N

N

Multi-species viscous models for tissue growth:
incompressible limit and qualitative behaviour

Pierre Degond, Sophie Hecht, Michele Romanos, Ariane Trescases

» To cite this version:

Pierre Degond, Sophie Hecht, Micheéle Romanos, Ariane Trescases. Multi-species viscous models for
tissue growth: incompressible limit and qualitative behaviour. Journal of Mathematical Biology, 2022,
85 (2), pp.16. 10.1007/s00285-022-01784-6 . hal-03618303v2

HAL Id: hal-03618303
https://hal.science/hal-03618303v2

Submitted on 4 Aug 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03618303v2
https://hal.archives-ouvertes.fr

Multi-species viscous models for tissue growth: incompressible limit
and qualitative behaviour

Pierre Degond * Sophie Hecht | Michele Romanos * Ariane Trescases *

Abstract

We introduce two 2D mechanical models reproducing the evolution of two viscous tissues in contact.
Their main property is to model the swirling cell motions while keeping the tissues segregated, as observed
during vertebrate embryo elongation. Segregation is encoded differently in the two models: by passive or
active segregation (based on a mechanical repulsion pressure). We formally compute the incompressible
limits of the two models, and obtain strictly segregated solutions. The two models thus obtained are
compared. A striking feature in the active segregation model is the persistence of the repulsion pressure
at the limit: a ghost effect is discussed and confronted to the biological data. Thanks to a transmis-
sion problem formulation at the incompressible limit, we show a pressure jump at the tissues’ boundaries.

Keywords. Modelling, Tissue growth, Cross diffusion, Brinkman law, Incompressible limit, Free
boundary problems, Transmission problems, Developmental biology.

AMS subject classification. 2020 Mathematics Subject Classification 35Q35, 35Q92, 35R35, 92-10
(primary), 92C15.
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1 Introduction

During morphogenesis, biological shapes emerge as a result of cell and tissue dynamic interactions. For
instance, during vertebrate morphogenesis the embryonic body shape is extending along the head-to-tail
axis. Posterior tissues are organized in a very specific manner: the axially located neural tube (NT),
which will form the future spinal cord, is surrounded by two stripes of presomitic mesoderm (PSM), which
will give rise to muscle and vertebrae (Figure. Thanks to live imaging and microscopy techniques,
the cell and tissue dynamics of vertebrate development have been precisely described [I0, 49]. Two
striking phenomena are observed during embryo development.

The first one is the segregation of the NT and the PSM cells all along the axis, with the exception
of a localized mixing area close to the progenitor zone (PZ). Cells from the PZ (depicted in yellow
in Figure migrate into the NT and the PSM, thus contributing to the tissues elongation. The
segregation between the NT and the PSM is maintained throughout embryonic growth.

The second interesting observation is the appearance of swirling motions or vortices within the PSM,
due to cell movements. Distinct medio-lateral cell movements are seen in the posterior zone of the embryo
corresponding to the exit of progenitor cells into the PSM and the NT. Anteriorly, cell movements exhibit
more complicated patterns. Globally we see latero-medial cell vortices forming, but a closer look at the
anterior region reveals some ajacent areas displaying medio-lateral and latero-medial vortices [10]. The
cell rotational movements are schematically represented in Figure

Based on these observations, our aim is to build and study mathematical models that allow to recover
and explain these two phenomena in growing tissues.

In mathematical modelling, when the scale of interest is of the same order as that of a cell (or an
individual), which occurs when we are interested in cell trajectories and cell-cell interactions, we turn to
microscopic or agent-based models. When the behavior of interest occurs on a tissue or collective scale,
macroscopic models based on PDEs (partial differential equations) are used to describe the dynamics.
They describe the evolution of some quantities related to the tissue such as density, velocity, pressure, etc.
Macroscopic models are greatly useful in the context of tissue growth [27) [30} [40]. They provide a better
understanding of biological phenomena such as cell diffusion and proliferation [38], local and nonlocal
cell interactions [28], chemotaxis [34], and tumor dynamics [2] [7] [16] [39] 45, [57]. In our framework, as
we are interested in tissue interplay, we turn to macroscopic models to describe the embryonic growth.

To take into account the observations in the growing embryo, two modelling questions arise. Firstly,
how can we model the swirling motions and their origin? And secondly, what kind of mathematical
constraints should the tissues’s densities obey to segregate and remain segregated? To answer the first
question, we consider the tissues as viscous fluids where swirling motions originate from a nontrivial curl
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(a) Quail embryo, brightfield image [24] (left) and sketches of the (b) Sketch of the cell rotations inside

posterior embryo (right). the PSM. As anterior cell movements
are less obvious compared to the pos-
terior ones, the arrows representing the
global vortices are dashed. Small vor-
tices of opposite directions are also ob-
served in the anterior region.

Figure 1: Schematics of the tissues @ and the cell movements @ The notations A and P respectively
denote the anterior and the posterior parts of the embryo.

of the tissue velocity. Then, our approach consists of introducing tissue friction through viscosity by
imposing the Brinkman law for the tissue’s velocities. The Brinkman law can be derived from the Navier
Stokes equations, which consists of a second order elliptic equation for the tissue velocity v. It takes the
following form,

— BAv 4+ v = —Vp, (1)

where p is the pressure inside the tissue and f > 0 is the viscosity coefficient of the tissue. When
considered in a 2D (or 3D) bounded domain with Dirichlet boundary conditions, this equation produces
a non-zero curl in general.

To tackle the segregation problem, it is first interesting to note that several models in literature
exhibit a propagated or passive segregation [9] [15], 22] [44], that is, if initially the tissues are segregated,
they remain segregated for all times. On the other hand, active segregation has also been considered,
for example with a chemical interplay leading to tissular separation [33], or with a mechanical force
promoting segregation [I7]. To test the differences between a passive and an active form of segregation
and their effects on tissue dynamics, we build two multi-species macroscopic PDE models describing
the evolution of the tissue density, as well as its pressure and its velocity. The first model is endowed
with passive segregation (VM) and the second with active segregation (ESVM) where we introduce a
mechanical pressure denoted by g that will enforce tissue segregation. As we would like to see swirling
motions emerge, we consider the Brinkman law for the velocity in the two models.

In literature from Biology and population dynamics, multi-species models were developed to account
for interactions between different populations which affect the dynamics of the system. Early models
such as the Lotka-Volterra system [43] [56] were studied and applied to competing/cooperating species.
Other models were developed to account for attraction/repulsion between the species and volume-filling
constraint, based on non-local [12] [13] or local effects [15] [23]. Emerging segregation has been studied
for such models, see [9] [15], 22] [25] [44].

Segregation between tissues suggests the use of a geometric description of each tissue, where we no
longer look at the evolution of the density but rather at that of the tissue shape. Based on the ESVM and
the VM, can we derive such a geometric description ? Indeed, geometric models are often obtained as the
outcome of fluid-like evolution models by computing an asymptotic limit known as the incompressible
limit.



In this paper, we formally compute the incompressible limit of the ESVM and of the VM and obtain
two incompressible models, respectively L-ESVM and L-VM. The aim of this paper is to study these
four models and investigate the links between them. Namely, we investigate the effects of segregation
on tissue dynamics before the incompressible limit and at the incompressible limit. The two ESVM
and VM models coincide when the densities are taken initially segregated (that is, active and passive
segregations produce the same effect), under some additional but natural assumptions on the parameters.
This equivalence between passive and active segregation for initially segregated densities holds at the
incompressible limit. We also study comparatively the qualitative behavior of the two limit models. In
fact, we show that the L-ESVM and the L-VM exhibit fully segregated solutions at the limit, and yet,
in the L-ESVM the active segregation force still produces a finite effect on the tissue dynamics, which
we call a ghost effect. These results are summarized in Figure [

ESVM Incompressible limit L- ESVM
-G tri del
- Mechanical model > SR
- Enforced segregation - Segregation force
e (ghost effect)

Coincide when

Coincide when

PR o0,int,  00,int __
n;nznzznt =0 7’11 ‘712 =0
and and
a=10 qoo,inl — O
VM Incompressible limit L- VM
- Mechanical model » - Geometric model
- Preserved segregation - No segregation force

Figure 2: Links between the models: ESVM, VM, L-ESVM, and L-VM.

