorithm

The computation of the normalization constant from Equa-
tion 18 is very expensive and numerically unstable because
the number of states grow exponentially with the number of
customers and the number of service centers [1]. It is there-
fore necessary to derive computationally stable and efficien
algorithms to obtain the normalization constant, C(/N).

Let us consider the following polynomial in z.

1 u 1

I1

m
gl—pizjzll—p’jz

- (1+plz+(plz)2+...)
X

Glz) =

1+paz+(p 22)2+...)...

X 1+mﬂ+“%@‘+

X 1+pzz+ p222+ ......

X 1+pnz+ plz 2+... .

(

( )
% (14piz+ (p12) +...)

( )

( )

19)

Now, the coefficien of G(z) is equal to the normalization
constant, C(N) smce the coefflcwn is the sum of all terms
of the form p1 p2 ...k (pl) (P ) (pn) with 37

i1 K, = N. In other words, G(2) is the generating functlon
of the sequence C(1),C(2),...
We can write

0)+C(1)z+C(2)72 +...

where C(0) is define to be equal to unity [1]. Since C(N) is
not a probability, G(z) is not necessarily equal to unity. The
polynomial G(z) > 0. In order to derive a recursive relation
for computing C(N), we defin

(20)

J
Gj‘Z
/2 (l—pkzl_l1 l—pIZ
B 1
(1-pi2)

TP (1-p22)-..
1

X , 2D
(1-pi2)(1-p42)... (1-p)2)

where i=1,2,...,mand j=1,2,..., n Here, Gp,(z) = G(2).

Also, let us defin C; (1) as

2) = i Ci (07 (22)
1=0

where i=1,2,...,mand j=1,2,...,nso that Cp,(I) = C(J).
Let
Gro(d) = — 23)
Z) = .
1,0 —piz
The generalized expression is
Gij(2) = Gi- IJ(Z) (24)

— piZ.
Now, Equation 24 can be rewritten as

Gij(2)(1—piz) =
i.e., Gi,j(Z) =

e’iQﬂV
1=0

Gi1,4(2)
ijGjﬁj(Z) + Gj_lﬁj(Z)

Y pizCij(DZ+ Y, G ()7
1=0 1=0
(25)

Equating the coefficient of Z/ on both sides, we have a

recursive formula,

Cij(D) = piC j(1—=1) + Ci-1 4(1), (26)
where i=1,2,....m, j=1,2,...,.nand /=1,2,...,N. The
initialization is obtained from Equations 22 and 23 as

Cio(h=piVI=0,1,...,N. (27)



Also from Equation 21, we have the coefficien of 2 in G; /(2)
as unity. Hence,

Cij(0)=1Vi=12,....mandV j=12,....n. (28)

B. Utilization of i device

Consider a slight modificatio to the generating function,
G(z), denoted as H;(2):

Hi(2)

I

.
£
’C::ls
AN

—

| .
)
.

N
\_/
=~
l

—

I p—
1)
2.

N
N———

)

(1+p, 1z+(p,_1z) )

X (plz—i-(p,z )

X (1 +p,+lz+(p,+1z)2 )
(
(

I+prz+( p1Z

()
(

x (14 pmz+ (pm2)* + )

X 1+plz+ plz +)

x (1Pt () +..) (29)

The difference between H;(z) and G(z) is that the firs
term is omitted in the factor corresponding to the i device.
So, the coefficien of 7V in H(z) will be the sum of all
terms pll‘1 pgz .. phm (p’l)kl (p’Z)I(2 ..(p’n)k", where k; > 1V i=
1,2,...,m and k’jz 1V j=1,2,...,n Here, p; is the relative
utilization of device i (1 < i< m), and p’j is the relative
utilization of device j (1 < j < n).

