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ABSTRACT  24 

The study of muscle coordination requires knowledge of the force produced by individual 25 

muscles, which can be estimated using Hill-type models. Predicted forces from Hill-type 26 

models are sensitive to the muscle’s maximal force-generating capacity (Fmax), however, to 27 

our knowledge, no study has investigated the effect of different Fmax personalization methods 28 

on predicted muscle forces. The aim of this study was to determine the influence of two 29 

personalization methods on predicted force-sharing strategies between the human 30 

gastrocnemii during walking. Twelve participants performed a walking protocol where we 31 

estimated muscle activation using surface electromyography and fascicle length, velocity, and 32 

pennation angle using B-mode ultrasound to inform the Hill-type model. Fmax was determined 33 

using either a scaling method or experimental method. The scaling method used 34 

anthropometric scaling to determine both muscle volume and fiber length, which were used to 35 

estimate the Fmax of the gastrocnemius medialis and lateralis. The experimental method used 36 

muscle volume and fascicle length obtained from magnetic resonance imaging and diffusion 37 

tensor imaging, respectively. We found that the scaling and the experimental method 38 

predicted similar gastrocnemii force-sharing strategies at the group level (mean over the 39 

participants). However, substantial differences between methods in predicted force-sharing 40 

strategies was apparent for some participants revealing the limited ability of the scaling 41 

method to predict force-sharing strategies at the level of individual participants. Further 42 

personalization of muscle models using in vivo experimental data from imaging techniques is 43 

therefore likely important when using force predictions to inform the diagnosis and 44 

management of neurological and orthopedic conditions.   45 
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1. INTRODUCTION 46 

Knowledge of the forces that individual muscles produce provides important insights into 47 

muscle coordination, and this information can be used to improve the diagnosis and 48 

management of many neurological and orthopedic conditions (Hug and Tucker, 2017). 49 

However, directly measuring human muscle force requires highly invasive techniques (Finni 50 

et al., 1998; Gregor et al., 1987; Komi, 1990), which are not feasible in clinical environments 51 

and remain limited in most research settings. To overcome this limitation, muscle models for 52 

predicting muscle forces have been developed.  53 

The Hill-type model is the most ubiquitous muscle model in biomechanics (Eq. 1; Zajac, 54 

1989). It takes into account most of the known determinants of muscle force, i.e. the 55 

activation, the instantaneous length and velocity of the contracting muscle fibers, and the 56 

maximal force-generating capacity (Fmax). The Hill-type model can be personalized with 57 

subject-specific data, such as time-varying muscle activation assessed using surface 58 

electromyography (EMG) (Perreault et al., 2003) or time-varying fascicle length, fascicle 59 

velocity, and pennation angle recorded using ultrasound imaging (Dick et al., 2017). An 60 

important determinant of muscle force is Fmax (Bujalski et al., 2018; Scovil and Ronsky, 61 

2006), for which the vast majority of studies rely on scaled data using different methods. For 62 

example, muscle volume, a determinant of Fmax, has been personalized through values scaled 63 

to the participant’s body mass (Dick et al., 2017). Furthermore, optimal muscle fiber length, 64 

which is another determinant of Fmax, is often scaled from generic musculoskeletal models 65 

(Millard et al., 2013). An important limitation of these approaches is that they use the same 66 

underlying equations to scale all individuals. This conceals the well-described inter-individual 67 

variability in the distribution of Fmax across muscles (Crouzier et al., 2018; Hug et al., 2015).  68 

The aim of this study was to compare two different personalization methods of a Hill-type 69 

model to predict human gastrocnemii forces during level and incline walking. The first 70 

personalization method, herein referred to as the “scaling method”, used anthropometric 71 

scaling to determine both muscle volume and muscle fiber length to estimate Fmax of the 72 

gastrocnemius medialis (GM) and lateralis (GL). The second method, named hereafter the 73 

“experimental method”, used muscle volume and fascicle length obtained from magnetic 74 

resonance imaging (MRI) and diffusion tensor imaging (DTI), respectively. We specifically 75 

investigated the force-sharing strategy between the two gastrocnemii muscles. Because the 76 

scaling method inevitably conceals interindividual variability in the distribution of Fmax 77 
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between the GM and GL, we expected to observe substantial differences between methods 78 

when comparing the gastrocnemii force-sharing strategy at the individual level. However, we 79 

hypothesized that the two methods would predict similar force-sharing strategies at the group 80 

level.   81 
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2. MATERIALS AND METHODS 82 