More precisely, the incompressible limit consists of considering the evolution model in an asymptotic
regime where the pressure becomes (asymptotically) stiff. In the limit, one obtains a moving domain,
which corresponds to the domain occupied by the tissue. This description of the tissue amounts to a
free boundary problem. It was previously used and proved very useful in the context of tumor growth
[8, 371 [46]. A free boundary approach was also used to model the elongation of the PSM [6]. It was shown
that free boundary problems can be derived from evolution problems via the incompressible limit in many
instances such as the porous media equation in the presence of a reaction term [11], 14} 29} [35] [37, [46],
with active motion, or nutrients in the case of tumor growth [I8|[19] 37, [46] [47], and for the Navier-Stokes
equations with growth terms [55].

On multi-species models, the incompressible limit was done in cases which included the Darcy law
for the velocity v, that is,

v = 7vp ) (2)

where p is the pressure of the tissue, and the Brinkman law with the assumption that the velocity is the
gradient of some potential K, that is,

v=-VK and —pBAK+K =p, (3)

with 8 the viscosity of the tissue [I7) 20, 2] [22] [36]. Note that when the viscosity S is null in , we
recover Darcy’s law . The novelty of our work is computing the incompressible limit with a velocity
following the Brinkman law with Dirichlet boundary conditions, so that in general it is not a gradient
unlike in (3). In fact, in the Darcy case and in the Brinkman case with gradient assumption as in
, since the velocity takes the form of a gradient, the curl is null, which is not consistent with our
observations on the vertebrate embryo.

The modelling setting of the problem is presented in the next section, together with some numerical
illustrations. Section |3 is dedicated to the presentation of our main results. In Section E| we compute
the incompressible limit of the ESVM and derive a free boundary problem for the two tissues. The



computation of the limit is followed by a discussion on the persistence of the repulsion pressure at the
limit (ghost effect). In Section [5| we formulate the stationary free boundary problem as a transmission
problem and prove well-posedness and regularity results on the velocities. In Section |§| we exhibit a
formal proof of the segregation property in the VM in the special case when the tissues’ viscosities are
equal. We then go back to the stationary L-VM and prove the existence of a pressure jump across the
interfaces. Finally, the results are discussed in Section m is devoted to the derivation of the
transmission problem, Appendix [B] to complementary numerical simulations and Appendix [C] to details
on the numerical scheme.

2 The setting of the problem
2.1 Biophysical properties of the tissues

The quantification of multi-tissue kinetics in [I0] demonstrates clockwise and counter clockwise vortices
within each tissue along the antero-posterior axis. In our model, both tissues (PSM and NT) are endowed
with a proliferation rate which we model with a pressure-dependent growth function. This choice of
growth function is common in literature, as cells tend to decrease their division rate whenever they are
in a high pressured environment. Furthermore, we use a density-dependent pressure law which accounts
for increased pressure in highly dense environments. We use a singular pressure law,

n

p(n) = (4)

1-n’
with n the total density for the cell populations, and € a parameter. Commonly in literature, a power
pressure law is used of the form: p(n) = n”. Here we choose the singular pressure law which
prevents cells from overlapping. A pressure law of the form was already used in [32] in the case of
a single species, then in [22] [I7] for two species. The PSM cells are mesenchymal, whereas the NT is
an epithelial-like tissue where cells are densely packed. These discrepancies in bio-physical properties
induce a difference in the viscosity of these two tissues. The Brinkman law allows to consider these
biophysical differences (by considering two different viscosities inside each tissue), as well as to observe
rotational movements within the tissues.

2.2 The mechanical macroscopic models

Enforced Segregation Viscous Model (ESVM). We consider two population densities denoted
by n1 and no representing respectively the cell density of the NT and the PSM. We endow each tissue
with a viscosity parameter, here denoted by 81 > 0 and B2 > 0, and use the Brinkman law to govern
the velocities v1 and w2 of each tissue. This law takes into account the effect of the viscosity on the
pressure within the tissue and the pressure between the tissues (repulsion), thus linking these variables
with an elliptic equation. We introduce the following viscous two-species viscous model, for all (¢,z) €
[0; +00) x R? :

o1 + V- (niv1) + aV - (n1V(An1)) = n1Gi(p1), (
Onz + V - (n2v2) + aV - (n2V(Anz)) = naGa(p2), (
—B1Avy +v1 = —Vps, (7
—B2Avs + v2 = —Vpa, (
(

p1 = pe(n1 + n2) + n2gm(ninz), 9
P2 = pe(n1 + n2) + nigm(ninz), (10
Gn(r) = —Z (41" = 1), v =min, (11
pe(n) 26%, n =mni + ne, (12)

with @ > 0 a diffusion parameter linked to the width of the interface between the tissues, m > 0
the parameter controlling the repulsion pressure ¢, and € > 0 a parameter controlling the congestion



pressure p.. The total pressures p; and p2 of each tissue (in @7 ) are the sum of the congestion
pressure p. and the repulsion pressure ¢,,, where p. is a function of the total density n = n1 +nz, and gm,
a function of the product r = nins which is null whenever ni and ns are not in contact. The functions
G; are the growth functions of tissue i. They are typically taken decreasing with a zero-value in some
pressure value p; to take into account homeostasis.

We complement the system with initial data,

Ve € RY ni(t=0,z) =ni"(z), na(t=0,z)=ny" (), (13)
on which we assume the following conditions,
Ve e RY ni™(x) >0, ny(x)>0, and n™(x):=n{""(z)+nd"(z) <1, (14)

where 1 stands for the maximum total density allowed by our singular pressure law . Moreover, given
initially positive densities, we can check with a standard Stampacchia method that the model preserves
the positivity of the densities for all times.

The model — was first introduced in [I7] in the case where §1 = B2 = 0, that is, with Darcy’s
law for the velocity instead of the Brinkman law. The choice of Brinkman law first introduces boundary
conditions on the velocity when we consider the model on a bounded domain in R?, giving rise to non
trivial curl as a result of the boundary conditions. Second, it introduces a new parameter (3, the viscosity
coefficient, which in the case of the NT and the PSM has not been measured yet in literature. The model
equations are derived from a gradient flow structure associated to a mechanical energy according to the
Wasserstein metric. This energy incorporates terms such as the congestion pressure p., the repulsion
pressure ¢n,, and a term penalizing high gradients of the densities with a coefficient a. The fourth order
term compensates for the instabilities caused by the repulsion pressure.

Authors in [I7] show that this model segregates initially mixed densities in finite time, except for
a small interface where mixing is allowed. The width of the mixing region depends on the parameters
«a and m, the repulsion parameter. By introducing the viscosities through the Brinkman law as in
the equations and , we account for the swirling motions and non trivial curl within the tissues.
Interestingly, it was shown in [48] 20} 21 [36] that introducing viscosity when the velocity is in a gradient
form induces pressure discontinuities on the boundaries. We prove that this discontinuity happens also
when taking the velocity law @, in a bounded domain with prescribed boundary conditions. One
can also notice similarities between our model and the Cahn-Hilliard equation which is also of fourth
order and which promotes the segregation of two phases. On the other hand, we use the singular pressure
law described to prevent cell overlap, which in the two-species case is a function of the total densities.

In Section we will compute the incompressible limit of the ESVM and recover a free boundary
problem describing the geometric evolution of the tissue domains. We will look at the quantitative
behavior of the ESVM at the incompressible limit in Section[5] Furthermore, we will compare the ESVM
to a model where there is no pressure enforcing segregation (that is, ¢m = 0, and accordingly we also
take @ = 0 in the ESVM), and with initially segregated densities. This model, referred to as the VM
model, is endowed with passive segregation. We describe now the VM model.