¢From Equation 17, we see that the coefficien of 2 in G(2)
yields the marginal probability P(N; > 1), which is exactly the
utilization U;(N). So,

H(7) =

= pizG(2). (30)
From Equation 30, the coefficien of 2 in Hj(2) is simply p;
times the coefficien of Z'~! in G(z2). Therefore, we have

U = p,C(éfA‘,)”

as the utilization of the /! device among the SPs.
Similarly, the utilization of the ;' device among the EPs is

€2))

C(N-1)

N

Uj(N)

CN-1)
c)

C. Relative Utilizations

The relative utilizations of SPs and EPs when there are N
jobs in the system are given by Ui(N)/ U}(N) From Equa-
tions 31 and 32, the relative utilizations between SPs and EPs
is given by

U(N) _ pi
U p

(33)

Substituting Equations 14 and 15 into Equation 33, we have
LW _(H (L)
U;(N) Hi p)

Equation 34 explains the reason for calling p; and p’j as
“relative utilizations”.

€2

III. PERFORMANCE MEASURES

A. Queue Lengths
The probability that there are k or more jobs at node 7 is

given by [1]

«CWN — k)
an e

The average queue length at node 7 in the SPs when there are
N jobs in the system is given by

P(N;> k) = (35)

Y. JC(N—))
LN =Y pis ) 3
N”~%p o (36)

Similarly, the average queue length at node j in the EPs when
there are N jobs in the system is given by

N _
B[] = 3 () S

R 37
AP e G

The average number of jobs in the system is equal to the
sum of the average number of jobs in SPs and EPs. i.e.,

E[L] = E[L(N)]+E[L)(N)]
IRl - GANTo )
= jzz,lpj ) +1:21(pj) C()

1
)owN-j)  w \iw ) CN=D)
(pou)C(N) +121< p23(N)

|
M=

W.
—_

(3%)

where i=1,2,...,mand j=1,2,....n



B. Normalization Constant

(From Equation 38, the total number of jobs in the closed
queuing network is given by

m

2 E[L(N)] +

i=1

= N) {ZZP

N:

Z [Z,(N)]

=1 j=1

2. () C(N—l)]7

J=1i=1

=

_|_
M=

(39

where p; = -1 and pi= i

Pol/

Cross- multlplymg in Equatlon 39, an alternative recursive
formula for the computation of C(N) is

LS o
=— .y
NI:Xi( )

PR (p})]] (40)
=1 J=1

with the initial condition C(0) = 1. Equation 40 requires
more arithmetic operations than Equation 26 to compute
the normalization constant But it is more efficien to pre-

compute the factors sz + Z (P))

uses the non-recursive formula For the given closed queuing
network, the total estimated number of jobs in the system is

2y E[L(N)]+ S, B[ L(N)].

for each 7 and j, and

C. Response times

The average response time of node i in SPs (1 < i< m) is
given by

Ry E[L;(()N)]
_ 1L X plaw-))
B 7»01-:21 C(N)
J ,
_ome) o
A ] C(N) ’
sinceko:%.

The average response time of node jin EPs (1 < j<n)is
given by

(42)

since A} = Ao py-
The total response time of the system (SPs and EPs) is

R = Rsp+Rgp
- 2fS oAl Sy )
=1
(43)
where p; = POL}JI and p’; = po%lllj’

D. Average Waiting times

The average waiting time at queue (Jsp is given by

EW = RSP—%,
_oop (LN gyt
Y %(w) W=

(44)

Here, }ll is the average service time of servers in the SPs. The
average waiting time at queue Qgp is given by

1

E[W]| = Rgp——
] .
1
P P 1

= —— — || C(N-1)— —.

ApiC(N) 1221 (po/i > I
(45)
Here, }i/ is the average service time of servers in the EPs. The

average waiting time in the system (SPs and EPs), E[W], is
given by

N p/C(N—
P PPCV—)) 1
Ew) = £
W= TR oW
N n1
p LY ew-n 1
i - = 46
wx am g O
wherep:pé—pandp’:p%/

E. Utilizations

The steady-state probability of having all jobs served by the
EPs is given by

l n
p(0,0,...,0,K,k,...,K,) Wnl(pfj)%
=
| K
= _p
- C<N>H<pom) |
47)

The steady-state probability of having all jobs served by the
SPs is given by



U() = p(khkz,...,km,o,...,ﬂ)
= l_p(ow"aov]{l?]éa"'?](n)

| IR ¥,
I—Wg(%)

K,
(e
- awli()

If Up > 1—Uh, or equivalently, Uy > %, we have more SP
utilization. This indicates that the execution of the program is
dominated by SPs. If {j < %, we have more EP utilization.
In this case, the execution of the program is dominated by
the EPs. When U = %, the program execution is said to be
balanced.