2.1. Participants 83 

Twelve adults with no recent (< 6 months) lower limb pain or injury gave informed written 84 

consent to participate in the study (5 females, 7 males, age: 25 ± 3.5 years, body mass: 75.4 ± 85 

16.4 kg, height: 1.71 ± 0.10 m; mean ± standard deviation). This study was approved by the 86 

institutional ethics review committee at The University of Queensland (#2013001448). 87 

2.2. Experimental data acquisition  88 

Data were collected over two experimental sessions. The first session consisted of two 89 

consecutive scanning sequences of the participant’s dominant leg: a T1-weighted MRI scan to 90 

determine muscle volume, and a DTI scan to determine muscle fascicle lengths.  91 

For the second session, participants walked on a treadmill (Nautilus Trimline T345, TX, 92 

USA) at their preferred walking speed (1.1 ± 0.1 m.s-1), which was determined at the 93 

beginning of the protocol (Dal et al., 2010). During walking, we recorded surface EMG and 94 

B-mode ultrasound of the GM and GL of the dominant leg to measure muscle activation and 95 

fascicle behavior, respectively. Foot position was measured using motion capture to identify 96 

phases of the gait cycle. Participants walked under two conditions presented in a randomized 97 

order: (i) 0% treadmill grade (level walking) and (ii) 10% treadmill grade (incline walking). 98 

They performed two trials at each walking condition and repeated each condition a second 99 

time, first to record EMG and second to measure fascicle behavior. The EMG and the 100 

ultrasound recordings were conducted in separate trials to ensure that the measures were taken 101 

on the same mid-region of the muscle belly. Participants also performed three isometric 102 

plantar flexion maximal voluntary contractions (MVCs), with 120 s rest between contractions, 103 

to determine maximal GM and GL EMG amplitude for EMG normalization. The EMG and 104 

ultrasound data have been published elsewhere (Hamard et al., 2021).  105 

2.2.1. MRI 106 

Participants were placed in a 3T MRI scanner (Magnetom Prisma, Siemens, Germany) in a 107 

supine position. The dominant foot was secured into a custom-built MRI-compatible foot 108 

plate with the hip extended and the ankle positioned in a 90° angle. The dominant knee was 109 

positioned in slight flexion (< 5°) by using a foam wedge under the knee. Details on the MRI 110 

parameters have been described elsewhere (Pinel et al., 2021). The T1-weighted MRI images 111 

were analyzed using a combination of semi-automated (Sashimi V1.1; Bolsterlee, 2020) and 112 
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manual segmentation software (ITK-SNAP v3.8.0, NIH, USA). We calculated total muscle 113 

volume for the GM and GL as the sum of the volume of all voxels in each muscle (ITK-114 

SNAP v3.8.0, NIH, USA). These muscle volumes were included in the Hill-type model (see 115 

2.3) for the experimental method. 116 

2.2.2. DTI 117 

DTI scans were performed with the same scanner as for the MRI. Detailed information on the 118 

DTI parameters, processing and data analyses has been described elsewhere (Aeles et al., 119 

2021). Briefly, the muscle was divided into smaller muscle regions in the local muscle frontal 120 

plane. Then, fascicles were assigned to the muscle region that contained the fascicle midpoint 121 

and the median muscle fascicle length was calculated for each region. Finally, the mean of all 122 

muscle regions was calculated and used as an input for optimal fiber length. 123 

2.2.3. 3D motion capture 124 

3D motion capture (Flex 13, OptiTrack, Corvallis, OR, USA) was used to record a static 125 

calibration trial with 8 marker clusters and 16 individual markers placed bilaterally on the 126 

lower limbs and pelvis to scale a musculoskeletal model (Rajagopal et al., 2016) for each 127 

participant (OpenSim v3.3). Then, during the walking protocol, we used the markers attached 128 

bilaterally to the calcaneus and the fifth metatarsophalangeal joint to determine the timing of 129 

the heel-strike and toe-off events using custom-written scripts based on foot vertical velocity 130 

(O’Connor et al., 2007). Motion capture data were collected at 120 Hz (Motive, OptiTrack, 131 