Viscous model (VM). We consider two population densities n1 and ns with their respective ve-
locities v1 and v2. We use again the Brinkman law for the velocities, with viscosity parameters §1 > 0
and B2 > 0. Here we consider only the congestion pressure p. (and no repulsion pressure). Then, the
two-species viscous model (VM) is as follows, for all (¢,z) € [0; +00) x R%,

o1+ V- (niv1) = ni1Gi(pe), (15)
Otng + V - (7L2’U2) = n2G2(pe)7 (16)
—B1Av1 + v1 = —Vpe, (17)
7,82A'U2 + v2 = *Vp@ (18)
pe:elfﬂ n =mni + na, (19)

where the model parameters satisfy .

This model preserves the segregation property, i.e, initially segregated densities remain segregated at
all times: see Proposition |3.9/ For this model, we also compute the incompressible limit and show some
quantitative features at the limit.



Boundary conditions. For the numerical simulations in the next section, we set our problem in
the square [—1,1]? with boundary conditions that best describe the biological setting. In the embryo,
the PSM is surrounded by a solid-like structure or wall (called the lateral plate) which plays the role
of the lateral boundaries of our bounded domain. The fluid-like PSM ends at its upper boundary with
small solid structures called somites (future vertebrae, see the red rounded squares in Figure [1)). The
cells adhere at the lateral walls and at the somites. Then, homogeneous Dirichlet boundary conditions
on the velocity are a natural choice. Note that they imply zero flux boundary conditions on the density.

For our theoretical analysis in Sections[5| and [6] we consider a more general 2D (smooth) domain with
homogeneous Dirichlet boundary conditions.

Note that in Section [d the computations of the incompressible limit of the ESVM are formal and
hold in any dimension d. For simplicity, we consider the case of the whole space, that is R?, though the
results could be adapted easily to the case of a bounded domain.

2.3 Numerical illustrations

In this section we illustrate and compare the models in 2D with numerical simulations in Matlab. The
models are considered in a square with zero flux boundary conditions on the densities and homogeneous
Dirichlet boundary conditions on the velocities. We use a finite volume semi-implicit scheme on a
staggered grid and, for the ESVM, we apply a relaxation method adapted from [I7] consisting of reducing
the order of the equations on the densities from fourth order to second order.

Initially, we consider that part of the NT and of the PSM are already formed. We represent part of
the NT (the middle tissue) surrounded by two stripes of PSM (tissues on the left and right of the NT).
This initial data is fully segregated with a rather sharp interface between the tissues as it corresponds to
the anterior part of the tissues where segregation is the most apparent. More precisely, we take as initial
data, n,™ = 0.9X[—1/3;1/3]x[~1;0] and ny'™ = 0.9X([=1;—1/3)U[[1/3;1]) x [-1;0] With X the indicator function
(as illustrated in Figure [3][(a)).

The PSM being endowed with a higher proliferation rate than the NT [10] and with a smaller viscosity
coefficient as explained in section [2.1) we choose,

Gi(s)=5—s, Ga(s)=10—s, B =05, B2=0.1. (20)

Finally, we pick ¢ = 0.1, m = 30 and a = 0.001. We refer the reader to Appendix |E| where we exhibit
the role of each of the parameters m,a and € on the behavior of the solution of the ESVM.

We first present a numerical illustration of the ESVM in Figure [i] Panels [(a)}{(b)] In Panel [(&)] of
Figure {4} we represent the tissue densities in the ESVM at time ¢ = 0.1. We see that the NT and
the PSM are growing and elongating along the vertical axis which represents the head-to-tail axis of
the vertebrate embryo. We clearly see that geometric dynamics emerge, in the sense that the densities
remain segregated and each density is either close to zero or to its maximum value (taken equal to 1 as
per our pressure law ) This advocates for an incompressible regime. As a consequence of its higher
proliferation rate and smaller viscosity, the PSM elongates faster than the NT. The tissues co-evolve and
remain overall segregated, sharing only a thin interface (where the densities overlay).

In Figure 4| Panel we illustrate that the ESVM produces a non-zero curl of the PSM velocity.
Using the solutions (v1,v2) of the equations — in the ESVM, we compute the curl inside each tissue,
and show the result for the velocity vz (only in the PSM) in Panel @ where the black arrows are the
velocity vectors and the heatmap represents the value of the curl. High curls are observed close to the
lateral boundaries, especially in the posterior zone. This corresponds to the migration of cells from the
PZ into the posterior PSM as described in Section |1, with clockwise vortices (negative curl) on the left
wall and symmetrically counter-clockwise vortices (positive curl) on the right wall. In the posterior part,
close to these lateral walls the velocity vectors clearly display swirling fluid motion. These curls are
propagated inside the PSM and along the antero-posterior axis. Anteriorly, we observe some adjacent
regions of opposite curls on both sides of the interface. This is in accordance with the observations in
the embryo, see Figure[I] Finally, in the anterior region the velocity vectors appear to cross directions,
suggesting tissue contractions near the interface. Such contraction is due to the repulsion force gm.

We now present in Figure |4 Panels |(c)H(d)| a numerical illustration of the ESVM in the case where
the velocity is taken of gradient form in the Brinkman law as in . That is, we change the velocity
laws used in the ESVM — (coupled with Dirichlet boundary conditions) and replace them with the
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Figure 3: Initial conditions respectively for the ESVM and the VM (Panel @) and the L-ESVM (Panel
@). The notations A and P respectively denote the anterior and the posterior parts of the embryo.

following equations,
v = —VKl, with — ﬂlAKl,—FKl =p1 (21)

V2 = —VKQ, with — /BQAKQ =+ Kg = p2, (22)

where K7 and K, are potentials (coupled with homogeneous Neumann boundary conditions for the
potentials K;, ¢ = 1,2). All the other equations in the ESVM (equations on the densities and the
expressions of the pressures) remain unchanged. Our choice of parameters also remains unchanged and
is taken as in (20). We solve this new system and compute the curl of the velocities v1 and v2 using
the equations -. In Figure we represent curl vz by the heatmap overlayed by the velocity
vector vz (the arrows in black). In contrast with the ESVM, when the velocity is taken as a gradient, we
observe an irrotational flow: the curl is null everywhere and the vector trajectories are rather straight and
pointing towards the posterior. Figures [4(a)H(b)|and [(c)](d)| show two different dynamics emerging from
the two laws considered for the velocity: one is irrotational (Figure and the other displays swirling
motion (Figure . Overall, the results of the ESVM describe more accurately the tissue evolution
and cell movements observed in the vertebrate embryo, schematically represented in Figure

We finally present a numerical illustration of the VM in Figure @ Panels [(e)H(f)| and compare it with
the ESVM. In the VM, as in the ESVM, we observe high curls in the posterior zone, especially close to the
lateral boundaries. However, in contrast to the ESVM, we no longer see in the anterior region adjacent
zones of opposite curls but instead we observe unidirectional latero-medial curls (counter clockwise on
the left of the NT and clockwise on the right). Both models recover well the swirling motion in the
posterior zone. Furthermore, each model, the ESVM and the VM, shows a specific feature observed in
the anterior zone of the vertebrate embryo. The ESVM highlights the role of the repulsion pressure in
creating alternating zones of opposite curls anteriorly, while the VM displays the global latero-medial curls
reported in the anterior region of the PSM, as represented in Figure A sensitivity analysis on the
model parameters (especially those affecting the repulsion force) would allow to obtain a representation
of the swirling motions as close as possible to the biological data. A future work will be dedicated to this
sensitivity analysis.

The last set of simulations displayed in Figure@ (Panelsand will be commented in Section
below.

