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NULL-CONTROLLABILITY PROPERTIES OF THE GENERALIZED

TWO-DIMENSIONAL BAOUENDI-GRUSHIN EQUATION WITH

NON-RECTANGULAR CONTROL SETS

JÉRÉMI DARDÉ, ARMAND KOENIG, AND JULIEN ROYER

Abstract. We consider the null-controllability problem for the generalized Baouendi-Grushin equa-
tion (∂t − ∂2x − q(x)2∂2y)f = 1ωu on a rectangular domain. Sharp controllability results already exist

when the control domain ω is a vertical strip, or when q(x) = x. In this article, we provide upper and
lower bounds for the minimal time of null-controllability for general q and non-rectangular control

region ω. In some geometries for ω, the upper bound and the lower bound are equal, in which case,

we know the exact value of the minimal time of null-controllability.
Our proof relies on several tools: known results when ω is a vertical strip and cutoff arguments

for the upper bound of the minimal time of null-controllability; spectral analysis of the Schrödinger
operator −∂2x + ν2q(x)2 when Re(ν) > 0, pseudo-differential-type operators on polynomials and

Runge’s theorem for the lower bound.

1. Introduction and statements of the main results

1.1. The Baouendi-Grushin equation. In this article, we study some controllability properties of
the two-dimensional generalized Baouendi-Grushin equation.

Let L−, L+ be positive, and I = (−L−, L+). Let q ∈ C0(I) such that q(0) = 0 and q(x) 6= 0 for
all x ∈ I \ {0}. We denote by T the one-dimensional torus R/2πZ. For T > 0, f0 ∈ L2(I × T) and
F ∈ L2((0, T );L2(I × T)) we consider the generalized Baouendi-Grushin equation

(1.1)


(∂t − ∂2

x − q(x)2∂2
y)f(t, x, y) = F (t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T

f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f(0, x, y) = f0, x ∈ I, y ∈ T.

Note that, because q(0) = 0, the equation degenerates on the vertical axis {0} × T. Nevertheless,
the equation is well posed. Precisely, the Friedrichs extension (see [24, Section 4.3]) of the operator

f ∈ C∞c (I × T) 7→ −∂2
xf − q(x)2∂2

yf,

generates an analytic semigroup, which allows to define a solution of the generalized Baouendi-Grushin
equation (1.1) in the sense of semigroups [12]. In our case, this solution is smooth in the following
sense:

Proposition 1.1. For any source term F ∈ L2((0, T );L2(I × T)) and any initial condition f0 ∈
L2(I × T), there exists a unique f ∈ C0([0, T ];L2(I × T)) ∩ L2((0, T );V ) solution of the generalized
Baouendi-Grushin equation (1.1), with

V =
{
f ∈ L2(I × T), ∂xf ∈ L2(I × T), q ∂yf ∈ L2(I × T)

}
.

This result is proved in [7] in the case q(x) = |x|γ with γ > 0. The proof is easily generalized to our
case of interest.
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1.2. Control problem for the Baouendi-Grushin equation. Our study focuses on internal null-
controllability of the Baouendi-Grushin equation. More precisely, let ω ⊂ I × T be a non-empty open
set and u ∈ L2((0, T ); L2(ω)). The controlled Baouendi-Grushin equation reads

(1.2)


(∂t − ∂2

x − q(x)2∂2
y)f(t, x, y) = 1ωu(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T

f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T,
f(0, x, y) = f0, x ∈ I, y ∈ T,

where f is the state of the system, and 1ωu is the control supported in ω.

Definition 1.2 (Null-controllability). Let T > 0. The Baouendi-Grushin equation (1.2) is said
to be null-controllable on ω in time T if, for any initial condition f0 ∈ L2(I × T), there exists
u ∈ L2((0, T );L2(ω)) such that the solution f of eq. (1.2) satisfies f(T, ·, ·) = 0 in I × T.

It is known that, contrary to usual non-degenerate parabolic equations like the heat equation, due to
the degeneracy of q on {0}×T, the null-controllability properties of (1.2) strongly depend on the control
set ω and the time horizon T . More precisely, for certain control sets ω, there is no time T > 0 such
that eq. (1.2) is null-controllable, whereas for other control sets ω a minimal time of null-controllability
appears. We refer to the bibliographical comments, section 1.4 below, for a detailed description of the
known results on the subject.

In the present paper, we aim to give precise null-controllability results for equation (1.2), for a large
class of control sets ω and a large class of functions q.

1.3. Main results. We are interested in the case where the equation is degenerate on {x = 0}. Thus,
we assume that q(x) = 0 only when x = 0, and we assume without loss of generality that q′(0) > 0.

Before presenting the main results of our study, we introduce the so-called Agmon distance of a
point x ∈ I to the origin, defined by:1

(1.3) dAgm : x ∈ I 7→
∫ x

0

q(s) ds.

This quantity appears naturally in the computation of the minimal time of null-controllability for the
generalized Baouendi-Grushin equation.

1.3.1. Lack of null-controllability in small time for a class of control sets ω. Our main result is a
negative result of null-controllability for small times. We show that if the control set ω stays at positive
distance from a horizontal segment of the form (a, b)× {y0}, with −L− 6 a < 0 < b 6 L+ and y0 ∈ T,
then equation (1.2) is not null-controllable on ω for time T smaller than a precisely given critical time.

To properly state the result, we need to introduce a modified version of the Agmon distance. We set
δ(x) = dAgm(x) for x ∈ I, and δ(−L−) = δ(L+) = +∞.

Theorem 1.3. Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and q(x) 6= 0 whenever x 6= 0.
Let ω be an open subset of I × T. Assume that there exist a ∈ [−L−, 0), b ∈ (0, L+] and y0 ∈ T such
that

distance
(
(a, b)× {y0}, ω

)
> 0.

(See fig. 1.) Then, the generalized Baouendi-Grushin equation (1.2) is not null-controllable on ω in
time T such that

T <
1

q′(0)
min (δ(a), δ(b)) .

This theorem is a generalization of [20, theorem 3.3], where the result is proved for I symmetric
with respect to the origin and, more restrictively, for q(x) = x. A key step in our proof of theorem 1.3
is the study of spectral properties of the family of operators defined on L2(I) by

(1.4) Pν : − ∂2
x + ν2q(x)2, Dom(Pν) = H2(I) ∩H1

0 (I).

1It corresponds to the usual definition of the Agmon distance given for example in [18, Eq. (6.3)], with V = q2 and

E = 0.
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Figure 1. In green, an example of a domain ω with, in thick black, an example of a
horizontal segment that stays at positive distance of ω. In this example, theorem 1.3
implies that the generalised Baouendi-Grushin equation is not null-controllable in time
T < dAgm(a).

Because of technical reasons, we have to consider Pν for every Re(ν) > 0, which makes Pν non
self-adjoint.

In the previous article [20], the corresponding results were obtained using explicit solutions of
particular ordinary differential equations. These explicit formulae are not available in our general
setting.

In our case, we obtain a localization of an eigenvalue of Pν , as well as precise Agmon type estimates
for an associated eigenfunction,2 uniformly in ν = |ν|eiθ with |ν| large enough and 0 6 |θ| 6 θ0

for some θ0 ∈ [0, π/2). To that end, we compare Pν with the non-selfadjoint harmonic oscillator
Hq′(0)ν := −∂2

x + (q′(0)ν)2x2. Theorem 1.3 is proved in section 3, with the spectral analysis done in
section 4.

Note that [25] contains closely related spectral asymptotics. However, we cannot apply them directly
since our domain has a boundary and we need uniform estimates with respect to the parameter ν.

1.3.2. Precise critical time of null-controllability for a class of control sets ω. With theorem 1.3 we can
deduce in some setting the critical time for the null-controllability of (1.2).

minT(γx) maxT(γx)

x

y

ω

γ

Figure 2. In green, an example of a domain ω, with, in blue, a corresponding path γ
that satisfies the hypotheses of theorem 1.4.

We first mention a natural adaptation of [20, theorem 3.1]. It was actually claimed in [20, Remark
3.2], but the statement was imprecise if q is not odd. We take the opportunity to correct the statement:

Theorem 1.4. Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0. Let ω be an open subset

of I × T. Assume that there exists a closed path γ = (γx, γy) ∈ C0(T; ω) such that {−L−} × T and

{L+} × T are included in different connected components of (I × T) \ γ(T) (see fig. 2).

2For ν ∈ R∗+, we localize the smallest eigenvalue of Pν , and for ν complex, we localize its analytic continuation.
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ω

γ1
γ2

−maxT(γ−2 ) maxT(γ+
1 )

x

y

Figure 3. In green, an example of a domain ω that satisfies the hypotheses of theorem 1.6.

The generalized Baouendi-Grushin equation (1.2) is null-controllable on ω in time T such that

T >
1

q′(0)
max

(
dAgm

(
min
T

(γx)
)
,dAgm

(
max
T

(γx)
))

.

Remark 1.5. In this theorem, we can replace the hypothesis “{−L−}×T and {L+}×T are included in
different connected components of (I × T) \ γ(T)” by “γ is not homotopic to a constant path”. These
two conditions are essentially equivalent. We discuss this in propositions B.2 and B.3 and remark B.4.

We detail the proof of this theorem in section 2. Combining theorems 1.3 and 1.4, we obtain
the following result which gives the precise critical time of null-controllability of the generalized
Baouendi-Grushin for a large class of control sets ω and functions q:

Theorem 1.6. Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0. Let γ1, γ2 ∈ C0(T; I)

such that for every y ∈ T, γ1(y) < γ2(y). Let ω = {(x, y) ∈ I × T : γ1(y) < x < γ2(x)} (see fig. 3) and3

T∗ :=
1

q′(0)
max

(
dAgm

(
−max

T
(γ−2 )

)
,dAgm

(
max
T

(γ+
1 )
))

.

Then the generalized Baouendi-Grushin equation (1.2) is null-controllable on ω in any time T > T∗,
but it is not null-controllable on ω in time T < T∗.

This theorem is proved in section 5.

1.3.3. Comments. Before proceeding further, we make some additional comments on our results.

• The assumptions regarding the function q in theorem 1.3 are slightly more general than in
theorem 1.4. They seem also more natural in the context of our study. Therefore, we conjecture
that theorem 1.4 holds for functions q ∈ C3(I) satisfying

q(0) = 0, q′(0) > 0, q(x) 6= 0 for all x ∈ I.
But up to our knowledge, this is still an open question.

• There are still numerous geometrical configurations not included in theorem 1.6. Nevertheless,
in many situations, theorem 1.4 and theorem 1.3 give information about null-controllability
properties. As an example, in the geometrical configuration described in fig. 4, combining
theorem 1.4 and theorem 1.3, we obtain the existence of a critical time

T∗ ∈
(

dAgm(−a)

q′(0)
,

dAgm(−b)
q′(0)

)
such that the Baouendi-Grushin equation is null-controllable on ω in time T > T∗, and is
not null-controllable on ω in time T < T∗. In the two geometrical configurations presented
in fig. 5, theorem 1.3 implies that the Baouendi-Grushin equation is not null-controllable on
ω in time T < dAgm(a)/q′(0). Note that in these two configurations, the question of the
null-controllability of (1.2) in ω for some time T large enough is still open.

3When f is a real valued function, we denote f+ = max(f, 0) and f− = max(−f, 0) its positive and negative part

respectively.
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ω

−a−b

Figure 4. In this configuration, we obtain lower and upper bounds of the critical
time of null-controllability

ω

ω

−a
ω

ω

−a

Figure 5. In these configurations, we obtain a lower bound on the critical time of
null-controllability.

• These results are stated for the generalized Baouendi-Grushin equation posed on I × T. They
can be adapted to the equation posed on I × (0, π) with Dirichlet boundary conditions, with
very similar proofs. We refer to appendix A for details on the statements and the corresponding
proofs.

1.4. Bibliographical comments.

1.4.1. On the Baouendi-Grushin equation. The study of controllability properties of system (1.2) began
with the pioneering work [7], where the authors study the null-controllability of the equation

(1.5)

{
(∂t − ∂2

x − |x|2γ∂2
y)f = 1ωu, t ∈ (0, T ), x ∈ (−1, 1), y ∈ T,

f(t, x, y) = 0, t ∈ (0, T ), x = ±1, y ∈ T.
They prove that in the case γ ∈ (0, 1) (weak degeneracy), the Baouendi-Grushin equation (1.2) is
null-controllable for any control set ω and any time T > 0, whereas in the case γ > 1 (strong degeneracy),
it is not null-controllable for any control set ω and any time T > 0, except if ω contains {0} × T in
which case it is null-controllable in any positive time T .