Corvallis, OR, USA) and raw marker positions were filtered using a second-order low-pass 132 

Butterworth filter with a cut-off frequency of 10 Hz.  133 

2.2.4. Electromyography 134 

We shaved, abraded and cleaned the participant’s skin with alcohol to reduce the skin-135 

electrode impedance. We placed surface electrodes (Trigno Delsys Inc., Natick, USA; 10 mm 136 

inter-electrode distance) over the GM and GL muscle bellies, aligned along the direction of 137 

the muscle fascicles, determined using B-mode ultrasound. The EMG signals were amplified, 138 

digitized at 2048 Hz, band-pass filtered (20-500 Hz), and recorded in Spike2 (V7, CED Ltd, 139 

Cambridge, UK). During post-processing, the MVC and walking EMG signals were band-140 

pass filtered using a second-order Butterworth filter (20-500 Hz), rectified, and low-pass 141 

filtered at 12 Hz. The maximal value of the EMG signal measured during the MVC trials was 142 

considered as the maximal EMG amplitude (EMGmax). Then, the EMG signals from 15 gait 143 
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cycles were normalized to EMGmax. Finally, we interpolated the data from each gait cycle to 144 

100 data points. We averaged all the cycles within a trial and then we averaged the resulting 145 

two mean cycles from each trial to finally obtain a single mean cycle for each condition and 146 

participant.  147 

2.2.5. B-mode ultrasound  148 

To image the GM and GL during walking, we placed two linear ultrasound probes (5-8 MHz, 149 

60 mm field-of-view, LV8-5L60N-2, ArtUS, Telemed, Vilnius, Lithuania) on the same 150 

location as used for the EMG electrodes. The probe orientation was optimized to be aligned in 151 

the fascicle plane and secured with elastic bandages. Ultrasound data were recorded at 120 Hz 152 

for 15 s of walking. Post data collection, we analyzed five gait cycles of ultrasound data per 153 

trial using a validated (Cronin et al., 2011; Gillett et al., 2013) semi-automated tracking 154 

algorithm (UltraTrack; Farris and Lichtwark, 2016), combined with manual corrections (for 155 

details, see Hamard et al., 2021). Ultrasound data were low-pass filtered at 12 Hz and fascicle 156 

velocity was calculated as the first time derivative of fascicle length. We normalized fascicle 157 

length to the mean fascicle length at heel-strike during level walking (LHS; average group 158 

value: 56.6 ± 8.0 mm and 65.4 ± 10.1 mm for the GM and GL, respectively). Similarly, 159 

fascicle velocity was expressed as the normalized fascicle length per second. Ultrasound data 160 

from each gait cycle were interpolated to 100 data points and we averaged the cycles within a 161 

trial and then between both trials to create a mean cycle for each condition and participant.  162 

2.3. Estimation of time-varying muscle force during walking 163 

We estimated the time-varying forces produced by the GM and GL muscles during walking 164 

using a Hill-type model (Zajac, 1989): 165 

�� = �������	
����
�������	��� + ���
�����cos�.    (1) 166 

The muscle force �� (N) was calculated from the maximal force-generating capacity ����, 167 

expressed in N, the time-varying normalized activation ��	
�, the normalized active (���
����) 168 

and passive (���
����� forces as determined from the force-length relationship, the normalized 169 

force ���	��� as determined from the force-velocity relationship and the cosine of the time-170 

varying pennation angle β (°). 171 

The normalized active force-length curve (Otten, 1987), was modelled as:  172 
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���
���� = ������ .!"#
 .$ %

&.$

.     (2) 173 

The normalized passive force-length curve (Otten, 1987) was modelled as: 174 

��� = 2.64���* − 5.30��� + 2.66 for  ��� > 1,        (3) 175 

��2
���� = 0 for ��� ≤ 1,     (4) 176 

Where ��� is the time-varying normalized fascicle length measured during walking.  177 