3 Main results

3.1 |[Incompressible limit of the ESVM]|

Our first result is the formal incompressible limit of the two-species viscous model, where we take the
parameters € — 0, — 0 and m — +oo. This allows us to derive a free boundary problem, as detailed
in the following theorem.
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Figure 4: Numerical simulations. The left panels illustrate the NT density n; (in green) and the PSM density
ny (in red) and the right panels illustrate curl vy (heat map) overlayed by the vect (black arrows)
at time t = 0.1 in respectively the ESVM (Panel |(a)H(b)]), the ESVM using for the velocities
(Panel|(c)H(d)), the VM (Panel |(e)H(f)) and the L-ESVM in the case ¢*° =0, equivalently the L-VM (Panel
. The velocity vector T 2” is represented only in the regions where the density of the PSM is above
a threshold equal to 0.1.
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Theorem 3.1. (Formal)[Tncompressible limit of the ESVM] Let ni™ ni"" satisfy the conditions (14)
and let n1, na, vi, V2, P1, p2 solve the viscous two-species model — with 7. Assume that
at the incompressible limit, that is, when € and « go to zero and m goes to infinity, the quantities n1, na,
v1, V2, P1, P2, gm(nin2) converge (in a sufficiently strong sense) towards, respectively, ni°, n5°, vi°, v5°,
i, pS°, q°°. Then, these quantities satisfy the following system of equations for all (t,x) € [0; +00) X R4,

ony” 4V - (ni"v1") = niG1(p1°), (23)
ong” + V- (n3°v3°) = n3 Ga(p3”), (24)
—B1 AV +v1° = —=Vpi°, (25)
—B2Av5° +v3° = —Vp5°, (26)
pr =p~ +n3q%, (27)
py =p~ +ni ¢~ (28)
and the following relation holds,

p=(1 —n®>) =0, wheren™ = n® +n3". (29)

Moreover, we obtain full segregation of the two-species at the limit,
niTny” = 0. (30)

The complementary relation prescribing the dynamics of the pressures inside the two tissues at the limit
reads,

(V) V) ) = 0 (hEGE) +nF e ). (31)

Finally, defining K7° = ni°q¢™ and K5° = n3°q¢™, the equations prescribing the dynamics of the pressure
due to repulsion at the limit read,

KT 4+ (¢ +1)log(¢™ + 1)V - (n°v”) + (¢ + 1) log(¢™ 4+ 1)ni°V - v3°
+ 177037 - Vg™ = (¢ + 1) log(¢™ + 1)Vni® - v3° + ¢V - (n7"v77)
= (¢ +1log(¢™ + )ni"(G1(p") + G2(p3°)) + ¢~ " G1(pt"), (32)

BKE 4 (¢ +1)log(q™ + 1)V - (1505 + (¢ + 1) log(¢™ + VgV - o5
+ nu Vg™ — (¢ 4+ 1)1log(¢™ + 1)Vn3 - vi° + ¢V - (n3°v3°)
= (¢™ + Dlog(¢™ + )n3" (G1(p1°) + G2(p3°)) + ¢ n3" G2(p3°)- (33)

We call L-ESVM the limiting system 7 thus obtained.
The proof of Theorem [3.1] is performed in Section [

This formal limit being established, we consider the situation where each tissue i = 1,2 occupies
exactly and fully a specific (moving) domain ;(¢), that is, the density n§°(t,-) is the indicator function
of the domain €;(t). Note that the congestion relation imposes that the pressure p® is null outside
Q1 UQ2, and that the full segregation imposes that 21 and Q2 do not intersect.

From System 7, we can then deduce the evolution of the domains 1 and €22, thus giving rise
to a geometrical description of the biological system. Indeed, the velocities of the exterior boundary of
the first tissue’s domain, the exterior boundary of the second tissue’s domain and the interface of the
two tissues’ domains are given by (vi° - ¥)v, by (v5° - )i, and by (vi® - V)U = (v5° - [i)[i, respectively,
where ¥ is the outward normal vector to Q1 and [ is the outward normal vector to Q2 (on the interface
between 1 and Q2 we have 7 = — ). Such situation is represented in Figure

We perform numerical simulations in Freefem++ (Figure [4(g){(h)). Details on the numerical scheme
can be found in Appendix [C] We illustrate the evolution of the free boundary problem in the case of the
embryo, that is, a NT surrounded by two stripes of PSM. The initial conditions were taken as two indicator
functions sharing a sharp interface, n1°°"™"" = x[_1/3;1/3]x[=1;0) and n2°>"™"" = X((=1;-1/3]U[[1/3;1]) x [~ 1;0]
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with x the indicator function, and we take ¢°"* = 0 (as illustrated in Figure . Note that, as
sketched in Figure |2] taking the initial densities segregated and the repulsion force ¢°"** = 0, the L-
ESVM in fact coincides with the L-VM. Therefore, our numerical simulations illustrate both the L-ESVM
and the L-VM. The parameters are taken as in the numerical illustrations of the ESVM, see . In
Figure we show the evolution of the free domains of the NT and of the PSM at ¢ = 0.1. The
tissues evolve while remaining completely segregated with a sharp interface throughout the simulation.
The PSM, which has a higher proliferation rate and a smaller viscosity coefficient, tends to grow faster
than the NT (central tissue) and occupies a wider space. Comparing Figure with Figures and
we see that the density profiles are qualitatively similar. This is in accordance with our choice of
parameters a, m (in the ESVM) and € (in the ESVM and VM) taken in their asymptotic ranges.

In Figure we illustrate the curl of the PSM velocity computed with the L-ESVM. High curls are
observed in the posterior zone close to the lateral walls, more precisely, negative curls on the left and
positive curls on the right. Anteriorly, opposite curls are observed at the interface between the tissues.
These profiles match very well those observed in the VM (Figure where the repulsion force ¢, is
absent. This is in accordance with our choice ¢°° = 0. Finally, we exhibit the velocity vector v5° in
the L-ESVM. In the posterior zone, clear rotating vector trajectories are observed on the lateral walls
where curls are high. Overall, our illustrations show that the three models VM, ESVM and L-ESVM
reproduce the swirling motions observed in the embryo (Figure , However, only the ESVM (in the
asymptotic regime) was able to reproduce the adjacent zones with opposite curls observed anteriorly
in the embryo. This suggests that the repulsion pressure does not vanish at the incompressible limit
and plays an important biophysical role at the limit as discussed in Section It also suggests that
some active segregation may be at play to maintain the tissues segregated. Finally our simulation of the
L-ESVM displays similar dynamics as that of the ESVM (and the VM) in the asymptotic regime which
demonstrates the relevance of the incompressible limit.

Q°(t) p> =0

Figure 5: Representation of the subdomains saturated with the two densities in the L-ESVM.

3.2 [Study of the stationary L-ESVM (¢ given)

Still in the case when the densities are indicator functions (at the incompressible limit), we are now inter-
ested in the study of the stationary velocity-pressure system. For clarity we now remove the superscript
?o0” from the variables n;, v;, q, p for i = 12.

We work in a bounded domain © C ]R2, and we consider two stationary subdomains 2; and Q2. We
suppose that ©, ;1 and Q2 are as follows,

© a smooth bounded domain in RQ, Q, Q1, Q2 subdomains of © such that (34)
Q1 N Qs is empty, I' := Q; N Qy is non-empty, (35)
Q=0Q,UQ and Q C 6, (36)
and, defining Q° := ©\Q, the boundaries I', T'y := Q1 N Q¢, 'y = Q2 N Q° are C*°. (37)
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Our analysis is conducted in a simplified framework, where we drop the equations (32) and (33]) and
consider instead that g is a given function on 2. We assume,

q € L*(Q). (38)
Finally, for simplicity, we suppose that the growth function is linear (and decreasing), that is,
Gi(s) = g1(p1 —5), Ga(s) = g2(p2 — ), (39)

for some g1, g2, p1, pz > 0.
In this framework, the system 7 at equilibrium and complemented with homogeneous Dirichlet
boundary conditions becomes the following elliptic system on (v1,v2), for g given as in ,

—B1Av +v1 = =V[(pi — -V v1)xa, + (95 — V- v2 +q)xe,] on 6,
(S2) { —B2lvz+v2==V[(p; — SV -v2)xa, + (p1 — 5;V - v1+¢)xe,] on O,
V1 = V2 = 0 on 8@,

For the existence theory and the elliptic regularity, we assume that the model parameters satisfy the
following condition,

1 1
Biga > 1 and B2g1 > 1 (40)
Notation 3.2. Let U C R? be a bounded domain. For k > 0, we use the notation C*(U), or equivalently
write “C" up to the boundary of U”, in the classical sense, see [26)]:

CH(U) = {u e C*(U)|D*u is uniformly continuous on U for all |a| < k}.