More surprisingly, in the case γ = 1, which corresponds to the Baouendi-Grushin equation (1.2)

with q(x) = x, and for ω = (a, b)× T, with 0 < a < b, there exists a critical time T∗ > a2

2 such that
the Baouendi-Grushin equation (1.2) is null controllable on ω in time T , for every T > T∗, and is not
null controllable on ω in time T , for every T < T∗. It is also proved that if γ = 1 and ω contains the
vertical line {0} × T, equation (1.5) is null controllable in any time T > 0. Such a minimal time of
null-controllability would not be surprising for equations with finite speed of propagation, such as the
wave equation [3], but the Baouendi-Grushin equation has a infinite speed of propagation.

Many works followed, trying to characterize precisely the critical time T∗, and to generalize the
result to different geometrical settings and different functions q. The first exact characterization of
T∗ is given in [10] in the case q(x) = x and with two symmetric vertical strips as control set, that is
ω = (−1,−a)× (a, 1), a ∈ (0, 1). Using the transmutation method and sideways energy estimates, the

authors prove that eq. (1.2) is null-controllable in ω in any time T > a2

2 , and is not null-controllable in

ω in any time T < a2

2 .
When ω is a vertical strip of the form (a, b) × T, with a > 0, as in [7], the precise value of the

critical time T∗ was obtained independently in the works [1, 8, 30]. More precisely, in [1], using new
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estimates for biorthogonal sequences to real exponentials and the moments method, the authors prove

that in the case q(x) = x, the critical time is a2

2 . In [8], with a function q satisfying the assumptions of
theorem 1.6, the authors use a Carleman strategy to obtain that eq. (1.2) is null controllable on ω in
any time T > T∗, and not null-controllable on ω in any time T < T∗, with

T∗ =
dAgm(a)

q′(0)
.

Very recently, this result was obtained in [30] using the moments method, with a stronger smoothness
assumption on q (see [30, Remark 1.12 and Proposition 1.13]).

All the strategies developed in [7, 10, 1, 8], although very different, rely on a Fourier expansion of
system (1.2) with respect to the y-variable and the study of the obtained family of one dimensional
parabolic equations in the variables t, x. As a consequence, the control set ω has to contain a vertical
strip, which seems to be an important restriction of the proposed methods. Nevertheless, in [20], the
authors generalize the positive null-controllability results obtained in [8] to a large class of control sets:
in the setting of theorem 1.6 and with the additional assumptions that I is symmetric and q is odd,
system (1.2) is null controllable in any time T > T∗, with

T∗ =
1

q′(0)
max

(
dAgm(−max(γ−2 )),dAgm(max(γ+

1 ))
)
.

In the specific case q(x) = x, they also prove that if there exist a, b ∈ I, a < 0 < b, and y0 ∈ T such that
distance((a, b)× {y0} ∩ ω) > 0, then (1.2) is not null controllable in time T < min(a2, b2)/2, whereas if
there is y0 ∈ T such that distance(I × {y0} ∩ ω) > 0, then (1.2) is not null controllable on ω in any
positive time T . Theorem 1.6 is the generalization of this result to a wider class of functions q.

To end this overview on controllability issues for the parabolic Baouendi-Grushin equation, we point
out that partial controllability results are known in some multidimensional configurations [8] while
precise results are known for cascade systems of two-dimensional Baouendi-Grushin equations with one
control, in the case q(x) = x [1].

1.4.2. Some related problems. Let us briefly mention the literature on related problems, in several
directions: other degenerate parabolic equations, minimal time of null controllability for parabolic
systems, and other type of degenerate equations.

Since the pioneering works [21, 22] on the null-controllability of the one-dimensional heat equation,
the null-controllability of non-degenerate parabolic equations has been extensively studied. The null-
controllability of degenerate parabolic equations is a more recent subject of study. The case of a
degeneracy at the boundary of the domain is now well-understood [14] (see also the references therein).

When the degeneracy occurs in the domain, we lack for the moment a general theory, and equations
are studied case by case. The two-dimensional Baouendi-Grushin equations is arguably the simplest
and best understood equation of that type. Very similar results, including a minimal time of null-
controllability for quadratic degeneracy, have been observed for the heat equation on the Heisenberg
group [5, 8], and the Kolmogorov equation [4, 6, 9, 16, 27].

The related problem of approximate controllability for degenerate parabolic equations has been
studied in a somewhat general framework [31].

A minimal time of null-controllability might also appear for the heat equation with punctual
control [19] and for systems of parabolic equations, degenerate or not [2, 11].

Finally, let us mention than the subelliptic wave equation is not controllable [32], and that the
Grushin-Schrödinger equation has a minimal time of controllability [13, 33].



NULL-CONTROLLABILITY OF THE BAOUENDI-GRUSHIN EQUATION 7

2. Null-controllability in large time

In this section, we prove theorem 1.4. The idea of the proof is to use known controllability results for
equation (1.2) when the control set is a vertical strip combined with a cutoff argument. More precisely,
we recall the following result [8, theorem 1.4].4

Proposition 2.1. Assume that q satisfies the assumptions of theorem 1.4. Let ω = (a, b) × T, with
−L− 6 a < b 6 L+. Then

• if 0 < a, the Baouendi-Grushin equation is null-controllable on ω in time T > dAgm(a)/q′(0),
• if b < 0, the Baouendi-Grushin equation is null-controllable on ω in time T > dAgm(b)/q′(0),
• if a < 0 < b, the Baouendi-Grushin equation is null-controllable on ω in time T > 0.

minT(γx) maxT(γx)

x

y

ω

γ

ω− ω+

Figure 6. Definition of ω− (red) and ω+ (blue).

Proof of theorem 1.4. We set ω− = (−L−,minT (γx)) × T and ω+ = (maxT(γx), L+) × T (see fig. 6).
Proposition 2.1 implies that the Baouendi-Grushin equation is null-controllable either on ω− or on ω+

in any time T such that

T >
1

q′(0)
max

(
dAgm(min

T
(γx)),dAgm(max

T
(γx))

)
.

Consequently, for any initial condition f0 ∈ L2(I × T), there exist u− ∈ L2((0, T ); L2(ω−)) and
u+ ∈ L2((0, T ); L2(ω+)) such that f− and f+ solutions of

(∂t − ∂2
x − q(x)2∂2

y)f±(t, x, y) = 1ω±u±(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T;
f±(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T;
f±(0, x, y) = f0(x, y), x ∈ I, y ∈ T;

satisfy f±(T, ·, ·) = 0 in I × T.
By definition of γ, ω+ and ω− are included in two distinct connected components of (I×T)\γ(T). As

a consequence, we can construct χ ∈ C∞(I×T) such that χ ≡ 1 in ω+, χ ≡ 0 in ω− and supp(∇χ) ⊂ ω
(see proposition B.1). Define f = χf− + (1− χ)f+. It is easily verified that f satisfies

(∂t − ∂2
x − q(x)2∂2

y)f(t, x, y) = 1ωu(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ T;
f(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T;
f(0, x, y) = f0(x, y), x ∈ I, y ∈ T;
f(T, x, y) = 0, x ∈ I, y ∈ T;

with a source term u ∈ L2((0, T ); L2(ω)). �

4The reference [8] states the result with a control on the boundary. But cutoff arguments allow to construct controls

on vertical strips from boundary controls, as in [20, Appendix A].
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3. Lack of null-controllability

In this section, we prove the following case of theorem 1.3.

Theorem 3.1. Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and q(x) 6= 0 whenever x 6= 0.
Let ω be an open subset of I × T. Assume that there exist a ∈ (−L−, 0) and y0 ∈ T such that

distance
(
(a, L+)× {y0}, ω

)
> 0.

Then, the generalized Baouendi-Grushin equation (1.2) is not null-controllable on ω in time T <
dAgm(a)/q′(0).

Remark 3.2. By changing x in −x, I in −I and q in −q, this theorem implies that if b ∈ (0, L+)
and if distance

(
(−L−, b)× {y0}, ω

)
> 0, then the generalized Baouendi-Grushin equation (1.2) is not

null-controllable on ω in time T < dAgm(b)/q′(0).
To completly prove theorem 1.3, there are two more cases:

• distance
(
(a, b)× {y0}, ω

)
> 0 with −L− < a < 0 < b < L+, lack of null-controllability in time

T < min(dAgm(a),dAgm(b))/q′(0);
• distance

(
(−L−, L+)× {y0}, ω

)
> 0, lack of null-controllability in any time T > 0.

The proofs of these cases are minor modifications of the one of theorem 3.1. We mention in footnotes
the most important modifications and leave the details to the reader.

Under the hypotheses of this theorem, there exists a closed interval W0 that is a neighborhood of y0

and such that ω ∩
(
[a, L+)×W0

)
= ∅ (see fig. 7). To prove theorem 3.1, we assume without loss of

generality that ω is the complement of the rectangle [a, L+)×W0:

(3.1) ω = (I × T) \
(
[a, L+)×W0

)
.

ω

y0

a
x

y

Figure 7. In green, the domain ω. If a horizontal segment stays at positive distance
from ω, it can be thickened into a rectangle that is disjoint from ω.

3.1. Observability inequality. Using standard duality arguments (see [15, theorem 2.44]), the
null-controllability of the generalized Baouendi-Grushin equation (1.2) is equivalent to the following
observability inequality : there exists C > 0 such that for every g0 ∈ L2(I × T), the solution g of

(3.2)


(∂t − ∂2

x − q(x)2∂2
y)g(t, x, y) = 0, t ∈ (0, T ), x ∈ I, y ∈ T;

g(t, x, y) = 0, t ∈ (0, T ), x ∈ ∂I, y ∈ T;
g(0, x, y) = g0(x, y) (x, y) ∈ I × T,

satisfies

(3.3) ‖g(T, ·, ·)‖2L2(I×T) 6 C‖g‖
2
L2((0,T )×ω).

To prove theorem 3.1, we proceed in two steps: we prove that the observability inequality (3.3) implies
an inequality on polynomials, and then we disprove this new inequality.5

5Actually, we could reformulate this proof to directly construct a counterexample to the observability inequality (3.3).
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3.2. Model case. We start with a model equation, that we study to showcase the main ideas of the
proof of theorem 3.1 without some of the more technical aspects. Consider the Baouendi-Grushin
equation on R× T:

(3.4) (∂t − ∂2
x − x2∂2

y)g(t, x, y) = 0.

Let ω ⊂ R× T be open. We say that the Baouendi-Grushin equation (3.4) is observable on ω in time
T > 0 if there exists C > 0 such that for all g solution of (3.4), the following observability inequality
holds:

(3.5) ‖g(T, ·, ·)‖2L2(R×T) 6 C‖g‖
2
L2((0,T )×ω).

We prove the following theorem.

Theorem 3.3. let a > 0, W0 ⊂ T a closed interval with non-empty interior and

(3.6) ω = (R× T) \ ([−a, a]×W0).

Let T > 0 such that

T <
a2

2
.

The Baouendi-Grushin equation (3.4) is not observable on ω in time T .

Before going into the proof, let us examine some solutions of the Baouendi-Grushin equation that
are concentrated around x = 0. Taking the n-th Fourier coefficient in y of g, which we will denote by
ĝ(t, x, n), we get

(3.7) (∂t − ∂2
x + n2x2)ĝ(t, x, n) = 0.

Thus, the Baouendi-Grushin equation is transformed into a family of parabolic equations (∂t+Hn)gn = 0,
where Hn is the harmonic oscillator −∂2

x + n2x2. The spectral properties of the harmonic oscillator
are well-known (see, e.g., [24, §1.3] or appendix C), and in particular the first eigenvalue is |n| with

associated eigenfunction ϕn(x) = (|n|/π)1/4e−|n|x
2/2. Thus, if (an)n>0 is a complex-valued sequence

with only a finite number of nonzero terms, the function g defined by

(3.8) g(t, x, y) :=
∑
n>0

aneiny−nx2/2−nt

is a solution of the Baouendi-Grushin equation (3.4). We will look for a counterexample of the
observability inequality (3.5) in this class of functions.

This solution can be written as g(t, x, y) = gpol(e
iy−t−x2/2) with

(3.9) gpol(z) :=
∑
n>0

anz
n.

We will use the fact that g is a polynomial in z = eiy−t−x2/2 to rewrite the observability inequality we
want to disprove as an inequality on polynomials. More precisely, we have the following estimate.

Lemma 3.4. Assume that the observability inequality for the Baouendi-Grushin equation (3.5) holds.
Let U ⊂ C be defined by (see fig. 8)

U = D(0, e−a
2/2) ∪ {z ∈ C : |z| < 1, arg(z) /∈W0}.

Then, there exists C > 0 such that for every polynomial p ∈ C[X],

‖p‖L2(D(0,e−T )) 6 C‖p‖L∞(U).

Proof. Step 1: Observability inequality. Let p(z) =
∑
n>0 anz

n a polynomial and set gpol(z) = zp(z) =∑
n>0 an−1z

n. The discussion above shows that g defined by

g(t, x, y) = gpol(e
iy−t−x2/2)
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U
W0

e−a
2/2

Figure 8. The domain U .

is a solution of the Baounedi-Grushin equation (3.4). The observability inequality on this class of
functions reads

(3.10)

∫
R×T
|g(T, x, y)|2 dxdy 6 C

∫
[0,T ]×ω

|gpol(e
iy−t−x2/2)|2 dtdxdy.