(48)

E Average system throughput

The real utilization of the " node in the SPs (1<i<m)is
given by

C(N-1)
1 C(N) ?
and the real utilization of the j* node in the EPs (1 < j < n)
is given by

U(N) =p (49)

,C(N—1
Ui =9 St

The average throughput of the 7 node in the SPs (1 < i< m)
is given by

(50)

E[L(N)] =

HipoUi(N)
C(N-1)

lllpo pl C( N) .

Now, the system throughput is provided only by the contribu-

tion of SPs [1].

The average system throughput is given by

(51

m

Y EIT(M)]

i=1
N EVT)
 w ON-1)
= Zam

E[T(N)] =

(52)

IV. SIMULATION RESULTS

A simulation is performed for the closed queuing network
model with multiple servers. The number of synchronization
processors is 5 and the number of execution processors is
chosen to be 6. The service rates y; and }/j, and the probability
of jobs getting serviced at Qgp, pi, are appropriately chosen
to have a constant probability of entering the new program
path, py = 0.4.

No.of SPs = 5, No. of EPs = 6

Multiple server case

C(N)
®
T

Fig. 2. Normalization constant of a closed queuing network versus the total
number of jobs

Response time

Total no. of processors (m-+n)

o
©
T

Throughput
o
>
T

o
~
T

0. ! ! ! ! ! ! !
3 4 5 6 7 8 9 10 1

Total no. of processors (m-+n)

Fig. 3. Response time and throughput versus the total number of processors
(SPs and EPs)

TABLE 1
TOTAL NUMBER OF JOBS IN SPS, EPS, AND SYSTEM

[ | o | n [i=L+L|
Wy | 6606 | 239 9.006
(12) | 52691 | 3.0829 8352
22) | 58639 | 28571 | 872112
(32) | 642106 | 27643 9.1854
(3.3) | 624004 | 32577 | 9.49778
(G4) | 612623 | 362211 | 97483
44) | 66435 | 3578 10.2216
(54) | 70656 | 354803 | 106136
(5.5 | 700727 | 3.84205 | 10.8493
(5.6) | 696239 | 4.08607 | 11.04846




The estimated number of jobs in SPs (L), EPs (L) and jobs
in the whole system (L = L; + L), are shown in Table I. It is
found that the estimated total number of jobs in the system are
close to N, where NV is chosen as 10 in the simulation. The real
utilizations, U;(N) and UJ’(N), and the relative utilizations, p;
and p’j are tabulated in Tables II and III respectively.

The normalization constant is computed from Equation 40
by pre-computing the utilizations at each of the nodes in
SPs and EPs. The normalization constant is plotted against
N, the number of jobs in the system in Figure 2. Knowing
the normalization constant, the total system response time is
computed from Equation 43. The response time is plotted in
Figure 3. For appropriate choices of the service rates of SPs
and EPs, the response time is found to decrease as the total
number of processors increases.

The average system throughput is obtained from Equa-
tion 52 and is plotted in Figure 3 against the total number
of processors, (m+n). The system throughput increases as the
total number of processors increases. The total number of
arrivals, A = 1000 and py = 0.4 are kept constant throughout
the simulation.

V. CONCLUSIONS

In this paper, we introduced a closed network of queues
to model datafl w in a multi-processor system. The instruc-
tion streams are executed simultaneously (multi-threading) to
minimize the loss of CPU cycles. A convolution algorithm is
used to compute the normalization constant as a function of
the degree of multiprogramming (number of active jobs) in
the queuing model. The relative utilizations and other system
performance measures are also derived for the multiple-server
network model. The response time and throughput are plotted
against the total number of processors in the system model.

REFERENCES

[1] K. Trivedi, Probability & Statistics with reliability, queuing and computer
science applications. New Jersey: Prentice-Hall, 1982.