Thus if u € C*(U), then D®u can be continuously extended to U for each multi-index o, with |a| < k.
For u € (0,1), we use the notation C>*(U) for (uniformly) Hélder continuous functions on U with
exponent p. Thus, such functions can be extended into a (uniformly) Hélder continuous functions on U
with the same exponent L.
Finally, for k >0 and p € (0, 1), we write,

CFH(U) = {u e CFU)|D*u € CO*(U) for all |a| < k}.

Theorem 3.3. [Well-posedness and regularity, stationary L-ESVM] Let ©, Q1 and Q2 be bounded do-
mains as in —, and let B1, B2, 91,92 > 0 satisfy the condition @) Let q as in . Then, there
exists a unique solution (vi,v2) € Hg(0)? x H(0)? to System (S2). Note in particular that (vi,ve) is
continuous across the interfaces I'1, T2, .

Furthermore, if ¢ € CO* (1) N CO*(Qy2) for some p € (0,1), then the solution (vi,v2) to System (S2)
lies in C1* Q)N Cl’a/(ﬁz) Nk (Q9), with 0 < o < min(u, ).

The proof of Theorem is performed in Section

Remark 3.4. Note that q is defined only in ), so that we do not need any information on q in regions
where both densities are simultaneously equal to zero.

Remark 3.5. The result can be extended to the case of (smooth) non-homogeneous Dirichlet boundary
conditions.

Remark 3.6. Since g = 0 is always a particular solution of (the stationary versions of) Eq. and
independently of (vi,v2), System (S2) with ¢ = 0 gives a solution to the original system L-ESVM
taken at equilibrium. Note that the case where ¢ = 0 on §Q is included in the well-posedness and regularity
results.

We can now rewrite system (S2) as a transmission problem, giving rise to non-trivial transmission
conditions at the interfaces I', I'y and I'>. To this end we introduce the following notation: for D a domain
of R? and h a continuous function on D that can be continously extended on D, then, for z € 8D, we
note

(h)p(z) == lim h(y). (41)



Proposition 3.7 (Transmission problem, stationary L-ESVM). Assume 7, @, and q €
COH() N CO*(Q2) for some p € (0,1). Then the solution of system (S2) solves the following trans-
mission problem (T:) considered on © and coupled with homogeneous Dirichlet boundary conditions on
00,

(To.0) —B1Avy +v1 — VV vy =0 in Q,
2 —B2Avg + v — VV v1 =—Vgq in Q.

(T —B1Av +v1 — —VV vo =—Vq in Qo
392 —B2Ava + va — g—ivv vy =0 in Q.
T *ﬁlﬁvl +v1 =0 n QC,

2,00 —B2Avy +v2 =0 in Q°.

*[p*{fgil(v-m)gl}ﬁ on Ty,
[Pt + (9)o, — = (V- v1)e )7 onTy,

g1

4
4
(
@, { e
(v1)o, = (v1)ae, (v2)a, = (v2)ae on T1.

<
(&4
W
—
o]
o
AN
I

v1)e, — (Vor)ae] - fi = [p5 + (@)a, — 55 (V- v2)a,]i on T2,

(T2.r,) o — (V2)ae] - fi = [p3 — (V- v2)a,]il on T's,

Bul(Vur)a, — (Voi)a,] - 7= [(pT — p2) — (9o, + % v
(Ter) § Bel(Vo2)a, — (Vo2)e,] - 7 = [(p1 — p3) + (9o, + - (V- v2)a, — -(V-vi)e,]7 onT,
(v1)o, = (01)92’ (va)o; = (V2)a,, w1 -U=v2-V
The proof of Proposition is performed in Section
To obtain more regularity on the solution, we assume the following additional condition on the
domains:

99 is smooth (C™). (42)
A typical situation where the domains satisfy the assumption above is the situation where one tissue is

encompassed within the other one, such as represented in Figure[5] We obtain the following result.

Theorem 3.8. [Further regularity, two concentric species] Let ©, Q1 and Q2 be bounded domains as

n (.)l which satisfy furthermore Let B1,B2,91,92 > 0 satisfy the condition @ Let
q € C™(Q1) NC>(Q2), then the solution (’1)1,’1)2) to System (Sz2) lies in C*° (1) NC™(Q2) NC™(Qe).

The proof of Therorem [3:8]is performed in Section

3.3 [Segregation in the VM and its incompressible limit (the L-VM)|

We recall that in the VM, defined in 7, there is no enforced segregation, contrarily to the ESVM.
However, the VM seems to preserve segregation, that is, initially segregated densities remain segregated
at all times. We prove it formally in the special case where 31 = 82 and exhibit arguments in favor of
the segregation property for the case 81 # (.

Proposition 3.9. (Formal) [Segregation property, VM] Let ni, na solve 7. Suppose that 1 =
B2, and that the growth functions G1,G2 are upper bounded such that,

FGm > 0,G1 < G, Go < Gon. (43)

If the initial densities are fully segregated, that is, ni*ny* = 0 on R, then the densities remain segregated
for all times:
nina(t,z) =0, V(t,z) € [0;+00) x R% (44)

The proof of Proposition is performed in Section
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Remark 3.10. In the case when (31 # (2, we conjecture that the same segregation property holds.
Indeed, we observe it numerically as exhibited in the numerical simulations performed in dimension 1 in
Appendiz To prove it, the main argument would be to prove that the mormal velocities v1 - U and
vy - U are equal on the interface. We note here that in [], the case of two tissues obeying Darcy’s law
and responding differently to compression was studied (with different parameters for Darcy’s law). It was
shown, both numerically and theoretically, that the segregation property holds for such case. Interestingly,
this segregation property is related to the pressure gradient jump. Going back to our case with Brinkman
law and with different viscosity coefficients, our numerical illustrations also suggest, similarly to [§], that
the gradient of the pressure has jumps at the interface, see Appendiz@

The incompressible limit of the VM is formally obtained by taking ¢ — 0. Then we obtain the
following system L-VM, for all (¢,z) € [0; +-00) x R? :
ni” + V- (n77v7) = ni" G (p™),
Oinz” + V- (n2°v3") = n3" G2 (p™),
—BrAvy” +or° = —Vp™~,
—B2Avy” +v3° = —Vp™~,

r\f\mn
IS
3 & &
S~— N N

N
(0]
~—

and the following relation holds,
p(1 —n") =0, where n™ =ni” + ny". (49)

The complementary relation prescribing the dynamics of the pressure due to congestion at the limit
reads,

(V) V) = 0 (hE ) 4 Ga™) ). (50)

Remark 3.11. Using the same method as for the VM, we can show the segregation property holds for
the L-VM when B1 = 2. Following the same reasoning as in Remark[3-10, we have some evidence that
the segregation property in the L-VM holds for all (1, B2, that is, when initially segregated, the tissues
remain segregated for all times:

nng =0, Y(t,z) € [0; +00) x R% (51)

The main difference between the ESVM and the VM lies in the dynamics of the segregation. In fact,
even for initially mixed densities, the ESVM system will lead at the limit to the relation n{°n3° = 0.
This is not the case for the VM, which does not enforce segregation at the limit. However, taking initially
segregated densities for the ESVM and for the VM, we get that ¢™(n"*n5"") = 0 for the ESVM, and
taking also @ = 0 we find that both systems coincide. As a consequence their limits will also coincide in
this case. The equivalence of the systems L-ESVM and L-VM when the initial densities n®"", n3> "™
are segregated can be obtained directly, taking furthermore ¢°** = ¢*°(t = 0,-) = 0 in the L-ESVM
(Figure |2). The transmission problem for the stationary L-VM is obtained by taking ¢ = 0 in (73).
Well-posedness and regularity for the stationary L-VM are then straightforward from Theorems [3.3] and

3.8, when the assumptions —, and — are still assumed.