Step 2: Left-hand side of the observability inequality (3.10). Since the functions ψn : (x, y) 7→ einy−nx2/2

are orthogonal in L2(R× T), the left-hand side can we rewritten as∫
R×T
|g(T, x, y)|2 dxdy =

∫
R×T

∣∣∣∑
n>0

an−1e−nTψn(x, y)
∣∣∣2 dxdy

=
∑
n>0

|an−1|2e−2nT ‖ψn‖2L2(R×T)

=
∑
n>0

2π3/2

√
n
|an−1|2e−2nT .

Elementary computations in polar coordinates prove that the functions z 7→ zn are orthogonal in
L2(D(0, R),m), where m is the Lebesgue measure on C ' R2, and that for R > 0

‖zn‖2L2(D(0,R),m) =
πR2n+2

n+ 1
.

Thus,

‖p‖2L2(D(0,e−T )) =
∑
n>0

π

n+ 1
|an|2e−2(n+1)T

6
∑
n>0

π√
n
|an−1|2e−2nT

=
1

2
√
π

∫
R×T
|g(T, x, y)|2 dxdy.(3.11)

Step 3: Right-hand side of the observability inequality (3.10). We write the right-hand side of the

observability inequality by making the change of variables (x, z) = (x, e−t+iy−x2/2). We have dx dm(z) =
|z|2 dt dx dy. Thus, if we denote by Ω ⊂ R× C the image of (0, T )× ω by this change of variables, we
have ∫

(0,T )×ω
|gpol(e

−t+iy−x2/2)|2 dtdx dy =

∫
Ω

|gpol(z)|2|z|−2 dxdm(z)

=

∫
Ω

|p(z)|2 dxdm(z).(3.12)
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U

D(0, e−T )

z0

Figure 9. When the disk
D(0, e−T ) (in red) is not included
in U , we can find holomorphic
functions that are small in U but
arbitrarily large in D(0, e−T ). For
instance, we can construct with
Runge’s theorem a sequence of
polynomials that converges to
z 7→ (z− z0)−1 away from the blue
line.

By definition, Ω =
⋃
x∈R({x} × Dx), where

Dx = {e−t+iy−x2/2, t ∈ (0, T ), (x, y) ∈ ω}.

We claim that for every 0 < t < T and x ∈ R, Dx ⊂ U (this is the reason we defined U this way).
Indeed, if −a < x < a, and (x, y) ∈ ω, then, by definition of ω as the complement of [−a, a] ×W0

(eq. (3.6)), we necessarily have y /∈ W0. It follows that e−t+iy−x2/2 ∈ U . In the case x /∈ [−a, a], we

have x2/2 > a2/2. Then, |e−t+iy−x2/2| < e−a
2/2. It follows again that e−t+iy−x2/2 ∈ U . Thus, using

Hölder inequality in eq. (3.12),∫
(0,T )×ω

|gpol(e
−t+iy−x2/2)|2 dtdxdy =

∫
x∈R

∫
Dx
|p(z)|2 dm(z) dx

6
∫
x∈R

m(Dx)‖p‖2L∞(U) dx.

Since Dx ⊂ D(0, e−x
2/2), m(Dx) 6 πe−x

2

. Hence∫
(0,T )×ω

|gpol(e
−t+iy−x2/2)|2 dtdxdy 6 (π)3/2‖p‖2L∞(U).(3.13)

Now, plugging the lower-bound of the left-hand side (3.11) and the upper bound of the right-hand
side (3.13) into the observability inequality (3.10), we obtain a constant C > 0 such that

‖p‖2L2(D(0,e−T )) 6 C‖p‖
2
L∞(U). �

Proof of theorem 3.3. To disprove the inequality, we only have to disprove the inequality on polynomials
given by the previous lemma 3.4. If T < a2/2, the disk D(0, e−T ) is not included in U (see fig. 9).

For instance, if y1 ∈ W̊0 and ε > 0 is small enough, z0 = eiy1−T−ε is not in U . In fact, the half-line
z0[1,+∞) stays at positive distance from U (see fig. 9). Then, according to Runge’s theorem [34,
theorem 13.9], there exists a sequence of polynomials (pk) that converges uniformly on every compact
of C \ z0[1,+∞) to z 7→ (z − z0)−1.

Since U is a compact subset of C \ z0[1,+∞), the sequence pk stays uniformly bounded on U , i.e.,
supk ‖pk‖L∞(U) < +∞. But z0 ∈ D(0, e−T ), and therefore ‖(z − z0)−1‖L2(D(0,e−T )) = +∞. Thanks to
Fatou’s lemma, this proves that ‖pk‖L2(D(0,e−T )) → +∞ as k → +∞.

We have proved that (pk) is a counterexample to the inequality of lemma 3.4, which concludes the
proof of theorem 3.3. �

3.3. From the model case to the generalized Baouendi-Grushin equation. Now, our goal is
to adapt the strategy used in the model case to the generalized Baouendi-Grushin equation (1.2). In
the generalized Baouendi-Grushin equation, if we take the n-th Fourier coefficient in y of g, we get

(3.14) (∂t − ∂2
x + n2q(x)2)ĝ(t, x, n) = 0.
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Recall that for n > 0, Pn is the unbounded operator −∂2
x + n2q2 on L2(I) with Dirichlet boundary

conditions. We will denote by λn the first eigenvalue of Pn and by ϕn a corresponding eigenfunction.
Notice that ϕn is not required to be normalized in L2(I). Then, we will look for a counterexample of
the observability inequality (3.3) with solutions of the generalized Baouendi-Grushin equation (3.2) of
the form

(3.15) g(t, x, y) :=
∑
n>0

anϕn(x)einy−λnt.

Heuristically, this should work because we expect the eigenfunction ϕn to be localized around x = 0 as
n→ +∞, in which case the operator −∂2

x + n2q2 looks like −∂2
x + n2q′(0)2x2, and the eigenvalue and

eigenfunction look like λn ≈ nq′(0) and ϕn(x) ≈ n1/4e−nq
′(0)x2/2. So the solutions g defined above look

like the solutions used to treat the model case (eq. (3.8)), up to a factor q′(0).
In fact, a better approximation of ϕn would be the so-called WKB approximation6

(3.16)

ϕn(x) ≈ n1/4c0(x)e−n dAgm(x),

c′0(x) =
q′(0)−dAgm

′′(x)
2 dAgm

′(x) c0(x),

c0(0) = 1.

Thus, we have

(3.17) g(t, x, y) ≈ c0(x)
∑
n

anen(iy−q′(0)t−dAgm(x)),

i.e., g can almost be written as g(t, x, y) ≈ c0(x)gpol(e
iny−tq′(0)−dAgm(x)), where gpol is the polynomial

gpol(z) :=
∑
n

anz
n.

Let us write this in an exact way. Consider ϕ̃n(x) := n1/4e−nq
′(0)x2/2 and let Πn be the spectral

projection associated to the first eigenvalue λn of Pn. We define7

(3.18) ϕn := Πnϕ̃n.

We will see later that ϕn 6= 0, at least if n is large enough. Let ε ∈ (0, 1), that we need for technical
reason, and that we will later choose close to 0. We define γt,x(n) by

(3.19) γt,x(n− 1) := e−t(λn−q
′(0)n)ϕn(x)en dAgm(x)(1−ε).

The shift of n in the definition is linked to the fact that we will consider p(z) = gpol(z)/z, as we did in
the model case. Then, the solution g defined in eq. (3.15) can be written as

(3.20) g(t, x, y) =
∑
n

anγt,x(n− 1)en
(

iy−q′(0)t−(1−ε) dAgm(x)
)
.

In some sense, this formula tells us that g can be written as “pseudo-differential-type” operator applied
to the “model solution” gpol(e

iy−q′(0)t−(1−ε) dAgm(x)). To successfully adapt the strategy used for the
model Baouendi-Grushin equation, we need some continuity estimates for these “pseudo-differential-type”
operators. We claim that the following estimate holds.

6We write here the first term in the WKB expansion of eigenfunctions, and only in dimension 1, because it is enough
for our purposes. But such a construction can be refined with more terms and in higher dimension [18, Chapter 3 &

Chapter 6, theorem A.3].
Also, in the differential equation that defines c0, we divide by dAgm

′(x), which is equal to 0 at x = 0. But the

numerator is also 0 at x = 0, and simple Taylor expansions at x = 0 proves that the quotient appearing in the differential

equation for c0 is actually well-defined at x = 0.
7We could also have chosen ϕ̃n to be the WKB expansion defined previously, which would be a better approximation

of the eigenfunction. But since we are projecting on the actual eigenfunction afterwards, this is not necessary.
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V

U

r = e−(1−ε) dAgm(a)

Figure 10. The domains U and V .

Lemma 3.5. Let T > 0 and ε > 0. Define γt,x as in eq. (3.19). Let γt,x(z∂z) be the operator on
polynomials defined by

γt,x(z∂z)
(∑

anz
n
)

=
∑

γt,x(n)anz
n.

Let X be a compact subset of C. Let V be an open neighborhood of X that is star-shaped with respect to
0. There exist C > 0 and N ∈ N such that for every polynomial p ∈ C[X] with a zero of order N at 0
and for every 0 < t < T and x ∈ I,

‖γt,x(z∂z)(p)‖L∞(X) 6 C‖p‖L∞(V ).

As γt,x(n) is related to the eigenvalues and eigenfunctions of Pn, proving this lemma requires a
spectral analysis of this operator. What is more surprising is that we actually need a spectral analysis
of Pν when ν is not necessarily real, meaning we have to do some nonselfadjoint spectral analysis. We
will prove lemma 3.5 in section 4.3 with the spectral analysis done in the rest of section 4 and a general
estimate on operators on polynomials [28, theorem 18].

We will also use the relatively elementary bounds on λn and ‖ϕn‖L2(I) given by the following
proposition:

Proposition 3.6. In the limit n→ +∞, λn = nq′(0) + o(n). Moreover, there exist c > 0 and N > 0
such that for every n > N , ‖ϕn‖L2(I) > c.

This proposition is standard (see, e.g., [18, theorem 4.23 & Eq. (4.20)]), nevertheless, for the reader
convenience, we provide a proof in section 4.2.

With these two estimates, we prove the following version of lemma 3.4 adapted for the generalized
Baouendi-Grushin equation.

Lemma 3.7. Assume that the observability inequality (3.3) for the generalized Baouendi-Grushin
equation holds. Let ε > 0 and let U ⊂ C be defined by (see fig. 10)8

U = D(0, e−(1−ε) dAgm(a)) ∪ {z ∈ C : |z| < 1, arg(z) /∈W0}.
Let V be a neighborhood of U that is star-shaped with respect to 0. Then, there exist C > 0 and N ∈ N
such that for every polynomial p ∈ C[X] with a zero of order N at 0, we have

‖p‖L2(D(0,e−q′(0)T (1+ε))) 6 C‖p‖L∞(V ).

8In the variant of theorem 3.1 where distance((a, b) × {y0}, ω) > 0 mentioned in remark 3.2, we have to add

D(0, e−(1−ε) dAgm(b)) to U . In the variant where distance(I × {y0}, ω) > 0, U is only the pacman {z ∈ C : arg(z) /∈W0}.
Their proofs are minor adaptations and are left to the reader.
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Proof. The proof mostly follows the one of lemma 3.4, but with the error term γt,x which will be
handled by lemma 3.5. Let N > 0 as in proposition 3.6 and lemma 3.7. Let p(z) =

∑
n>N anz

n a

polynomial and gpol(z) = zp(z). The discussion above shows that g defined by

(3.21)

g(t, x, y) =
∑
n>N

an−1ϕn(x)e−λnt+iny

=
∑
n>N

an−1γt,x(n− 1)en
(

iy−q′(0)t−(1−ε) dAgm(x)
)

is a solution of the Baouendi-Grushin equation (3.2).

Step 1: Left-hand side of the observability inequality (3.3). Since the functions ψn : (x, y) 7→ ϕn(x)einy

are orthogonal, the left-hand side can we rewritten as∫
I×T
|g(T, x, y)|2 dx dy =

∫
I×T

∣∣∣ ∑
n>N

an−1e−λnTψn(x, y)
∣∣∣2 dxdy

=
∑
n>N

|an−1|2e−2λnT ‖ψn‖2L2(I×T),

using the lower bounds on ‖ϕn‖L2(I) given by proposition 3.6, we get that ‖ψn‖L2(I×T) > c > 0 for
n > N . Thus, ∫

I×T
|g(T, x, y)|2 dx dy > c

∑
n>N

|an−1|2e−2λnT .