The normalized force-velocity curve was modelled as: 178 

���	��� = 456 78
78 9

4�6 78
7 :9  for  �� ≤ 0,           (5) 179 

���	��� = 1.5 − 0.5 4�6 78
78 9

456;.<!78
7 : 9   for  �� > 0,   (6) 180 

Where ��  is the time-varying normalized fascicle velocity recorded during walking. α 181 

describes the curvature of the force velocity relationship and �= is the maximum unloaded 182 

shortening velocity. We used intermediate values accounting for slow and fast muscle fibers 183 

from numerous terrestrial species of 0.235 and -7.5 s-1 for α and ��= , respectively (Wakeling 184 

et al., 2012).  185 

Finally, ���� is a function of the muscle’s volume ?@�, the optimal fiber length ��,A�B and the 186 

maximum isometric stress of a muscle fiber C=.  187 

���� = D EFG
G�,HIJK C=.       (7) 188 

C=  was estimated from the literature (22.5 N.cm-2, Powell et al., 1984; Roy et al., 1982; 189 

Spector et al., 1980). For the scaling method, ��,A�B  was estimated from a subject-specific 190 

musculoskeletal model (Delp et al., 2007; Rajagopal et al., 2016). This 37 degrees of freedom 191 

model with 97 muscle-tendon complex actuators was scaled to the individual anthropometry 192 

of the participants based on the mass of the participant and markers positions recorded during 193 

the static trial. For the scaling method, muscle volume was calculated using the regression 194 

equations from Handsfield et al. (2014): 195 

?@� = L1 × NO + L2           (8) 196 
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Where ?@�  (cm3) is a function of body mass, NO  (kg) and two coefficients L1  and L2 . 197 

Coefficient L1 is 3.41 and 2.19 for the GM and GL, respectively, and L2 is 12.60 and -7.59 198 

for GM and GL, respectively (Handsfield et al., 2014). Concerning the experimental method, 199 

we used, as a substitute for the ��,A�B, the mean muscle fascicle length estimated from DTI and 200 

we used the muscle volume measured from MRI for the GM and GL.  201 

2.4. Statistics 202 

We conducted the statistical analyses in Statistica v8.0 (Statsoft, Tulsa, OK, USA). All data 203 

passed the Kolmogorov-Smirnov test for normality. First, we compared the muscle volume, 204 

fascicle length and Fmax between the two methods and the two muscles using 2-way repeated-205 

measures ANOVAs (factor: method [scaling, experimental], muscle [GM, GL]). Additionally, 206 

the GM/(GM+GL) ratios of muscle volume, fascicle length and Fmax were calculated and we 207 

used paired t-tests to determine whether these ratios differed between the two methods. We 208 

also assessed the relationship between the two estimation methods for muscle volume, 209 

fascicle length and Fmax using Pearson’s correlation coefficient. Finally, we used the root 210 

mean square error (RMSE) to determine the discrepancy between methods for muscle volume, 211 

fascicle length and Fmax. 212 

From the predicted force output, we extracted the peak force, corresponding to the maximal 213 

force value during the gait cycle and the force integral, corresponding to the integral of the 214 

time-varying force. To test our first hypothesis, we used 3-way repeated-measures ANOVAs 215 

(factor: method [scaling, experimental], muscle [GM, GL] and condition [level, incline]) to 216 

determine whether the peak force or the force integral systematically differed between 217 

methods, muscles or conditions. Then, the GM/(GM+GL) ratios for peak force and force 218 

integral were calculated to estimate the force-sharing strategy between the gastrocnemii. We 219 

performed 2-way repeated-measures ANOVAs (factor: method [scaling, experimental] and 220 

condition [level, incline]) on these ratios to assess whether they systematically differed 221 

between methods and between conditions. Finally, we compared the peak force and force 222 

integral between the two methods using the RMSE. For all tests, the level of significance was 223 

set at P<0.05.   224 
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3. RESULTS 225 

3.1. Maximal force-generating capacity 226 

Fig. 1 depicts the results for volume, fascicle length and Fmax. This paragraph, however, 227 

presents only the results for Fmax as they are more closely related to our aim. There was a 228 

main effect of muscle (P<0.001) on Fmax, with no main effect of method (P=0.744), nor a 229 

muscle × method interaction (P=0.265). Specifically, the GM had a larger Fmax (1072 ± 240 230 

N) than the GL (587 ± 166 N) regardless of the method. Moreover, the correlation between 231 