3.4 On the pressure jump in the stationary L-VM

Finally, we show a striking feature: a pressure jump at the boundaries and interfaces in the stationary
L-VM (or equivalently, the stationary L-ESVM when ¢ = 0). In the following we consider linear growth
functions as in with g1, g2, pl,p5 > 0. Then using and we can express the pressure on {21,
Q2 and Q° as a function of the velocities v1 and v as:

pi— (Vo) on
p=9 P~ 55 (V-v2)a, onDy, (52)
0 on Q°.
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Proposition 3.12 (Pressure jump, stationary L-VM). Suppose - , (40) and . Let g =0 and
let (vi,v2) € HE(O©)? x H(O)? be the solution of (Se) given by Theorem|3.5. Then, the pressure p of the
L-VM given by is discontinuous across the interfaces 'y UT2 UT.

Proposition is proven in Section @
Remark 3.13. For the case of the L-ESVM, it is clear from (To,r,), (Tor,), and (Tar) that for the
pressure to be continuous on the interfaces, it is required for q to be identically zero on all interfaces
Ty UT2 UT. The pressure jump of the L-ESVM is then obvious for any non-vanishing q at any point of
the interfaces I', I'1 and 2. Further work is needed in the gemeral case.

4 Incompressible limit of the two species viscous model

4.1 Computation of the incompressible limit
In this section we perform the proof of the formal limit of the ESVM defined by the system —.

Proof of Theorem[31l The incompressible limit of the system defined by the equations (B))-(12), is ob-
tained by taking € — 0, then m — co and o — 0.
First, the equation can be written as, (1 — n)pe = en. Taking the limit as ¢ — 0 we get,

p=(1—n">)=0. (53)

Then, straightforward computations show that the expression of ¢, in Eq. gives,

m
—1 - . —1
(Ptan )™= enm = (Mg 1)),
m m

Passing to the limit when m — +o00, and using that we assume ¢y, meee, q°°, we obtain full segregation
of the species at the limit,
r® =nin3® = 0. (54)

Now, taking the limit in (5)—(L0), when ¢ — 0, — +o0 and o — 0, under the assumption that all
quantities converge, we get the system — for all (t,z) € [0; +00) x R?.
It now remains to obtain an equation to characterize the evolution of p> and ¢*.

Equation for the congestion pressure. We obtain the equation satisfied by the total density
n = n1 + n2 by summing and @:

On + V- (n1v1 + n2v2) + aV - (niV(Ani) + n2V(Anz2)) = ni1G1(p1) + n2Ga(p2). (55)

To recover the equation that controls the pressure inside the domain (), we multiply by pL(n) =
%(p6 + 6)27 and obtain the following equation satisfied by p.:

€dipe + (pe + €)°V - (n1v1 + navs) = —(pc +€)2aV - (mV(Any) + naV(Ans))
+(pe + 6)2(n1G1 (p1) + n2Ga(p2)),

We pass to the limit e — 0 in the latter equation, then m — oo, and a — 0, we get at the limit Eq. (31).

Equation for the repulsion pressure. Let K1 = nigm, then the equation on nj0:q, is as follows:

n10igm  +  7(gm)'V - (m101) + ni(gm)'V - (nava)
= nr(gm) (Gi(p1) + G2(p2)) — ar(gm)'V - (mV(An1)) — ani(gm)'V - (n2V(Ans)).

Recalling that gm(r) = —2-[(1+ 7)™ ! — 1], we compute ¢'(r) = m(1+r)™ 2, and we use the following

m—1

expressions,

(1+r)™ "= mn: 1qm +1 and log(

= L +1) = (m — 1) log(1 + 7).
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Then we can write ,

r m m-—1 m=—2 m—1

= m 1)m=11]
10g(1—|—r)m—1( m 7 +1) 08( m

7(gm)’ gm +1).

Replacing the expression of 7(g.,)" in the above equation we obtain:

T m m—1 m—2 m—1
0 m m 1)m=11] m 1)V -
n10tq + log(1+r)m—1( m gm + 1) og( — gm + 1) (n1v1)
r m om-—1 m—2 m—1
m + 1) m=1 1 m+ 1V -

* 10g(1+r)m—1( m ¢ +1) og( L YNV - vg

+  niva - Vna(gm)'
T m m—1 m—2 m—1

= m 1)m=11] m 1 Ie G

log(1+r)m—1( m Gm +1) og( m gm + 1)n1(G1 + G2)
r m m-—1 m—1

gm + 1V - (mV(Ana))

m—2
— m 1)m=11]
alog(l+r)m—1( ——dm 1) og(

—ani(gm)'V - (n2V(Any)).

The equation on K7 becomes:

OK1 + log(17n+ 5 m"i 1(mT; 1qm n 1)% log(mT; 1qm LY ()
F o mo1tm L+ )7 log(" g+ DV v
+ n2Vna - va(gm) + qmV - (n1v1) + gmaV - (11 V(An))
- log(lrJr ) mni 1(m ~ 1qm + 1):::? log(mT; 1‘1m + 1)ni1(G1 + G2)
*alogu: ) (e Lgm + 1) log (" L + DV - (m V(A1)

—ani(gm)'V - (n2aV(Ang)) + gmniGy.
Moreover we have the following equalities,
niVns - v2(qm) = n1va - Vam — 7(gm) V1 - v2,

an%(qm)'v - (n2V(Anz)) = a[n1Vagm — r(gm) Vi) - VAng + om1r(qm)'A2n2.

Then the equation on K; becomes :

T m m-—1 m=2 m—1
oK m + 1)m=11 m+ 1)V -
K+ 1Og(1+r)m_1( ——qm +1) 0g(———am + 1)V - (n101)
r m om-—1 m=—2 m—1
m + 1)m=1 1 m 4+ 1)n1V -
* el m—1' gm + 1) 7= log( Gm + 1)1V - va
—1 m=2 -1
+ nive-Vgm — d B g + 1)1 log(—= g + 1)y - 02

log(1+7r)m—1 m

+qmV - (n1v1) + gmaV - (n1V(Anq))

T m m

m—1 m=2 -1
= m 1)m=11 m 1
log(1+7)m — 1( proa +1) og( m ¢ + 1ni(G1 + Ga)

B n (m_1 +1)Z§i310(
log(l+r)ym—-1" m m 8
r m m-—1 m=—2 -1

m 4+ 1)m=1 | m +1)Vny - VA

log(1+r)m—1( m ¢ +1) 08( m 7 Ve 2

T m m-—1

m—2
m 1)m=1 ]
log(1+r)m71( m ¢ +1) o8( m

m—1

qm + 1)V : (an(Anl))

m

—an1Vgm - VAns + o

m—1

Gm + 1)A%ng + ¢nniGh.

—Qany

Finally, assuming that the limit to all the quantities exists, and remembering (54)), we formally pass to
the limit in the above equation when m goes to infinity and «a, € go to zero and obtain on O,
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XK+ (g™ 4+ 1)1og(¢g™ + 1)V - (nPv°) + (¢ + 1) log(¢™ + 1)n°V - v5°

+ nvs” VT = (¢ + 1)log(¢™ + 1)Vni® - v3” + ¢V - (n7077)

(¢ +1)1og(q™ + 1)ni"(G1(p1”) + G2(p2°)) + a7 n7" G1(p7°).

An analogous computation holds for K5° on 0, leading to Eq. . This ends the proof of the theorem.
|

4.2 Free boundary problem

We now explain how this system generates a free boundary problem. Motivated by the relation (53)), we
define the domain,

Q(t) = {z| p= (1) > 0}, (56)
and we note that,
Q) = {z| p™(-,t) > 0} C {z| n>(-,t) = 1}, a.e. (57)

Using Eq. and the inclusion (57)), we can decompose Q(t) into two subdomains 1 (¢) and Q2(t)
such that,

Q1) ={z|n" =1} N Q) and Q2(t) = {z| n° = 1} NQ(L),
with,
Ql(t) n QQ(t) = @ and Q1(t) U Qg(t) = Q(t)

In fact, in , the two domains coincide almost everywhere, for almost all times. Indeed, let us
assume that on some time-space domain U € R4™!, we have simultaneously p> = 0 and n™ = 1 (with
for example n$® = 1 and n5° = 0). Then by equation we have 0 = 9yn7® = ni°(G1(0) — V- 01°) in
U, so that V- v® = G1(0) = ¢1pi > 0 in U. On the other hand, applying the divergence operator to
, one gets V - v° = 0, which is absurd. Therefore, U is of measure zero, and finally we have for a.e
t>0,

Q@) = {z| p™(-,t) > 0} = {z| n=(-,t) = 1}, a.e.