Now, thanks to the asymptotics for λn given by proposition 3.6, there exists Cε > 0 such that
λn 6 nq′(0)(1 + ε) + Cε. Thus,∫

I×T
|g(T, x, y)|2 dx dy > ce−2TCε

∑
n>N

|an−1|2e−2nq′(0)T (1+ε).

As in the proof of lemma 3.4, we denote by m the Lebesgue measure on C ' R2, the functions z 7→ zn

are orthogonal on L2(D(0, R),m) and ‖zn‖2L2(D(0,R),m) = πR2n+2/(n+ 1). Thus,

‖p‖2
L2(D(0,e−q′(0)T (1+ε)))

=
∑
n>N

π

n+ 1
|an|2e−2(n+1)q′(0)T (1+ε)

6
∑
n>N

π|an−1|2e−2nq′(0)T (1+ε)

6 C
∫
I×T
|g(T, x, y)|2 dxdy.(3.22)

Step 2: Right-hand side of the observability inequality (3.3). We make the analogous change of variables

as in the model case, but adapted to our case, i.e., (x, z) = (x, e−q
′(0)t+iy−(1−ε) dAgm(x)). We have

dx dm(z) = q′(0)|z|2 dt dx dy. Thus, if we denote by Ω ⊂ I × C the image of (0, T )× ω by this change
of variables, which is a subset of I ×D(0, 1), we have∫

(0,T )×ω
|g(t, x, y)|2 dtdxdy =

1

q′(0)

∫
Ω

∣∣∣∣ ∑
n>N

an−1γt,x(n− 1)zn
∣∣∣∣2|z|−2 dxdm(z)

=
1

q′(0)

∫
Ω

|γt,x(z∂z)(p)(z)|2 dxdm(z).(3.23)
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V

D(0, e−q
′(0)T (1+ε))

z0

Figure 11. When the disk
D(0, e−q

′(0)T (1+ε)) (in red) is
not included in U , we can find
holomorphic functions that are
small in U but arbitrarily big
in D(0, e−q

′(0)T (1+ε)). For in-
stance, we can construct with
Runge’s theorem a sequence of
polynomials that converges to
z 7→ zN+1(z − z0)−1 away from
the blue line.

We keep for simplicity the notation γt,x but of course t is now a function of (x, z). As in the model

case, if (x, z) ∈ Ω, then z ∈ U . Indeed, let (x, z) ∈ Ω, i.e., z = e−t+iy−dAgm(x)(1−ε) with (x, y) ∈ ω. If
a 6 x < L+, then, by definition of ω as the complement of [a, L+)×W0 (eq. (3.1)), we necessarily have
y /∈ W0. It follows that z ∈ U . In the case x < a < 0, since dAgm is decreasing on [−L−, 0], we have

|z| = e−t−dAgm(x)(1−ε) < e− dAgm(a)(1−ε). It follows again that z ∈ U . Thus,∫
(0,T )×ω

|g(t, x, y)|2 dtdxdy 6 C sup
(t,x)∈(0,T )×I

‖γt,x(z∂z)(p)‖2L∞(U).

Now, we use the operator estimate of lemma 3.5, which gives∫
(0,T )×ω

|g(t, x, y)|2 dtdxdy 6 C‖p‖2L∞(V ).(3.24)

Step 3: Conclusion. Now, plugging the lower-bound of the left-hand side (3.22) and the upper bound
of the right-hand side (3.24) into the observability inequality (3.3), we get

‖p‖2
L2(D(0,e−q′(0)T (1+ε)))

6 C‖p‖2L∞(V ). �

Proof of theorem 3.1. As in the model case, we end the proof of non-null controllability by disproving
the inequality on polynomials given by the previous lemma 3.7. If

q′(0)T (1 + ε) < dAgm(a)(1− ε),

the disk D(0, e−q
′(0)T (1+ε)) is not included9 in U , and we can chose a compact neighborhood V of U that

is star-shaped with respect to 0 and such that D(0, e−T (1+ε)) is not included in V (see fig. 11). Choose

some z0 ∈ D(0, e−q
′(0)T (1+ε)) that is not in V . Since V is star-shaped with respect to 0, the half-line

z0[1,+∞) stays at positive distance from V . Then, according to Runge’s theorem [34, theorem 13.9],
there exists a sequence of polynomials (p̃k)k that converges uniformly on every compact of C\z0[1,+∞)
to z 7→ (z − z0)−1.

Set pk(z) := zN+1p̃k. We prove that (pk) is a counterexample to the inequality of lemma 3.7
with the same method as in the model case. Since V is a compact subset of C \ z0[1,+∞), pk
stays uniformly bounded on V , i.e., supk ‖pk‖L∞(V ) < +∞. But z0 ∈ D(0, e−q

′(0)T (1+ε))), and

therefore ‖zN+1(z − z0)−1‖L2(D(0,e−q′(0)T (1+ε))) = +∞. Thanks to Fatou’s lemma, this proves that

‖pk‖L2(D(0,e−q′(0)T (1+ε))) → +∞ as k → +∞.

We have proved that the inequality of lemma 3.7 does not hold, which implies that the observability
inequality (3.3) does not hold either, which in turn implies that the generalized Baouendi-Grushin
equation is not null-controllable. This holds for any ε > 0 and any T such that (1 + ε)q′(0)T <

9In the variant of theorem 3.1 where distance((a, b) × {y0}, ω) > 0 mentionned in remark 3.2, taking into account

footnote 8, the condition becomes q′(0)T (1 + ε) < min(dAgm(a),dAgm(b))(1 − ε). In the variant where distance(I ×
{y0}, ω) > 0, again taking into account footnote 8, D(0, e−q

′(0)T (1+ε)) is never included in U .
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dAgm(a)(1 − ε). Thus, the generalized Baouendi-Grushin equation is not null controllable if T <
dAgm(a)/q′(0). �

4. Spectral Analysis

As explained in section 3.3, we need some spectral properties on the operator Pν = −∂2
x + ν2q(x)2

with Dirichlet boundary conditions on I (defined precisely in eq. (1.4)). We start with an asymptotic
of the first eigenvalue, and in following subsection, we prove some Agmon-type upper bound for the
associated eigenfunctions.

For θ0 ∈
[
0, π2

)
, we set

(4.1) Σθ0 := {ν ∈ C : |ν| > 1, |arg(ν)| 6 θ0} .

4.1. The first eigenvalue and corresponding spectral projection. For β ∈ C with Re(β) > 0,
we denote by Hβ the non-selfadjoint harmonic oscillator −∂2

x + β2x2 on R. We refer to appendix C for
the precise definition and properties of Hβ .

In this paragraph we prove that the operator Pν has an eigenvalue close to the eigenvalue q′(0)ν of
the model operator Hq′(0)ν , and that the corresponding spectral projection is also a perturbation of the
spectral projection of Hq′(0)ν . See proposition 4.2.

For this we first prove that the resolvent of Pν is a perturbation of the resolvent of Hq′(0)ν , in the
sense that the difference between these two resolvents is smaller than the resolvent of Hq′(0)ν .

Notice that the resolvents of Pν and Hq′(0)ν are not defined on the same space. We denote by 1I
the operator that maps a function v ∈ L2(I) to its extension by 0 on R. Then 1∗I is the operator which
maps u ∈ L2(R) to its restriction on I: 1∗Iu = u|I ∈ L2(I).

Proposition 4.1. Let θ0 ∈
[
0, π2

)
. Let γ > 0 and ε > 0. For ν ∈ Σθ0 we set (see eq. (C.2))

(4.2) Z̃ν = Zq′(0)ν,ε,γ =
{
z ∈ C : |z| 6 γq′(0) |ν| , distance(z, σ(Hq′(0)ν)) > εq′(0) |ν|

}
.

Then there exists ν0 > 1 such that for ν ∈ Σθ0 with |ν| > ν0 and z ∈ Z̃ν we have z ∈ ρ(Pν), and

sup
z∈Z̃ν

∥∥(Pν − z)−1 − 1∗I(Hq′(0)ν − z)−11I
∥∥
L(L2(I))

= o
|ν|→+∞
ν∈Σθ0

(
1

|ν|

)
.

Proof. For ν ∈ Σθ0 and z ∈ Z̃ν we set

Rν(z) = 1∗I(Hq′(0)ν − z)−11I ∈ L(L2(I)).

Let

ρ ∈
]

1

3
,

1

2

[
.

We consider a cut-off function χ ∈ C∞0 (R, [0, 1]) supported in [-2,2] and equal to 1 on [-1,1]. Then for
ν ∈ Σθ0 and x ∈ Ī we set

χν(x) = χ(|ν|ρ x).

Step 1: Approximation close to x = 0. We first prove that if |ν| is large enough thenRν(z)χν(Pν − z)−χν
extends to a bounded operator on L2(I) for all z ∈ Z̃ν , and

(4.3) sup
z∈Z̃ν

‖Rν(z)χν(Pν − z)− χν‖L(L2(I)) −−−−−→|ν|→+∞
0.

Here and everywhere below it is implicitly understood that ν always belongs to Σθ0 .
Let u ∈ Dom(Pν). We have χνu ∈ Dom(Pν) and, if |ν| is large enough, 1Iχνu belongs to

Dom(Hq′(0)ν). For x ∈ Ī we set

r(x) = q(x)2 − q′(0)2x2,

so that, for |ν| large enough,

Rν(z)(Pν − z)χνu = χνu+ ν2Rν(z)rχνu.
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The commutator [χν , Pν ] of χν and Pν is equal to [χν , Pν ] = [∂2
x, χν ] = χ′′ν + 2χ′ν∂x, hence

Rν(z)χν(Pν − z)u = Rν(z)(Pν − z)χνu+Rν(z)[χν , Pν ]u

= χνu+ ν2Rν(z)rχνu−Rν(z)χ′′νu+ 2Rν(z)(χ′νu)′.(4.4)

By the resolvent estimate (C.3), we have

(4.5) ∀ν ∈ Σθ0 ,∀z ∈ Z̃ν ,
∥∥(Hq′(0)ν − z)−1

∥∥
L(L2(R))

6
C

|ν|
.

Since |r(x)χν(x)| . |ν|−3ρ
, this gives∥∥ν2Rν(z)rχν

∥∥
L(L2(I))

. |ν|2−1−3ρ −−−−−→
|ν|→+∞

0.

Similarly,

‖Rν(z)χ′′ν‖L(L2(I)) . |ν|
2ρ−1 −−−−−→

|ν|→+∞
0.

Considering the last term in eq. (4.4), we have for v ∈ L2(R)∥∥∥∂x(Hq′(0)ν̄ − z̄
)−1

v
∥∥∥2

L2(R)
+ ν̄2q′(0)2

∥∥∥x(Hq′(0)ν̄ − z̄
)−1

v
∥∥∥2

L2(R)
(4.6)

=
〈
Hq′(0)ν̄

(
Hq′(0)ν̄ − z̄

)−1
v,
(
Hq′(0)ν̄ − z̄

)−1
v
〉
L2(R)

=
〈
v,
(
Hq′(0)ν̄ − z̄

)−1
v
〉
L2(R)

+ z̄
∥∥∥(Hq′(0)ν̄ − z̄

)−1
v
∥∥∥2

L2(R)
.

We multiply by eiθ and take the real part. This gives, uniformly in ν ∈ Σθ0 and z ∈ Z̃ν ,

(4.7)
∥∥∥∂x(Hq′(0)ν̄ − z̄

)−1
∥∥∥2

L(L2(R))
.

1

|ν|
and

∥∥∥x(Hq′(0)ν̄ − z̄
)−1
∥∥∥2

L(L2(R))
.

1

|ν|3
.

Taking the adjoint in the first inequality gives, for |ν| large enough,

‖Rν(z)∂x(χ′νu)‖L2(I) 6
∥∥∥(Hq′(0)ν − z

)−1
∂x(1Iχ

′
νu)
∥∥∥
L2(R)

. |ν|−
1
2 ‖1Iχ′νu‖L2(R)

. |ν|ρ−
1
2 ‖u‖L2(I) ,

and eq. (4.3) follows.

Step 2: Approximation away from x = 0. There exists c0 ∈ (0, 1] such that for all x ∈ I we have

|q(x)| > c0 |x| .

On L2(I) we consider the operator

P̃ν = Pν + ν21[−|ν|−ρ,|ν|−ρ],

with domain Dom(P̃ν) = H2(I)∩H1
0 (I). It has compact resolvent, so its spectrum consists of eigenvalues.

We have q(x)2 + 1[−|ν|−ρ,|ν|−ρ] > c
2
0 |ν|

−2ρ
on I. Then, for u ∈ Dom(P̃ν) and z ∈ Z̃ν ,

Re
(
e−iθ〈(P̃ν − z)u, u〉

)
>
(

cos(θ)c20 |ν|
2−2ρ − γq′(0) |ν|

)
‖u‖2L2(I) .