[2] B. Shankar, L. Rho, W. Bohm, and W. Najjar, “Control of parallelism in
multithreaded code,” Proc. of the Intl Conference on Parallel Architec-
tures and Compiler Techniques (PACT-95), June 1995.

[3] W. Grunewald and T. Ungerer, “A multithreaded processor design for
Distributed Shared Memory (DSM) system,” Proc. of the Intl Conference
on Advances in parallel and distributed computing, 1997.

[4] M. Lam and R. Wilson, “Limits of control fl w on parallelism,” Proc. of
the 19th Intl Symposium on Computer Architecture (ISCA-19), pp. 46-57,
May 1992.

[5] S. Sakai, “Architectural and software mechanisms for optimizing parallel
computations,” Proc. of 1993 Intl Conference on Supercomputing, July
1993.

[6] K. M. Kavi, J. Arul, and R. Giorgi, “Execution and cache performance
of the scheduled datafl w architecture,” Journal of Universal Computer
Science, Oct. 2000.

[7] M. Takesue, “A unifie resource management and execution control
mechanism for datafl w machines,” Proc. 14th Int’l Symp. on Computer
Architecture (ICSA-14), pp. 90-97, June 1987.

[8] K. M. Kavi, R. Girogi, and J. Arul, “Scheduled datafl w: Execution
paradigm, architecture, and performance evaluation,” I[EEE Transactions
on Computers, vol. 50, no. 8, pp. 834-846, Aug. 2001.

[9] L. Kleinrock, Queuing systems, Volume II: Computer Applications. John
Wiley & Sons Inc., 1976.



TABLE 11
REAL UTILIZATIONS OF SPS AND EPS

” (m,n) | U(N), i=1,2,....m UJ’.(N),J':I,Z,...,H ”
(L1 (0.625) (0.375)
(12) (0.61349) (0.22085, 0.16356)
2,2) (0.4167, 0.2083) (0.25, 0.125)
(2) (0.3246, 0.1948, 0.12987) (0.2337, 0.1168)
3.3) (0.2751, 0.15287, 0.1179) (0.24765, 0.1238, 0.08255)
(.4) (0.2137, 0.14246, 0.10958) (0.25643, 0.1282. 0.08547, 0.0641)
4.,4) (0.1454, 0.1247, 0.0969, 0.0872) (0.26186, 0.1309, 0.0872, 0.0654)
(5.4) (0.3851, 0.19255. 0.077, 0.035, 0.077) (0.1155, 0.04621. 0.0385, 0.033)
(5.5) (0.3912, 0.1956, 0.04891, 0.04891, 0.04891) (0.11738, 0.04695, 0.03912, 0.0335, 0.02934)
(5,6) | (0.092267, 0.107229, 0.0762, 0.0748, 0.06612) | (0.23804, 0.11902, 0.07934, 0.05951, 0.0476, 0.0396)

TABLE III
RELATIVE UTILIZATIONS OF SPS AND EPS

|| (m,n) | pi, i=1,2,....m pj., j=12,....n ||
(1,1 (3.125) (1.875)
(1,2) (2.778) (1, 0.75)
2.2) (2.5, 125) (1.5, 0.75)
(3,2) (2.0833, 1.25, 0.833) (1.5, 0.75)
(3.3) (1.667, 0.9259, 0.7142) (15,075, 0.5)
(3.4) (1.25, 0.833, 0.64102) (1.5, 0.75, 0.5, 0.375)
(4.4) (0.833, 0.7142, 0.555, 0.5) (15,075, 0.5, 0.375)
(5,4) (2.5, 1.25, 0.5, 0.2272, 0.5) (0.75, 0.3, 0.25, 0.21428)
(5.5) (2.5, 1.25, 0.3125, 0.3125, 0.3125) (0.75, 0.3, 0.25, 0.2143, 0.1875)
(5,6) | (0.5813, 0.6756, 0.4807, 0.4716, 0.4167) | (1.5, 0.75, 0.5, 0.375, 0.3, 0.25)