Furthermore, the complementary relations , and can be rewritten on each subdomain. First,
Eq. does not give additional information outside £2(¢), but on Q(¢) it can be rewritten as,

V-ui® =Gi(p?”) on Qi (t), and V-v3® = Ga(py”) on Qa(t).
Then, from , the equation of ¢ on Q1 (t) becomes,

914 + (¢ + DV - (log(¢™ + D) = (¢™ + 1) log(¢™ + 1)G2(p2°). (58)
Similarly in Q2(t) we obtain from (33)),
9:q™ + (¢ + DV - (log(¢™ + Dor”) = (¢ + 1) log(¢™ + )G (p1").- (59)

Finally, we compute K{° and K5° in ©\Q(¢) where 0 < ni® < 1 and 0 < n5° < 1. Taking p{® =0 in
in areas where n5° = 0 and 0 < n?° < 1 we derive the following equation,
XK+ (™ +1)1og(¢™ + 1)V - (nv°) + (¢ + 1) log(¢™ + 1)n°V - v5°
+ nivs VT = (¢7 +1)1og(q™ +1)Vni® - v3° + ¢V - (nivTY)
= (@ +1)log(g™ + 1)ni"(G1(0) + G2(p2°)) + 711" G1(0),

And to compute K35° in areas where n7® = 0 and 0 < n3° < 1, we take p5° = 0 in and derive the
following equation:

O K5° (@™ +1)log(¢™ + 1)V - (n3°v3°") + (¢ + 1) log(¢™ 4+ 1)n3"V - v7°
n3 vr” - Vg™ = (¢ 4 1)1og(¢™ +1)Vng® - v1° + ¢=V - (n3"v3°)
(g™ + 1) 1log(q™ + 1)n3°(G1(pT°) + G2(0)) + ¢ n3° G2(0).

Finally, note that the equations and are very related to the choice of the repulsion pressure
gm. In particular, the presence of the terms log(¢> + 1) comes from the power law in Eq. 4

+
+
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4.3 Velocities of the interfaces

Finally, we complete here the derivation of the free boundary problem entailed by the incompressible
limit by computing the velocities of the interfaces. To this end, we consider the case where each tissue ¢
occupies fully its domain €;, that is, we assume that n{® = xq, (t) and n5° = xq,(t). One can verify that
in this case (n$°,n3%) solve the equations and on each subdomain Q;(t), ¢« = 1, 2 and Q°(¢).
We then compute the velocity of 9Q(t) = (9921 (t) N ON(t)) U (0Q2(t) N 92(t)) and of the interface
between the two tissues I'(¢) = 0Q1(t) N 0N ().
We test with some ¢ € C2°(R?),

8t/ ngdr = 8m§’°¢dx:/ ncfovi’o-quSd:er/ ni°G1(pi°) ¢ dx.
R R R4 R

Hence using Green’s formula, and that n{® = 0 on Qf(t), we can write,

at/ qﬁdmz—/ V~Uf°¢da:—|—/ Ufo-f/'qﬁda(x)—l—/ G1(pT)d dx,
Q1(t) Q1 (t) Q1 (t) Q1(t)

with 77 the outward normal vector to Qi(¢) and do the surface measure on the boundaries. Using the
complementary relation (31]) on the subdomain Q(t) we obtain,

8t/ pdr = / v7° -ﬁ(]ﬁda(x)—i-/ v° - Updo(z), (60)
Q1) 89, (£)N9(t) r(t)

We recall that I'(t) = 9Q1(t) N 0N2(¢) is the interface between the two densities, and 9Q1(t) N ON(t) is
the exterior boundary of Q1 (¢).

We now introduce Viq, (1ynaa() the velocity of the exterior boundary of €(t) along the outward
normal vector 7, and V() the velocity of the interface I'(t) along the vector 7. Using Reynolds transport
theorem on moving domains, the LHS gives,

at/ ¢d$ = / V@Ql(t) . 17qb dO‘(I)
Q1(t) o1 (¢)

/ Voq, () - V¢ do(x) +/ Voa, ) - V¢ do(x), (61)
89 (£)NON(t) r(t)

Since and are satisfied for all ¢ € C°(R?), particularly by extension of ¢ € C° (9 (t) N OQ(L))
we deduce the following relation,
Vaa, (hynea() = Vi - 7,

similarly by extension of ¢ € C°(I'(t)) we deduce,
Vp(t) = Ufo -V

Finally, by a symmetric reasoning, defining 7 the outward normal vector to Q2(t), we obtain the velocity
of the exterior boundary of Q2(t),
Vaautynoaw) = vs - f,

as well as the continuity of the velocity along the interface I'(t),

oo
U1

-7=wv5" U onT(t).

4.4 On the limit of the repulsion pressure

In this section we study the behavior of the repulsion pressure ¢. in the mechanical model at the
incompressible limit. We notice that ¢° = 0 gives an admissible solution for the problem 7.
Indeed, since the system at the incompressible limit is fully segregated , it might be relevant to
consider that at the limit the repulsion pressure vanishes. The question we want to address is the
following: is it relevant to consider cases where the repulsion pressure persists at the incompressible
limit, that is, ¢°° is not identically null 7 Our numerical simulations suggest that ¢°° does not vanish
at the incompressible limit, and they highlight its role in creating adjacent zones of opposite curls in
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the anterior part of the PSM. To explore further the role of this repulsion force, we proceed with the
following formal analysis.

Here we are interested in the case where densities at the incompressible limit are indicator functions
(which is a case where the free boundary model is particularly relevant). We then suppose that ni* and
ny' converge respectively towards xqo, and xq, in a sufficiently strong sense, locally uniformly in time,
and we write the Taylor expansion of ni* and n3* with respect to the parameter m (assuming that such
expansion exists),

m 1 _

ny = xo; + Ehl + O(m 1)7 (62)
m 1 _

ny = xa, + Eha + o(m 1). (63)

We can then compute the product,

m m 1 _
ny ny = ™ (h2X91 + hlxﬂz) +0(m 1)7

so that the repulsion pressure becomes at the limit,

m m__m\m—
e = a1

= - (exp {(m — 1)log (1 + %(MXQ] +hixa,) + 0(m71)>} - 1)

m—1

m——+o0

—— exp{haxo, +hixo,} — 1. (64)
Finally, rewriting this last expression, we have shown that,

¢ = x0, (exp(h2) = 1) + xo, (exp(h1) — 1) (65)

Interpretation. In the Taylor expansion expressed in terms of small values of the parameter
1/m, the term of order zero gives the asymptotic behavior of the density nT*. We see that the coefficient of
first order in 1/m in (i.e the quantity h1) appears in the final expression of ¢* at the incompressible
limit under the form hixq,. It is remarkable that the repulsion force persists a priori everywhere on
the domain, and not only at the interface. One could interpret this phenomenon as a repulsion force
emerging from microscopic residuals of the tissue 1 inside tissue 2 (and vice versa). The situation where
the repulsion force vanishes at the limit then corresponds to a modelling situation where such microscopic
effects are neglected (fast segregation regime). Note that ¢° = 0 gives a particular solution of 7
(see remark .

In fact, ¢> cannot be neglected in general at the limit as it produces an effect on the dynamics.
We note that in the repulsion only persists in the domain Q1 U Q2 (see Remark , that is, the
repulsion force produces a finite effect only in regions fully occupied by the densities.