Thus, when |ν| is so large that γq′(0) |ν| 6 cos(θ0)c20 |ν|
2−2ρ

/2 we have Z̃ν ⊂ ρ(P̃ν) and, for z ∈ Z̃ν ,

(4.8)
∥∥(P̃ν − z)−1

∥∥
L(L2(I))

6
2 |ν|2ρ−2

cos(θ)c20
.
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Then we have

(P̃ν − z)−1(1− χν)(Pν − z)u = (P̃ν − z)−1(1− χν)(P̃ν − z)u

= (P̃ν − z)−1(P̃ν − z)(1− χν)u+ (P̃ν − z)−1[1− χν , P̃ν ]u

= (1− χν)u− 2(P̃ν − z)−1(χ′νu)′ + (P̃ν − z)−1χ′′νu.

As above we estimate ∥∥(P̃ν − z)−1χ′′ν
∥∥
L(L2(I))

. |ν|4ρ−2 −−−−−→
|ν|→+∞

0

and ∥∥(P̃ν − z)−1(χ′νu)′
∥∥
L2(I)

. |ν|ρ−1 ‖χ′νu‖L2(I) . |ν|
2ρ−1 ‖u‖L2(I) .

This proves that

(4.9) sup
z∈Z̃ν

∥∥∥(P̃ν − z)−1(1− χν)(Pν − z)− (1− χν)
∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞

0.

Step 3: Conclusion. For ν ∈ Σθ0 and z ∈ Z̃ν we set

Qν(z) = Rν(z)χν + (P̃ν − z)−1(1− χν).

By eq. (4.3) and eq. (4.9) we have for u ∈ Dom(Pν)

‖Qν(z)(Pν − z)u− u‖L2(I)

6 ‖Rν(z)χν(Pν − z)u− χνu‖L2(I) + ‖(P̃ν − z)−1(1− χν)(Pν − z)u− (1− χν)u‖L2(I)

= o
|ν|→+∞

(1) ‖u‖L2(I) .

This proves that for |ν| large enough, the operator Qν(z)(Pν − z) = 1 + (Qν(z)(Pν − z)− 1) extends to
a bounded operator on L2(I), which is invertible with inverse bounded uniformly in ν, and

(4.10)
∥∥∥(Qν(z)(Pν − z)

)−1 − 1
∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞

0.

In particular, (Pν − z) is injective. Since it has compact resolvent, it is boundedly invertible, and

(Pν − z)−1 =
(
Qν(z)(Pν − z)

)−1
Qν(z).

We get

(4.11)

(Pν − z)−1 −Rν(z) =
(
Qν(z)(Pν − z)

)−1
(P̃ν − z)−1(1− χν)

−
(
Qν(z)(Pν − z)

)−1
Rν(z)(1− χν)

+
((
Qν(z)(Pν − z)

)−1 − 1
)
Rν(z).

We prove that each term of the right-hand side is of size O(|ν|−1
). For the first term we use eq. (4.8).

For the third we use eq. (4.10) and eq. (4.5). Finally, for the second term we observe that on supp(1−χν)

we have |x| & |ν|−ρ so for u ∈ L2(I) we have by the second inequality of eq. (4.7)∥∥(1− χν)1∗I(Hq′(0)ν̄ − z̄)−11Iu
∥∥2

L2(I)
. |ν|2ρ

∥∥x(Hq′(0)ν̄ − z̄)−11Iu
∥∥2

L2(R)
. |ν|2ρ−3 ‖u‖2L2(I) .

Taking the adjoint gives∥∥1∗I(Hq′(0)ν − z)−11I(1− χν)
∥∥
L(L2(I))

= o
ν→+∞

(
1

|ν|

)
,

and the conclusion follows from eq. (4.11). �
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Proposition 4.2. Let θ0 ∈
[
0, π2

)
. There exists νθ0 > 0 such that for ν ∈ Σθ0 with |ν| > νθ0 the

operator Pν has a unique eigenvalue λν which satisfies |λν − q′(0)ν| 6 q′(0) |ν|. Moreover, λν is
algebraically simple and

|λν − q′(0)ν| = o
|ν|→+∞
ν∈Σθ0

(|ν|) .

If we denote by Πν ∈ L(L2(I)) the associated spectral projection, and by ΠH
q′(0)ν ∈ L(L2(R)) the spectral

projection associated to the eigenvalue q′(0)ν of Hq′(0)ν , then

‖Πν − 1∗IΠH
q′(0)ν1I‖L(L2(I)) −−−−−→

|ν|→+∞
ν∈Σθ0

0.

Proof. We recall that for ν ∈ Σθ0 we have

ΠH
q′(0)ν =

1

2iπ

∫
|z−q′(0)ν|=q′(0)|ν|

(Hq′(0)ν − z)−1 dz.

Let ν0 be given by Proposition 4.1 for ε = 1 and γ = 5
2 . If |ν| > ν0 we can set

Bν =
1

2iπ

∫
|z−q′(0)ν|=q′(0)|ν|

(Pν − z)−1 dz.

This is a projection of L2(I) whose range is the sum of the generalized eigenspaces of Pν corresponding
to the eigenvalues in the disk D(q′(0)ν, q′(0) |ν|). In particular the dimension of Ran(Bν) does not
depend on ν ∈ Σθ0 and is finite. We denote by m this dimension and prove that m = 1 by computing
the trace Tr(Bν) of Bν .

By Proposition 4.1 we have

‖Bν − 1∗IΠH
q′(0)ν1I‖L(L2(I)) −−−−−→

|ν|→+∞
ν∈Σθ0

0.

Let Fν be a subspace of L2(I) of dimension m + 1 which contains Ran(Bν) and 1∗Iϕ
H
q′(0)ν . We

consider an orthonormal basis (e0,ν , . . . , em,ν) of Fν . Then∣∣∣Tr
(
Bν − 1∗IΠH

q′(0)ν1I
)∣∣∣ 6 m∑

j=0

∣∣∣〈(Bν − 1∗IΠH
q′(0)ν1I

)
ej,ν , ej,ν

〉∣∣∣
6 (m+ 1)

∥∥∥Bν − 1∗IΠH
q′(0)ν1I

∥∥∥
L(L2(I))

−−−−−→
|ν|→+∞
ν∈Σθ0

0.

Moreover, according to corollary C.2, we have

Tr(1∗IΠ
H
q′(0)ν1I) −−−−→|ν|→∞

ν∈Σθ0

1.

Thus,

Rank(Bν) = Tr(Bν) −−−−→
|ν|→∞
ν∈Σθ0

1,

and hence m = 1. This means that for ν ∈ Σθ0 large enough the operator Pν has a unique eigenvalue
λν in the disk D(q′(0)ν, q′(0) |ν|), and this eigenvalue is algebraically simple.

It remains to prove the estimate on λν . For this we reproduce the same argument with any ε ∈]0, 1].
Then, given ε ∈]0, 1], there exists νε > νθ0 such that the projection

Bν,ε =
1

2iπ

∫
|z−q′(0)ν|=εq′(0)|ν|

(Pν − z)−1 dz

is well defined and has rank 1. This implies that λν belongs to D(q′(0)ν, εq′(0) |ν|) when |ν| > νε and
concludes the proof. �
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4.2. Agmon Estimates of Eigenfunctions.

Proposition 4.3. Let ν ∈ C such that Re(ν) > 0. Let λ be an eigenvalue of Pν with associated
eigenfunction ϕ. Set

µ :=
Re(e−i arg(ν)λ)

cos(arg(ν))
.

Let κ ∈ C2(I;R) and w := eνκϕ. The following Agmon equality holds:

‖w′‖2L2(I) +

∫
I

(
|ν|2(q(x)2 − κ′2(x))− µ

)
|w(x)|2 dx = 0.

Proof. Let ν = |ν|eiθ. The proof follows the usual Agmon’s equality strategy. We have ϕ = e−νκw.
Thus, using Leibniz’ formula,

(Pν − λ)ϕ = −(e−νκ)′′w − 2(e−νκ)′w′ − e−νκw′′ + (ν2q2 − λ)e−νκw

=
(
−w′′ + 2νκ′w′ + (−ν2κ′2 + νκ′′ + ν2q2 − λ)w

)
e−νκ.

Since (Pν − λν)ϕ = 0,

(4.12) − w′′ + 2νκ′w′ + (−ν2κ′2 + νκ′′ + ν2q2 − λ)w = 0.

Multiplying by e−iθw, integrating and taking the real part, we get

0 = −Re

∫
I

e−iθw′′w︸ ︷︷ ︸
I1

+ |ν|Re

∫
I

(2κ′w′w + κ′′|w|2)︸ ︷︷ ︸
I2

+

∫
I

(
cos(θ)|ν|2(q2 − κ′2)− Re(e−iθλ)

)
|w|2︸ ︷︷ ︸

I3

.

Integrating by parts in I1, we have I1 = cos(θ)‖w′‖2L2(I). Considering I2, we get

I2 = |ν|
∫
I

(κ′|w|2)′ = 0.

Thus,

0 = I1 + I3 = cos(θ)‖w′‖2L2(I) +

∫
I

(
cos(θ)|ν|2(q2 − κ′2)− Re(e−iθλ)

)
|w|2,

which is the claimed estimate multiplied by cos(θ). �

We will use proposition 4.3 with κ = (1 − ε) dAgm, where dAgm defined in eq. (1.3). Up to this
point, we assumed ϕ to be an eigenfunction of Pν , but we did not specified which one, neither how it is
normalized. We do this in the following definition, which is the natural extension of the definition of ϕn
when n ∈ N (eq. (3.18)). For Re(ν) > 0 that satisfies the hypotheses of proposition 4.2, let ϕ̃ν ∈ L2(I)
be defined by

ϕ̃ν(x) := ν1/4e−q
′(0)νx2/2,

and

(4.13) ϕν := Πν(ϕ̃ν),

where Πν is the spectral projection for Pν associated with λν , as defined in proposition 4.2.

Proposition 4.4. Let ϕν as in eq. (4.13). Let θ0 ∈
[
0, π2

)
. There exists C > 0 such that for every

ν ∈ Σθ0 with |ν| > 1,

‖ϕ̃ν‖L2(I) 6 C;

‖ϕν‖L2(I) 6 C.

Proof. Step 1: Estimation on ϕ̃ν . Since ϕ̃ν is a restriction of ν1/4e−νq
′(0)x2/2 on R, we have

(4.14) ‖ϕ̃ν‖2L2(I) 6 |ν|
1/2

∫
R

e−2 Re(ν)q′(0)x2/2 dx =

√
π|ν|

q′(0) Re(ν)
6
√

π

q′(0) cos(θ0)
.
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Step 2: Estimation on ϕν . Using the notations of proposition 4.2, we have

(4.15) ‖ϕν‖L2(I) 6
(
‖1∗IΠH

q′(0)ν1I‖L(L2(I)) + ‖Πν − 1∗IΠH
q′(0)ν1I‖L(L2(I))

)
‖ϕ̃ν‖L2(I).

Moreover, according to proposition 4.2, for |ν| large enough in Σθ0 ,

‖Πν − 1∗IΠH
q′(0)ν1I‖L(L2(I)) 6 1.

Since the left-hand side is continuous in ν, we have that for |ν| > 1 and ν ∈ Σθ0 ,

‖Πν − 1∗IΠH
q′(0)ν1I‖L(L2(I)) 6 C.

Finally, according to proposition C.1, ‖ΠH
q′(0)ν‖L(L2) stays bounded for ν ∈ Σθ0 , thus

‖1∗IΠH
q′(0)ν1I‖L(L2(I)) + ‖Πν − 1∗IΠH

q′(0)ν1I‖L(L2(I)) 6 C.

Plugging this fact into eq. (4.15) and combined with the fact that ‖ϕ̃ν‖L2(I) is bounded (eq. (4.14)),
we get the claimed estimate. �

Corollary 4.5. Let ϕν as in eq. (4.13). Let θ0 ∈
[
0, π2

)
and ε ∈ (0, 1). There exists C > 0 such that

for every ν ∈ Σθ0 , ∫
I

∣∣ϕν(x)eν(1−ε) dAgm(x)
∣∣2 dx 6 C|ν|.

‖ϕνeν(1−ε) dAgm(x)‖L∞(I) 6 C|ν|.

Proof. Let wν(x) := ϕν(x)eν(1−ε) dAgm(x). According to the Agmon equality of proposition 4.3 with
ϕ = ϕν and λ = λν , and denoting the corresponding µ by µν , we have

(4.16) ‖w′ν‖2L2(I) +

∫
I

(
|ν|2q(x)2(1− (1− ε)2)− µν

)
|wν(x)|2 dx = 0.

Step 1: First inequality. Let K > 0. We claim that if x ∈ I, ν ∈ Σθ0 and |ν|dAgm(x) > K, then
|ν|2q(x)2 > cK|ν| for some c depending on q, but not on x ∈ I, ν ∈ Σθ0 nor K.