Fmax estimated from the scaling method and Fmax estimated from experimental data was strong 232 

for both the GM (R=0.871; P<0.001) and the GL (R=0.739; P=0.006). Even though there was 233 

no statistical difference in the GM/(GM+GL) ratio of Fmax between the methods (66.5 ± 0.5% 234 

for the scaling method and 63.0 ± 5.6% for the experimental method; P=0.056), inspection of 235 

individual data indicated large differences between methods for some participants, with the 236 

difference being up to 12.5% (Fig. 1). We found high RMSE values between methods for the 237 

Fmax, i.e. 186 N for the GM and 160 N for the GL corresponding to 18.1% and 26.3% of the 238 

average Fmax, respectively. Moreover, a discrepancy between calculation methods for Fmax 239 

was also observed for the GM/(GM+GL) ratios as indicated by a RMSE of 6.5%. 240 

3.2. Force output 241 

When considering the peak force, which occurred during the stance phase (Fig. 2), there was a 242 

main effect of muscle (P<0.001) and condition (P=0.001), with no main effect of method 243 

(P=0.513), nor any interaction (all P≥0.303) (Table 1). Similarly, when considering the force 244 

integral calculated over the whole gait cycle, we observed a main effect of muscle (P<0.001) 245 

and condition (P=0.003), with no main effect of method (P=0.557), nor any interaction (all 246 

P≥0.333). Overall, the GM produced more force compared to the GL during walking (+170 ± 247 

96% and +159 ± 100% for peak force and force integral, respectively), regardless of the 248 

method. In addition, higher peak force (+34 ± 18%) and force integral (+27 ± 14%) were 249 

predicted during incline walking compared to level walking, regardless of the muscle and 250 

method.  251 

When considering the peak force ratio (i.e. the force-sharing strategy between muscles), there 252 

was a main effect of condition (P=0.046), with no main effect of method (P=0.163) or a 253 

method × condition interaction (P=0.984). Specifically, the ratio of peak force was lower 254 

(closer to 50%) during incline walking compared to level walking (Table 2). When 255 
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considering the ratio of the force integral, there was no main effect of method (P=0.137), nor 256 

an effect of condition (P=0.071) or a method × condition interaction (P=0.971). 257 

Even though the group data did not exhibit significant differences between methods, 258 

inspection of Fig. 2 and 3 revealed noteworthy differences between methods for some 259 

participants. The difference in model-predicted forces between the methods was greater than 260 

30% for four participants for GM and for three participants for GL during level walking. 261 

When considering the ratios (i.e. the force-sharing strategy between muscles), similar 262 

observations were made, i.e. despite the between-methods difference being lower than 1% in 263 

four participants for both peak force and force integral, the between-methods difference was 264 

substantial (greater than 6%) for four participants. These individual differences led to 265 

relatively high RMSE group values. When considering the peak force during level walking, 266 

the RMSE between the two methods was 66 N for the GM and 28 N for the GL 267 

corresponding to 19.0% and 22.1% of the group-averaged peak force, respectively. We also 268 

found high RMSE values for the force integral, i.e. 20 N.s for the GM and 12 N.s for the GL 269 

corresponding to 18.0% and 25.9% of the average force integral, respectively. Moreover, 270 

discrepancy between methods was also observed for the GM/(GM+GL) ratios of peak force 271 

and force integral. The RMSE between methods was 5.4% for peak force and 5.7% for the 272 

force integral in level walking.   273 
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4. DISCUSSION 274 

We determined the influence of two different personalization methods on a Hill-type model’s 275 

predicted force-sharing strategy between the gastrocnemii during walking. We found 276 

substantial differences between the scaling method and the experimental method in the 277 

predicted force-sharing strategies at the individual level. Therefore, generic scaling methods 278 

may be unable to estimate the force-sharing strategy at the level of individual participants. 279 

Our main results indicate substantial differences between methods for some participants. This 280 

is consistent with previous studies, which highlight that inclusion of subject-specific 281 

musculoskeletal geometry (Wesseling et al., 2016) or muscle-tendon origin and insertion 282 

(Bosmans et al., 2015) affects a model’s force estimation. Furthermore, our results are similar 283 

to previous studies that report high inter-individual variability in the distribution of maximal 284 

force-generating capacity between synergist muscles from either the triceps surae (Crouzier et 285 

al., 2018) or the quadriceps (Hug et al., 2015). However, here we also highlight that the force-286 

sharing strategy varies markedly between individuals during walking - a dynamic task 287 

whereby forces are submaximal. Furthermore, during walking, a substantial difference 288 

between the scaling method and the experimental method (> 6%) for GM/(GM+GL) ratio of 289 

either peak force or the force integral was observed in one third of the participants. Similar 290 

levels of differences in the GM/(GM+GL) ratio (+6-10%) were shown in patients with 291 