Indeed, routine computations show that in the limit x→ 0, q(x)2 ∼ q′(0)2x2 and dAgm(x) ∼ q′(0)x2/2.
Thus, q(x)2/ dAgm(x)→ 2q′(0) as x→ 0. Moreover, we assumed that for every x 6= 0, q(x) 6= 0, thus
for every x 6= 0, q(x)2/dAgm(x) 6= 0. This proves the claim.

Thus, if K is large enough, then for every x ∈ I such that dAgm(x)|ν| > K

|ν|2q(x)2(1− (1− ε)2)− µν > c|ν|,

where we used the fact that µν ∼ q′(0)|ν|/ cos(arg(ν)) because λν = q′(0)ν + o(ν). Then, splitting the
integral in the Agmon equality (4.16) into a part for |ν|dAgm(x) < K and |ν|dAgm(x) > K, we get

c|ν|‖wν‖2L2(|ν| dAgm(x)>K) 6
∫
|ν| dAgm(x)<K

(
µν − |ν|2q(x)2(1− (1− ε)2)

)
|wν(x)|2 dx

6 C|ν|2‖wν‖2L2(|ν| dAgm(x)<K).

We rewrite this as

‖wν‖2L2(|ν| dAgm(x)>K) 6 C|ν|‖wν‖
2
L2(|ν| dAgm(x)<K).

Adding ‖wν‖2L2(|ν| dAgm(x)<K) on each side, this proves that

‖wν‖2L2(I) 6 C|ν|‖wν‖
2
L2(|ν| dAgm(x)<K).

Using the definition of wν , we see that for |ν|dAgm(x) < K, |wν(x)| 6 eK |ϕν(x)|. Thus, using also the
property ‖ϕν‖L2(I) 6 C (proposition 4.4)

‖wν‖2L2(I) 6 C|ν|‖ϕν‖
2
L2(|ν| dAgm(x)<K) 6 C|ν|.
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Step 2: Second inequality. We again use Agmon’s equality (4.16) to get

‖w′ν‖2L2(I) 6 µν‖wν‖
2
L2(I) 6 C|ν|‖wν‖

2
L2(I) 6 C|ν|

2.

The claimed estimate then follows from Sobolev’s embedding of H1(I) into L∞(I). �

We also prove the lower bound of proposition 3.6 for ϕn when n > 0 is large enough.10

Proof of proposition 3.6. The part about λn was already proved in proposition 4.2. By definition of
ϕn, we have

ϕn = Πnϕ̃n = 1∗IΠ
H
q′(0)n1I ϕ̃n + (Πn − 1∗IΠH

q′(0)n1I)ϕ̃n.

According to proposition 4.2, we have

Πn − 1∗IΠH
q′(0)n1I −−−−−→n→+∞

0.

Moreover, denoting by ϕH
β,1(x) = (Re(β)/π)1/4e−βx

2/2 the first eigenvector of Hβ , we have for β > 0,

ΠH
β = 〈ϕH

β,1, ·〉ϕH
β,1. Thus,

〈ϕH
q′(0)n,1,1

∗
I ϕ̃n〉 =

√
n

(
q′(0)

π

)1/4 ∫
I

e−nq
′(0)x2

dx.

The integral above is on I, but if we integrate on R instead, we only add a small error term. Thus,

〈ϕH
q′(0)n,1,1

∗
I ϕ̃n〉 =

(
π

q′(0)

)1/4

+ o
n→+∞

(1).

Hence,

ϕn =

(
π

q′(0)

)1/4

1∗Iϕ
H
q′(0)n,1 + o

n→+∞
(‖ϕ̃n‖L2(I) + 1).

Since ‖ϕ̃n‖L2(I) is bounded (proposition 4.4) and since ‖1∗IϕH
q′(0)n,1‖L2(I) = 1 + o(1) (thanks to similar

computations as above), this proves the claimed lower bound. �

4.3. Estimate for some pseudo-differential type operators on polynomials. In this section,
we use the spectral analysis of the operator Pν to deduce the operator estimate of lemma 3.5. In order
to do that, we need some definitions and theorems about a general class of operators on polynomials.
The following comes from [28, definition 9 & theorem 18].

Definition 4.6. Let Ω be an open subset of C. Assume that there exists (rθ)06θ<π/2 with rθ > 0 such
that

⋃
06θ<π/2 Σθ \D(0, rθ) ⊂ Ω (see fig. 12).

We denote by S(Ω) the set of functions γ holomorphic on Ω that have sub-exponential growth on
each Σθ ∩ Ω, i.e., for each θ ∈ [0, π/2) and δ > 0, we have

pθ,δ(γ) := sup
ν∈Σθ∩Ω

|γ(z)e−δ|ν|| < +∞.

We endow S(Ω) with the topology defined by the seminorms pθ,δ for all θ ∈ [0, π/2) and δ > 0.

For the next theorem, if U is an open subset of C, we denote the set of bounded holomorphic
functions on U that have a zero of order n0 at 0 by O∞n0

(U). We endow O∞n0
(U) with the L∞-norm.

Theorem 4.7. Let Ω ⊂ C as in definition 4.6 and set n0 = min{n ∈ N : [n,+∞) ⊂ Ω}. Let γ in S(Ω)
and γ(z∂z) be the operator on polynomials with a zero of order n0 at 0, defined by:

γ(z∂z)

( ∑
n>n0

anz
n

)
=
∑
n>n0

γ(n)anz
n.

10This theorem actually holds if ν ranges over Σθ0 by using the expression of ΠH
β . We don’t need this, so we refrain

from doing so.
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Σθ \D(0, rθ)

rθ

θ
Figure 12. An example of a set Σθ \
D(0, rθ) ⊂ Ω. The angle θ is allowed to be
arbitrarily close to π/2, but then, the radius
rθ of the disk we avoid may blow up arbi-
trarily fast. For the Ω we will consider, the
corresponding rθ does blow up when θ → π/2
(at least, we cannot exclude that it blows up).

Let U be a bounded open subset of C. Let V be a neighborhood of U that is star shaped with respect to
0. Then there exists C > 0 such that for all polynomials p with a zero of order n0 at 0,

‖γ(z∂z)(p)‖L∞(U) 6 C‖p‖L∞(V ).

Moreover, the constant C above can be chosen continuously in γ ∈ S(Ω): the map γ ∈ S(Ω) 7→ γ(z∂z)
is continuous from S(Ω) to L

(
O∞n0

(V ), O∞n0
(U)
)
.

We now have all the pieces needed to prove lemma 3.5.

Proof of lemma 3.5. Let θ0 ∈
[
0, π2

)
. According to proposition 4.2 there exists rθ0 such that if |ν| > rθ0

and |arg(ν)| < θ0, then there exists a unique eigenvalue λν of Pν close to q′(0)ν. Moreover, this
eigenvalue is algebraically and geometrically simple.

Set Ω =
⋃
θ0∈[0,π/2) Σθ0 \D(0, rθ0). Notice that by definition, Ω satisfies the property of definition 4.6.

For 0 < t < T , x ∈ I and ν ∈ Ω, we define

γ̃t,x(ν) := e−t(λν−q
′(0)ν)ϕν(x)eν dAgm(x)(1−ε),

and

(4.17) γt,x(ν) = γ̃t,x(ν + 1)

which is the natural extension of the definition of γt,x(n) when n ∈ N.

Step 1: The family (γ̃t,x)0<t<T,x∈I is a bounded family11 of S(Ω). According to proposition 4.2,
λν is algebraically simple on Ω. Thus, according to analytic perturbation theory (see, e.g., [26,
Chapter VII, §1]), λν and the associated spectral projection are holomorphic in ν ∈ Ω. Since

ϕν = Πν

(
ν1/4e−νq

′(0)x2/2
)
, ϕν is holomorphic in ν ∈ Ω. We conclude that γ̃t,x(ν) is holomorphic in

ν ∈ Ω.
We still have to prove that (γ̃t,x)0<t<T,x∈I is a bounded family of S(Ω). Let us set

ηt(ν) := e−t(λν−q
′(0)ν);

ζx(ν) := ϕν(x)eν dAgm(x)(1−ε),

and prove that both of the families (ηt)0<t<T and (ζx)x∈I are bounded in S(Ω). It is easy to see that
(γ1, γ2) ∈ (S(Ω))2 7→ γ1γ2 ∈ S(Ω) is bounded, so this will prove the claim.

Let θ0 ∈
[
0, π2

)
and δ > 0. According to proposition 4.2, we have in the limit |ν| → +∞, ν ∈ Σθ0 ,

λν − νq′(0) = o(ν). Thus, for ν large enough in Σθ0 ,

|ηt(ν)e−δ|ν|| = |eto(|ν|)−δ|ν|| < eTCθ0,δ .

Thus, (ηt)0<t<T is a bounded family of S(Ω).

11Let us recall that if E is locally convex vector space whose topology is generated by a family (pι)ι of seminorms, a

subset X of E is bounded if and only if for every ι, the set {pι(x), x ∈ X} is a bounded subset of R.



24 JÉRÉMI DARDÉ, ARMAND KOENIG, AND JULIEN ROYER

ω

γ

γ1
γ2

a− a+

y−

y+
x

y

Figure 13. In green, the domain ω. At y = y−, the function γ−2 takes its maximum a−.
Then, the interval (a−, L+)× {y−} is disjoint from ω. So, the Grushin equation is not
null-controllable in time T < dAgm(a−)/q′(0). Similarly, the interval (−L−, a+)×{y+}
is disjoint from ω. So, the Grushin equation is not null-controllable in time T <
dAgm(a+)/q′(0). Also, if we take a path γ (here in blue) that is close to the boundary
of ω around y = y− and y = y+, then, we can apply theorem 1.4, and the Grushin
equation is null-controllable in time T > max(dAgm(a−),dAgm(a+))/q′(0).

Similarly, according to corollary 4.5, we have for any x ∈ I, and ν large enough in Σθ0 ,

|ζx(ν)e−δ|ν|| 6 C.

This prove that (ζx)x∈I is a bounded family of S(Ω).

Step 2: The family (γt,x)0<t<T,x∈I is a bounded family of S(Ω). According to the definition of Ω
as a union of domains that look like the one of fig. 12, Ω is stable by ν 7→ ν + 1. Then, the map
γ ∈ S 7→ γ(·+ 1) ∈ S is well-defined and continuous. Thus, according to the first step and the definition
of γ (eq. (4.17)), the family (γt,x)0<t<T,x∈I is indeed a bounded family of S(Ω).

Step 3: Conclusion. Let n0 = min{n ∈ N : [n,+∞) ⊂ Ω}.12 Let U be a bounded open neighborhood of
X such that U ⊂ V . Then, the sets U and V satisfy the hypotheses of theorem 4.7. Hence, according
to theorem 4.7, there exists C > 0 such that for every polynomials p with a zero of order n0 at 0, and
for every x ∈ I and 0 < t < T ,

‖γt,x(z∂z)(p)‖L∞(U) 6 C‖p‖L∞(V ). �

5. Critical time of null-controllability for some domains

In this section, we prove theorem 1.6.

Proof of theorem 1.6. Set a− = −max(γ−2 ) and a+ = max(γ+
1 ). Denote by y− ∈ T and y+ ∈ T points

where these maxima are reached.

Step 1: Lower bound of the minimal time. For this step, we only have to treat the case T∗ > 0. In this
case, either a− < 0 or a+ > 0. If a− < 0, for any a− < a < 0, the segment [a, L+] × {y−} stays at
positive distance of ω, and thanks to theorem 3.1, the generalized Baouendi-Grushin equation (3.2)
is not null-controllable on ω in time T < dAgm(a)/q′(0). Similarily, if a+ > 0, for any 0 < a < a+,
the segment [−L−, a]× {y+} stays at positive distance from ω, and the generalized Baouendi-Grushin
equation is not null-controllable in time T < dAgm(a)/q′(0).

12In fact, we can be more precise in the the construction of Ω and ensure that R+ ⊂ Ω, in which case n0 = 0. Indeed,

the spectral theory of compact operators proves that for every ν ∈ C, the spectrum of Pν is a discrete sequence of
eigenvalues. The uniqueness of the solution of Cauchy problems for ODEs proves that when ν > 0, these eigenvalues
are actually geometrically and algebraically simple. Finally, perturbation theory proves that the first eigenvalue is
holomorphic on the neighborhood of R+. We do not need this, so we do not detail this.
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This holds for any a− < a < 0 and 0 < a < a+, thus the generalized Baouendi-Grushin equation (3.2)
is not null-controllable in time T < T∗.

Step 2: Upper bound of the minimal time. Let ε > 0 small enough so that γ2 − γ1 > ε. Let
γ̃1 = max(γ1, a−−ε) and γ̃2 = min(γ2, a+ +ε). By using the information γ2−γ1 > ε, a− 6 γ2, γ1 6 a+

and by looking at the different cases, we readily get γ̃2 − γ̃1 > ε. Then, we define the path

γ = (γx, γy) : s ∈ T 7→
(
γ̃1(s) + γ̃2(s)

2
, s

)
.

This path satisfies γ1 + ε/2 6 γx 6 γ2 − ε/2, hence γ(T) ⊂ ω. Moreover, we see that it satisfies the
hypotheses of theorem 1.4, because the connected components of (I × T) \ γ(T) are {(x, y) : x < γx(y)}
and {(x, y) : x > γx(y)}. Moreover, this path satisfies

a− −
ε

2
6 γx 6 a+ +

ε

2
.

Thus, theorem 1.4 implies that the generalized Baouendi-Grushin equation (3.2) is null-controllable in
time T > max(dAgm(a+ + ε/2),dAgm(a− − ε/2))/q′(0). As this holds for every ε > 0 small enough, the
result follows. �

Appendix A. Control of the Baouendi-Grushin equation on I × (0, π)

In the article, we stated and proved results on the Baouendi-Grushin posed on I × T. These results
have a version for the Baouendi-Grushin equation posed on I × (0, π):

(A.1)


(∂t − ∂2

x − q(x)2∂2
y)f(t, x, y) = 1ωu(t, x, y), t ∈ (0, T ), x ∈ I, y ∈ (0, π)

f(t, x, y) = 0, t ∈ (0, T ), (x, y) ∈ ∂(I × (0, π)),
f(0, x, y) = f0, x ∈ I, y ∈ (0, π).

Here, we precisely state them and explain what are the differences, if any, in their proofs. The precise
definition of the operator, especially its domain, is again the Friedrichs’ extension. That it generates an
analytic semigroup is again proved with Hille-Yosida’s theorem. We again refer to [24, 12, 7] for the
details.

The adaptation of the positive controllability result is:

Theorem A.1. Assume that q ∈ C3(I) is such that q(0) = 0 and minI q
′ > 0. Let ω be an open

subset of I × [0, π]. Assume that there exists γ = (γx, γy) ∈ C0([0, 1], I × [0, π]) such that γ((0, 1)) ⊂ ω,
γy(0) = 0 and γy(1) = π.

The generalized Baouendi-Grushin equation (A.1) is null-controllable on ω in time T such that

T >
1

q′(0)
max

(
dAgm

(
min
T

(γx)
)
,dAgm

(
max
T

(γx)
))

.

The proof is mostly the same, the only small difference being the construction of the cutoff function,
which is done thanks to proposition B.5 and the natural adaptation of proposition B.1.

The adaptation of the negative result theorem 1.3 is straightforward. We use the same notation δ as
in theorem 1.3:

Theorem A.2. Assume that q ∈ C2(I) is such that q(0) = 0, q′(0) > 0 and q(x) 6= 0 whenever x 6= 0.
Let ω be an open subset of I × (0, π). Assume that there exist a ∈ [−L−, 0), b ∈ (0, L+] and y0 ∈ (0, π)
such that

distance
(
(a, b)× {y0}, ω

)
> 0.

Then, the generalized Baouendi-Grushin equation (A.1) is not null-controllable on ω in time T such
that

T <
1

q′(0)
min (δ(a), δ(b)) .

We prove this theorem with the following lemma:
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Lemma A.3. Let T > 0 and let ω be an open subset of I × (0, π). Denote by S(ω) the symmetric of ω
with respect to {y = 0}. Let λn and ϕn as in eq. (3.18).

Assume that the generalized Baouendi-Grushin equation with Dirichlet boundary conditions (A.1) is
null controllable on ω in time T , then for every complex sequence (an) with a finite number of nonzero
terms, ∑

n>0

|an|2‖ϕn‖2L2(I)e
−2λnT 6 C

∫
[0,T ]×(ω∪S(ω))

∣∣∣∣∑
n>0

anϕn(x)einy−λnt
∣∣∣∣2 dtdxdy.

Sketch of the proof. This lemma is proved by testing the associated observability inequality on the
function g(t, x, y) =

∑
n>0 anϕn(x) sin(ny)e−λnt, and writing sin(ny) = (einy − e−iny)/(2i). Thus, with

g̃(t, x, y) =
∑
n>0 anϕn(x)einy−λnt, g(t, x, y) = (g̃(t, x, y)− g̃(t, x,−y))/(2i), the right-hand side of the

observability inequality satisfies

‖g‖2L2([0,T ]×ω) 6
1

2
(‖g̃‖2L2([0,T ]×ω) + ‖g̃‖2L2([0,T ]×S(ω))).

The right-hand side of this inequality is the right-hand side of the claimed estimate. �

Theorem A.2 is then proved by remarking that we already disproved such an inequality in section 3.3.

Appendix B. Existence of the cutoff function and homotopy

We begin with the construction of the cutoff function used in the proof of theorem 1.4.

Proposition B.1. Let a < b and let ω be an open subset of (a, b) × T. Assume that there exists a
closed path γ = (γx, γy) ∈ C0(T; ω) such that {a} × T and {b} × T are included in different connected
components of ([a, b]× T) \ γ(T). Let ω− = [a,min γx]× T and ω+ = [max γx, b]× T. There exists a
function χ ∈ C∞([a, b]× T) such that:

• χ = 0 on ω+ \ ω;
• χ = 1 on ω− \ ω;
• supp(∇χ) ⊂ ω.

Proof of proposition B.1. Step 1: Defining χ. Let ε > 0 small enough so that distance(γ(T), {a, b} ×
T) > ε and such that for any z ∈ γ(T), B(z, ε) ⊂ ω. We set

ω0 := {z ∈ [a, b]× T : distance(z, γ(T)) < ε}.

Let ρ ∈ C∞c (B(0, ε/2)) with
∫
B(0,ε/2)

ρ(z) dz = 1. Consider Ω the connected component of {a} × T in

(R× T) \ γ(T). Set χ = ρ ∗ 1Ω (initially defined on R× T and then restricted on [a, b]× T).

Step 2: supp(∇χ) ⊂ ω0. According to the definition of Ω, 1Ω is locally constant outside of γ(T).
This implies that χ is locally constant around each z such that distance(z, γ(T)) > ε/2. Hence
supp(∇χ) ⊂ {z : distance(z, γ(T)) 6 ε/2}. According to our choice of ε, this proves the claim that
supp(∇χ) ⊂ ω0 ⊂ ω.

Step 3: Value of χ on ω−\ω. According to the definition of χ and the fact that distance({a}×T, γ(T)) >
ε, for any y0 ∈ T, χ(a, y0) = 1. Moreover, ω− \ ω0 is connected (according to the definition of ω−, we
can connect every (x, y) ∈ ω− \ω0 to the left boundary {a}×T with the horizontal segment [a, x]×{y}).
According to the previous step, χ is locally constant outside ω0. Hence, χ is constant in ω− \ ω0.

Step 4: Value of χ on ω+ \ ω. According to the definition of χ and proposition B.2, χ = 0 on {b} × T.
The rest of this step is a copy-paste of the previous step. �

Now, we justify remark 1.5, with the following two propositions:

Proposition B.2. Let a < b and let γ ∈ C0(T, (a, b) × T) be a closed path that is not homotopic
to a constant path. Then {a} × T and {b} × T are included in different connected components of
([a, b]× T) \ γ(T).
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Figure 14. Illustration of the path c2 defined in the proof of proposition B.2.

Proof. Assume that for some y0, y1 ∈ T, there exists a continuous path c1 in (I ×T) \ γ(T) from (a, y0)
to (b, y1). Since I × T is Hausdorff, we may assume that c1 is simple. We can also assume that c1
touches the boundaries {a, b} × T only at the start and end.

Now, consider the universal cover [a, b]× R of [a, b]× T. Consider c̃1 a lift of c1 to [a, b]× T, that
starts at (a, ỹ0) and ends at (b, ỹ1). Let c2 the simple closed loop formed by concatenating c1, the
vertical segment {b}× [ỹ1, ỹ1 + 2π], the reverse of the path c̃1 + (0, 2π), and finally the vertical segment
{a} × [ỹ0, ỹ0 + 2π] from top to bottom (see fig. 14).

If we see this path c2 as a path on R2, according to Jordan’s theorem, R2 \ c2 has two path-connected
components, one of them bounded. Let us denote by Ω1 this bounded component, which, according to
Jordan-Schoenflies’ theorem, is simply connected. One of the lift of γ lies in Ω1, let us call it γ̃. But γ
is not homotopic to a constant path, which contradicts the simple connectedness of Ω1. �

Proposition B.3. Let ω be a connected open subset of [a, b]× T such that {a} × T and {b} × T are
included in different connected components of ([a, b]×T) \ω. Let ω̃ a connected open subset of [a, b]×T
such that ω ⊂ ω̃.

There exists a closed path γ ∈ C0(T, ω̃) that is not homotopic in [a, b]× T to a constant path.

Remark B.4. Let γ be a closed path in (a, b)×T such that {a}×T and {b}×T are included in different
connected components of ([a, b]× T) \ γ(T). It is possible this path γ is homotopic to a constant path,
but proposition B.3 applied with ω := {z : distance(z, γ(T)) < ε} and ω̃ := {z : distance(z, γ(T)) < 2ε}
tells us that for any ε > 0 there exists a path γ̃ that stays at distance at most 2ε from γ(T) and that is
not homotopic to a constant path.

Proof. The proof uses some basic tools of algebraic topology, in particular van Kampen’s theorem (see
for instance Hatcher’s “Algebraic Topology” [23, §0.1, §1.1–1.2]).

Let C− be the connected component of {a} × T in ([a, b]× T) \ ω. Set

(B.1) A− := C− ∪ ω̃, A+ :=
(
([a, b]× T) \ C−

)
∪ ω̃.

Step 1: Every connected component C of ([a, b]×T) \ ω is closed and satisfies ∂C ⊂ ω̃. Here, ∂C is the
boundary of C as a subset of [a, b]× T.

Indeed, connected components of a topological space X are closed in X, hence C is closed in
([a, b]× T) \ ω, which is itself closed in [a, b]× T.

If x ∈ ∂C is such that x /∈ ∂ω, then there exists ε > 0 such that B(x, ε) ⊂ ([a, b] × T) \ ω. But
then, B(x, ε) is included in the connected component of x, i.e., C. By contradiction, we see that every
x ∈ ∂X is in ∂ω ⊂ ω̃.

Step 2: A+ and A− are open and connected. We begin with the openness of A−. If x ∈ A−, there are
three cases:

• If x is in the interior of C−, it is in the interior of A− by definition.
• If x is in ω̃, since ω̃ is open, x is also in the interior of A−.
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• If x ∈ ∂C−, according to step 1, x ∈ ω̃ which implies that x is in the interior of A−.

The subset A+ is open because it is the union of the open subsets ([a, b]× T) \ C− and ω̃.
Since A− is the union of two connected subset that have a non-empty intersection (we saw in step 1

that ∂C− ⊂ C−∩ ω̃), A− is connected. Finally, A+ is connected because it is the union of the connected
subset ω̃ and of the connected components of [a, b]× T \ ω other than C−, which all have a non-empty
intersection with ω̃.

Step 3: Conclusion using van Kampen’s theorem. If α is a closed path in a topological space X, we will
denote its homotopy class by [α]X . We will denote the fundamental group of X by π1(X). We will
denote by p− (respectively p+) the canonical injection of π1(A−) (respectively π1(A+)) into the free
product π1(A−) ∗ π1(A+).

According to van Kampen’s theorem [23, Theorem 1.20], the map k : π1(A−)∗π1(A+)→ π1([a, b]×T)
defined by

[α]A± ∈ π1(A±) 7→ [α][a,b]×T ∈ π1([a, b]× T)

is surjective. Moreover, its kernel is generated by p+([α]A+)p−([α]A−)−1 for all closed paths α in
A− ∩A+ = ω̃.

If we denote the closed path s ∈ T 7→ (a, s) ∈ [a, b]× T (respectively s 7→ (b, s)) by β− (respectively
β+), the definition of k implies that

k(p−([β−]A−)) = [β−][a,b]×T = [β+][a,b]×T = k(p+([β+]A+)).

Thus, ξ := p−([β−]A−)p+([β+]A+
)−1 ∈ ker(k). According to the previous discussion, ξ is a product of

terms of the form p±([αk]A±)p∓([αk]A∓)−1 for a finite number of paths αk in ω̃. Reducing the word ξ
in the free product π1(A−) ∗ π1(A+), ξ can be written in the form

(B.2) p−([β−]A−)p+([β+]A+
)−1 = ξ = p±([α̃1]A±)p∓([α̃2]A∓)p±([α̃3]A±) · · ·

where none of the terms in the right-hand side are the neutral element of π1(A±). Since the left-hand
side is already a reduced word, by definition of the free product of groups, the two words on the left
and right-hand side of this equality are the same. Thus there are exactly two factors in the right-hand
side of eq. (B.2) and

[β−]A− = [α̃1]A− , [β+]−1
A+

= [α̃2]A+
.