Achilles tendinopathy compared to asymptomatic individuals during submaximal isometric 292 

contractions (Crouzier et al., 2019). It is therefore possible that the use of generic scaling 293 

methods may reduce the ability to detect pathological force-sharing strategies for individuals 294 

who deviate from the generic maximal force-generating capacity distribution, which is often 295 

the case in clinical populations (Barber et al., 2011).  296 

We compared model-predicted forces when using two different methods to estimate a 297 

muscle’s maximal force-generating capacity. However, an inherent limitation of such an 298 

approach is the inability to evaluate our model against direct measurements of in vivo force. 299 

We compared our predicted forces with forces previously estimated or measured using 300 

different approaches during similar walking conditions. For the GM, we found similar peak 301 

force levels (346 N) to those estimated using inverse dynamics analysis combined with 302 

moment arm and PCSA calculations (~305 N in Farris and Sawicki, 2012). In addition, our 303 

predicted forces are in agreement with tendon forces directly measured in vivo. Finni et al. 304 

(1998) reported a peak Achilles tendon force of 1320 N for the triceps surae during an 305 
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analogous walking speed (1.1 m.s-1). Similar to previous methods (Dick et al., 2016), we 306 

combined this peak force with the relative PCSA of the gastrocnemii within the triceps surae 307 

(~26% for the GM and 12% for the GL; Ward et al., 2009) and accounted for the relative 308 

gastrocnemii activation levels during walking relative to the triceps surae (~40% MG, 20% 309 

LG; Crouzier et al., 2019) to calculate a peak force of 365 N for the GM and 84 N for the GL 310 

– which is consistent with our predicted forces (346 N for the GM and 128 N for the GL for 311 

the experimental method). 312 

Although our results revealed no difference between methods at the group level, this result is 313 

difficult to generalize to other groups such as clinical populations. Moreover, we found a 314 

similar estimation of muscle volume for group averages when using a scaling method 315 

(Handsfield et al., 2014) versus MRI-derived muscle volumes (Fig. 1A) but, on the other hand, 316 

the estimation of fascicle length varied more between the scaling and DTI methods (Fig. 1B). 317 

This is likely because the scaling method uses subject-specific musculoskeletal models that 318 

provide the theoretical optimal fiber length based on a constant muscle-tendon geometry 319 

across all participants, whereas the DTI method provides the resting fascicle length at 90° of 320 

plantarflexion and < 5° of knee flexion, which accounts for individual differences in resting 321 

fascicle lengths. Despite personalizing the maximal force-generating capacity, activation, 322 

fascicle length and velocity, and pennation angle, some model parameters remained generic. 323 

For example, the shape of the force-length and force-velocity relationships were consistent 324 

across models and individuals whereas the inter-individual variability in these relationships 325 

has been suggested in human GM (Hager et al., 2020) and vastus lateralis muscles (Brennan 326 

et al., 2018). However, the influence of these parameters on predicted forces is likely small 327 

given the relatively low sensitivity of Hill-type models to, for example, the curvature of the 328 

force-velocity relationship and the maximum unloaded shortening velocity (Dick et al., 2017). 329 

On the other hand, previous studies have shown that the Hill-type model is also sensitive to 330 

tendon slack length and optimal fiber length (Bujalski et al., 2018; Scovil & Ronsky, 2006). 331 

Further work is needed to test the effect of personalising these parameters on muscle force 332 

estimation, although directly measuring these parameters in humans in vivo is currently not 333 

possible. 334 

In conclusion, when predicting individual muscle force-sharing strategies, our results 335 

highlight the importance for Hill-type models to be personalized with in vivo imaging data. 336 

Future research is necessary to determine the sensitivity of Hill-type models to additional 337 
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subject-specific inputs, for example by using elastography to estimate the fascicle slack length 338 

and the muscle’s passive force-length properties (Hug et al., 2013) or by estimating subject-339 

specific force-length relationships (Maganaris, 2003).  340 
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TABLES AND FIGURES 504 