The first equality tells us that α̃1 is homotopic in A− to β−. Since α̃1 is in ω̃ and since β− is not
homotopic to a constant path in [a, b]× T, this proves the proposition. �

To end this appendix, we mention that proposition B.2 has a variant when the domain is (a, b)× [0, π]
instead of (a, b)× T:

Proposition B.5. Let a < b and let γ = (γx, γy) ∈ C0([0, 1], (a, b) × [0, π]) be a closed path such
that γy(0) = 0 and γy(1) = π. Then {a} × [0, π] and {b} × [0, π] are included in different connected
components of [a, b]× [0, π] \ (γ([0, 1])).

The proof also uses Jordan’s theorem, but in a simpler way than proposition B.2, and is left to the
reader.

Appendix C. Non-selfadjoint harmonic oscillators

Let β ∈ C with Re(β) > 0. We discuss in this appendix the basic properties of the non-selfadjoint
harmonic oscillator (or Davies operator) defined on L2(R) by

(C.1) Hβ = −∂2
x + β2x2.

More precisely, we set

Dom(Hβ) =
{
u ∈ L2(R) : −∂2

xu+ β2x2u ∈ L2(R)
}
,

where −∂2
xu + β2x2u is understood in the sense of distributions, and we define Hβ by eq. (C.1) on

Dom(Hβ). This defines an unbounded operator on L2(R). When β = 1 we recover the usual harmonic
oscillator.
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The spectral properties of the Davies operator has been studied (see, among others, [17, §14.5], [24,
§14.4], [29], and the references therein), and the properties stated in this appendix are standard, at
least in spirit. Nevertheless, for the reader convenience, we collect and prove the properties needed in
our study.

Proposition C.1. Let β ∈ C with Re(β) > 0.

(i) The operator Hβ is closed and has compact resolvent.
(ii) The adjoint of Hβ is H∗β = Hβ̄.

(iii) The spectrum of Hβ is given by the sequence of (geometrically and algebraically) simple eigenvalues
(λH
β,k)k∈N∗ where

λH
β,k = (2k − 1)β.

An eigenfunction associated to λH
β,k is given by

ϕH
β,k(x) = hk−1(

√
βx)e−βx

2/2, where hk−1(x) = (−1)k−1ex
2

∂k−1
x (e−x

2

)

is the (k − 1)-th Hermite polynomial.
(iv) For γ > 0 and ε > 0 we set

(C.2) Zβ,ε,γ := {ν ∈ C : |z| 6 γ |β| , distance(z, σ(Hβ)) > ε |ν|}.

Let θ0 ∈
[
0, π2

)
. There exists C > 0 such that if β ∈ Σθ0 (see eq. (4.1)) then for z ∈ Zβ,ε,γ we

have

(C.3)
∥∥(Hβ − z)−1

∥∥
L(L2(R))

6
C

|β|
.

(v) We denote by ΠH
β the spectral projection of Hβ associated to the eigenvalue λH

β,1 = β. Then we
have

(C.4) Πβu =

〈
ϕH
β̄,1
, u
〉〈

ϕH
β̄,1
, ϕH

β,1

〉ϕH
β,1.

and

(C.5)
∥∥ΠH

β

∥∥
L(L2(R))

=

√
|β|

Re(β)
=

1√
cos(arg(β))

.

Proof. Step 1: Hβ has compact resolvent. The closedness of Hβ is clear. Let θ = arg(β) ∈
(
− π

2 ,
π
2

)
.

For u ∈ Dom(Hβ) we have

(C.6)
〈
e−iθHβu, u

〉
L2(R)

= e−iθ ‖u′‖2L2(R) + |β|2 eiθ ‖xu‖2L2(R) ,

so e−iθHβ is sectorial with angle θ. In particular, (e−iθHβ + 1) is injective. Now let

B1(R) =
{
u ∈ H1(R) : xu ∈ L2(R)

}
.

This is a Hilbert space for the natural norm

‖u‖2B1(R) = ‖u‖2H1(R) + ‖xu‖2L2(R) .

For u, v ∈ B1(R) we set

Qβ(u, v) = e−iθ 〈u′, v′〉L2(R) + |β|2 eiθ 〈xu, xv〉L2(R) + 〈u, v〉L2(R) .

Let f ∈ L2(R). By the Lax-Milgram Theorem, there exists a unique u ∈ B1(R) such that Qβ(u, v) =
〈f, v〉L2(R) for all v ∈ B1(R). In the sense of distributions we have e−iθ(−u′′ + β2x2u) + u = f ∈ L2(R),

so u ∈ Dom(Hβ) and (e−iθHβ + 1)u = f . This proves that eiθ belongs to the resolvent set of Hβ .
Finally, taking the real part of eq. (C.6) gives for u ∈ Dom(Hβ)

‖u′‖2L2(R) + |β|2 ‖xu‖2L2(R) 6
Re
〈
e−iθHβu, u

〉
cos(θ)

6
1

2 cos(θ)

(
‖Hβu‖2L2(R) + ‖u‖2L2(R)

)
.
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We deduce that Dom(Hβ) is compactly embedded in L2(R). Since Hβ has nonempty resolvent set, it
has compact resolvent. In particular, its spectrum consists of isolated eigenvalues of finite multiplicities.

Step 2: Computation of (Hβ)∗. Let v ∈ Dom(Hβ̄). For u ∈ Dom(Hβ) we have 〈Hβu, v〉 =
〈
u,Hβ̄v

〉
,

so Dom(Hβ̄) ⊂ Dom(H∗β) and H∗β = Hβ̄ on Dom(Hβ̄). Now let v ∈ Dom(H∗β) and f = H∗βv. Then

v ∈ L2(R) and in the sense of distributions we have −v′′ + β̄2x2v = f ∈ L2(R), so v ∈ Dom(Hβ̄). This
proves that Dom(H∗β) ⊂ Dom(Hβ̄), and hence H∗β = Hβ̄ .

Step 3: Eigenvalues and eigenfunctions of Hβ, completeness of the eigenfunctions. For k ∈ N∗ we have
ϕH
β,k ∈ Dom(Hβ) and it is classical computation that for β = 1, (see, e.g., [24, §1.3])

H1ϕ
H
1,k = λH

1,kϕ
H
1,k

Noticing that ϕH
β,k(x) = ϕ1,k(

√
βx), routine computations using the scaling x′ =

√
βx show that

Hβϕ
H
β,k = λH

β,kϕ
H
β,k.

Then λH
β,k is an eigenvalue of Hβ and ϕH

β,k is a corresponding eigenfunction.

Let u ∈ span(ϕH
β,k)⊥k∈N∗ . Then for all polynomial p we have

∫
R u(x)p(

√
βx)e−βx

2/2 dx = 0. For ξ ∈ R
we set F (ξ) =

∫
R eixξu(x)e−βx

2/2 dx. Then F is analytic and F (n)(0) = 0 for all n ∈ N. This implies

that u(x) = 0 for almost all x ∈ R, so the family (ϕH
β,k)k∈N∗ is complete.

Step 4: Resolvent estimate. The map

(θ, ζ) 7→
(
Heiθ − eiθζ

)−1

is continuous and hence bounded on the compact [−θ0, θ0]×Z1,ε,γ , so eq. (C.3) holds if |β| = 1.
For ρ > 0 we consider on L2(R) the unitary operator Θρ such that for u ∈ L2(R) and x ∈ R we have

(Θρu)(x) = ρ
1
2u(ρx).

We observe that

Θ−1

|β|
1
2
HβΘ

|β|
1
2

= |β|H β
|β|
,

so for z ∈ Zβ,ε,γ we have∥∥(Hβ − z)−1
∥∥
L(L2(R))

=
1

|β|

∥∥∥∥∥
(
H β
|β|
− z

|β|

)−1
∥∥∥∥∥
L(L2(R))

.

Since |β|−1Zβ,ε,γ = Zβ/|β|,ε,γ , we deduce eq. (C.3) in the general case.

Step 5: Spectral projection. In the integral
〈
ϕH
β,k
, ϕH

β,1

〉
=
∫
R hk−1(

√
βx)e−βx

2

dx, we make the change

of variables and integration path x′ =
√
βx, which can be justified thanks to the gaussian decay of the

integrand, and we find〈
ϕH
β,k
, ϕH

β,1

〉
=

1√
β

∫
R
hk−1(x)e−x

2

dx =
1√
β

〈
ϕH

1,k, ϕ
H
1,1

〉
.

Since the functions (ϕH
1,k) are eigenfunctions of the self-adjoint operator H1 associated to different

eigenvalues, we have 〈ϕH
1,k, ϕ

H
1,1〉 = 0 for k 6= 1. Since 〈ϕH

1,1, ϕ
H
1,1〉 =

√
π, we finally have

(C.7)
〈
ϕH
β,k
, ϕH

β,1

〉
=


√
π

β
if k = 1;

0 if k 6= 1.

Thus, we can define

Π̃βu =

〈
ϕH
β̄,1
, u
〉〈

ϕH
β̄,1
, ϕH

β,1

〉ϕH
β,1.
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Then, for k ∈ N∗

Π̃βϕ
H
β,k =

{
ϕH
β,1 if k = 1;

0 if k 6= 1.

According to step 3, the family (ϕH
β,k)k is complete, hence, by density, Π̃β is indeed the spectral

projection ΠH
β .

Since ϕH
β,1(x) = e−βx

2/2, we can compute

‖ϕH
β,1‖2L2(R) = ‖ϕH

β̄,1‖
2
L2(R) =

√
π

Re(β)

and eq. (C.5) follows with eq. (C.7). �

Corollary C.2. Let ΠH
β as in proposition C.1. Let I ⊂ R be an open interval that contains 0. Let

θ0 ∈ [0, π/2). Then
Tr(1∗IΠ

H
β 1I) −−−−−−−→|β|→∞

|arg(β)|6θ0

1.

Proof. The reader who is not familiar with the trace of operators in infinite dimensional space may
read, for instance, [26, Chapter 10, §1.3–1.4]. We have Tr(1∗IΠ

H
β 1I) = Tr(1I1

∗
IΠ

H
β ). Let (ψk)k be an

orthonormal basis of L2(R) such that ψ1 = ‖1I1∗IϕH
β,1‖−11I1

∗
Iϕ

H
β,1. Then,

Tr(1I1
∗
1ΠH

β ) =
∑
k

〈
1I1

∗
IΠ

H
βψk, ψk

〉
=
〈
1I1

∗
IΠ

H
βψ1, ψ1

〉
= ‖1I1∗IϕH

β,1‖−2

〈
ϕH
β̄,1
,1I1

∗
Iϕ

H
β,1

〉〈
ϕH
β̄,1
, ϕH

β,1

〉 〈
ϕH
β,1,1I1

∗
Iϕ

H
β,1

〉
=

∫
I
ϕH
β,1(x)2 dx∫

R ϕ
H
β,1(x)2 dx

.

Since 0 ∈ I, the saddle point method proves that the right-hand side tends to 1 as |β| → ∞ and
|arg(β)| 6 θ0. �
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[18] M. Dimassi and J. Sjöstrand. Spectral Asymptotics in the Semi-Classical Limit. London Mathe-

matical Society Lecture Note Series 268. Cambridge University Press, Cambridge, 1999.
[19] S. Dolecki. “Observability for the One-Dimensional Heat Equation”. In: Studia Math. 48 (1973),

pp. 291–305.
[20] M. Duprez and A. Koenig. “Control of the Grushin Equation: Non-Rectangular Control Region

and Minimal Time”. In: ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 3, 18.
[21] J. V. Egorov. “Some problems in the theory of optimal control”. In: Ž. Vyčisl. Mat i Mat. Fiz. 3
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Email address, J. Dardé: jeremi.darde@math.univ-toulouse.fr

Email address, A. Koenig: armand.koenig@math.univ-toulouse.fr

Email address, J. Royer: julien.royer@math.univ-toulouse.fr

https://arxiv.org/abs/2002.01259
https://arxiv.org/abs/2002.01259
https://arxiv.org/abs/2010.05540

	1. Introduction and statements of the main results
	1.1. The Baouendi-Grushin equation
	1.2. Control problem for the Baouendi-Grushin equation
	1.3. Main results
	1.4. Bibliographical comments

	2. Null-controllability in large time
	3. Lack of null-controllability
	3.1. Observability inequality
	3.2. Model case
	3.3. From the model case to the generalized Baouendi-Grushin equation

	4. Spectral Analysis
	4.1. The first eigenvalue and corresponding spectral projection
	4.2. Agmon Estimates of Eigenfunctions
	4.3. Estimate for some pseudo-differential type operators on polynomials

	5. Critical time of null-controllability for some domains
	Appendix A. Control of the Baouendi-Grushin equation on I(0,)
	Appendix B. Existence of the cutoff function and homotopy
	Appendix C. Non-selfadjoint harmonic oscillators
	
	Acknowledgements

	References