Table 1: Force parameters estimated using the Hill-type model during level and incline walking.  505 

 

Level walking Incline walking 

GM GL GM GL 
Scaling  Experimental Scaling  Experimental Scaling  Experimental Scaling  Experimental 

Peak force (N) 378 ± 127 346 ± 137 120 ± 41* 128 ± 55* 467 ± 152† 423 ± 155† 186 ± 64*† 195 ± 74*† 

Force integral 
(N.s) 123 ± 36 114 ± 43 43 ± 15* 45 ± 17* 149 ± 48† 136 ± 52† 61 ± 21*† 65 ± 26*† 

Values are presented for the gastrocnemius medialis and lateralis during both level and incline walking. The 506 
maximal force-generating capacity was estimated using either the scaling or experimental method. GM, 507 
gastrocnemius medialis, GL, gastrocnemius lateralis. Values are reported as mean ± standard deviation. 508 
*Indicates a significant difference with GM. †Indicates a significant difference with level walking. n = 12. No 509 
difference between methods was found for any muscle or condition. 510 

Table 2: Gastrocnemius medialis to gastrocnemius lateralis [GM/(GM+GL)] force ratio 511 
estimated using the Hill-type model during level and incline walking. 512 

 
Level walking Incline walking 

Scaling method Experimental method Scaling method Experimental method 

Peak force ratio (%) 75.4 ± 6.2 72.4 ± 7.3 71.1 ± 7.8† 68.0 ± 7.9† 

Force integral ratio (%) 74.1 ± 6.2 71.2 ± 7.3 70.5 ± 7.0 67.4 ± 7.5 

Values are presented for both level and incline walking. The maximal force-generating capacity was estimated 513 
using either a scaling or experimental method. Values are reported as mean ± standard deviation. †Indicates 514 
significant difference with level walking. n = 12. No difference between methods was found for any muscle or 515 
condition.  516 
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FIGURE LEGENDS 517 
 518 
Fig. 1: Individual data for muscle volume (A), fascicle length (B) and maximal force-519 
generating capacity (Fmax; C) determined using the scaling and experimental methods. 520 
Data are depicted for both the gastrocnemius medialis (GM) and gastrocnemius lateralis (GL). 521 
The ratio between these muscles [GM/(GM+GL)] is also depicted for each variable. Each 522 
graph depicts individual data obtained with the scaling method (top) and experimental method 523 
(bottom). Each color represents an individual participant and the mean group value is 524 
presented as a black diamond. Because the scaling method uses the same underlying 525 
equations to scale all individuals, we can observe that the inter-individual variability in ratios 526 
between muscles is concealed.  527 
 528 
Fig. 2: Individual time-varying forces estimated by the Hill-type model during level 529 
walking for each participant (P). The GM (green) and GL (purple) forces are depicted by 530 
solid lines (experimental method) and dashed lines (scaling method). Heel-strike occurred at 531 
0% on the x-axis and the dashed vertical lines represent the timing of toe-off during the gait 532 
cycle. Each plot represents an individual participant. Predicted forces for incline walking are 533 
presented in Fig. S1. 534 
 535 

Fig. 3: Individual data for peak force (A and B) and force integral (C and D) for level 536 
walking (white area; A and C) and incline walking (grey area; B and D), determined 537 
using the scaling and experimental methods. Data are depicted for both the gastrocnemius 538 
medialis (GM) and gastrocnemius lateralis (GL). The ratio [GM/(GM+GL)] is also depicted 539 
for each variable. Each graph depicts individual data obtained with the scaling method and 540 
experimental method. Each color represents an individual participant and the mean group 541 
value is presented as a black diamond. The scaling method and the experimental method seem 542 
to predict similar muscle force and force-sharing strategy during walking at the group level 543 
but substantial differences between methods was apparent for some participants.  544 
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SUPPLEMENTARY FIGURE 545 
Fig. S1: Individual time-varying forces estimated by the Hill-type model during incline 546 
walking for each participant (P). The GM (green) and GL (purple) forces are depicted by 547 
solid lines (experimental method) and dashed lines (scaling method). Heel-strike occurred at 548 
0% on the x-axis and the dashed vertical lines represent the timing of toe-off during the gait 549 
cycle. Each plot represents an individual participant. 550 