Moreover, the persistence of the repulsion pressure ¢° at the limit can be seen as a ghost effect.
This terminology originates from the framework of rarefied gas dynamics. For instance, in rarefied
gases, steady flows can be induced by temperature fields. When a continuum limit is performed on
the Boltzmann equation on the basis of kinetic theory, in the sense that the Knudsen number of the
system tends to zero, these flows vanish. This means that no condensation nor evaporation occurs, and
the components are at rest. However, it was shown that these vanishing flows produce a finite effect
on the gas behavior at the limit. This is known as the ghost effect, originally discovered by Sone et al
[50L B2 511, 53, 54]. The ghost effect has been described in different physical settings ([3, [4] 5l [50]. These
works show that the Navier-Stokes equation (or the heat-conduction equation) must be coupled with the
ghost effect to fully describe the gas dynamics at the continuum limit [51]. This was shown by doing an
asymptotic analysis on the Boltzmann equation, by expansion in the Knudsen number, which allowed
the derivation of the fluid-dynamics equations at the limit and the ghost effect. In our case, if we assume
that the Taylor expansion in 1/m holds, the ghost effect appears in terms of first order in 1/m similarly
to 3, 511 [54].
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5 Analysis of the stationary L-ESVM (¢ given)

In this section, we study the stationary L-ESVM in the framework described in section We recall
that the system is considered in a bounded domain © C R? (d = 2) with homogeneous Dirichlet boundary
conditions on the velocity. We consider three subdomains 2, 21 and Qs which satisfy the assumptions
7. In the simplified framework considered here, the equations and (33) are removed and
instead, ¢ is given as in . We also choose the growth functions G1 and G2 to be linear as in .
For clarity, we remove the superscripts ”oo” from all the variables in this section.

The resulting problem is the following system on (v1,v2),

—B1Avy + v = =V[(p] — iv ~v1)xe, + (p5 — giV ‘vz +q)xo,] on O,
(S2) § —B2Avz+v2==V[(p; — -V -v2)xa, + (p1 — 5,V - v1+¢)xa,] on O,
vi=v2 =0 on 00O,

with xq,, xo, the indicator functions of the domains 1,2 respectively, and where g1, g2, p1, p5 > 0
and ¢ is a given function on €.

5.1 Well-posedness and regularity of the stationary linear system.

‘We prove here Theorem We first start with the well-posedness.

Proposition 5.1. For g € L*(Q), there exists a unique solution (v1,v2) € Hg(©)* x H}(©)? to problem
(S2) under the condition on the model parameters.

Proof. The proof is done using the Lax-Milgram theorem. We can write the weak formulation of (S2) as

W) { Find (v1,v2) € HE(0©)? x H§(0)?, such that
B((v1,v2), (¢1,62)) = U((61,62)),  ¥(¢1,92) € Hy(©)” x Hy(©)?,

where we define the bilinear map B as

B((vl,vz),((f)l,(bz)) = 514VU1:V¢1 dl‘—‘y—ﬂQ/eV’UQIV(Z)Qd{E-i-/C;)’Ul-(bl dm—l—/@’l)z-(bgdl’

-i-gi1 e(V~v1)(V-¢1)X91 dx—f—g%/e(v.w)(v.@)xﬂz dr
1 1
+; @(V.m)(v‘qﬁz))ml dx + g:/@(v'v?)(v‘%))(ﬂz da,

and the linear application [ as
o) = [ G0 0V gdet [ B3+ a(T b2tV b)d
Q Qg

To prove the continuity of the bilinear application we do the following:

|B((v1,v2), (¢1,82))] < BrllVoillLze)IVoillr2e) + llvillzze)lld1ll2(e)

419 0ul2(0) IV - a0y + Ball Vel 2@y [ Vel 2o
+||U2||L2(@)||¢2HL2(®) + g%”V : U2HL2(®) V- ¢2HL2(®)
+= 190l IV - Galliaey + 17 - vllz2(0) |V - halz2co

< (U minBi+ ot )01 00) g a0 161,02y op iy oy

where we used Cauchy-Schwarz inequality and that

v - UH2L2(@) < HVU||2L2(@)~ (66)
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For the coercivity of the bilinear application we use again Cauchy-Schwarz’s inequality and the inequality

(69,
2 2 1 2
B((v1,v2), (v1,v2)) = Bil|Vuillzze) + lvillz2e) + gT”V “v1z2ay)

2 2 1 2
+B2(|Vozlz2(0) + llv2ll72(0) + ngV 02|20,

1 1
+— V-1V -voder+ — V vV - v dx
g1 Jo, 92 Ja,
> BillVoillize) + llvillizey + B2llVeallZz(e) + lv2lliz(e
1 2 1 2
—rglnv 027200,y — ng”v ~v1l|72(0,)
>

1 1
(m - @) V01 25c0) + l0n 2200, + (62 - @) V02200, + 220,

which gives the coercivity of B under the condition .
Finally we obtain the continuity of the linear application ! by :

1((¢1,02))] < Clpi +p2 + llall2) 1(d1, 82)l 51 (0)2 x 11 (0)2-
Then by the Lax-Milgram theorem there exists a unique solution (v1,v2) € H}(0)? x Hg(0)? to (S2). M

Whenever the repulsion pressure ¢ is assumed to be smooth on each subdomain, we can obtain more
regularity on the velocities by applying the results of elliptic regularity for transmission problems from
[41]:

Proposition 5.2 (Elliptic regularity). For a given g € C®*(Q1) N C%*(Q2) for some 0 < pu < 1, and if
the domains satisfy the conditions - and the condition on the model parameters , then the
solution, (v1,v2) to the system (Sa) is C»* (1) NCY* (Q2) NCH (Q°), with 0 < o/ < min(p, ).

Proof. This is a direct application of Theorem 1.1 and Remark 1.2 in [41]. To apply this theorem, we
first check that the domains satisfy the appropriate requirements. In fact, we assume and .
Then, it remains to check that the second order differential operator of (S2) satisfies the weak ellipticity
condition, that is

B((¢",6%),(8",6%) > MIVelize), Vo= (8"¢") € Hy(©)",

for some A > 0. This condition coincides with the coercivity condition of the bilinear application B. It
is satisfied with A = min (ﬁ1 - 8- ﬁ), which is positive thanks to (40).

492
Finally, note that Theorem 1.1 in [4I] gives the regularity result away from 0Q. Thanks to the
assumption in , this already gives the regularity on €2; for ¢ = 1, 2. Thanks to the homogeneous
Dirichlet boundary conditions, to obtain the regularity up to 00, it suffices to slightly move away the

boundary 90, extending the velocities by zero on the new domain. |

Proof of Theorem[3.3 Finally, Theorem [3.3]is a consequence of Propositions [5.1] and [£.2} [ |

5.2 Transmission problem of the stationary linear system

We show here that System (S2) can be rewritten as the transmission problem (7).

Proof of Proposition[3.7 Recall that the conditions — and are still assumed and that ¢ €
CO*(Q1) N CY*(Qz), for some 1 € (0,1).

First, by testing System (S2) with a test function compactly supported in €1, it is clear that the
system (T2,q,) is satisfied in a distributional sense (actually, against test functions in Hg (1) thanks
to the regularity obtained from Theorem [3.3] and even in a classical sense thanks to interior elliptic
regularity). The same applies in the other subdomains, so that (72,0,), (T2,0,) and (T2,qc) are satisfied
on their respective domains.
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To obtain the transmission conditions, we consider a test function ¢ € C°(©)?, and thanks to
Xar, xap, and xop smooth approximations of respectively xq,, Xo,, and Xqe, we construct a new test
function ¢, € C°(0)? as ¢n = ¢[1 — xop — Xop — xaor]. Then we multiply (dot product) each one of
the equations of (S2) with the test function @n and integrate, and we pass to the limit when n tends
to infinity. By identifying the quantities thus obtained on each section of the boundaries, one gets the
transmission conditions (Ta,r, ), (T2,r,) and (T>r) (see Appendix [A| for details on the derivation of the
transmission problem in the simple case of one species which can be similarly extended to the case of
two species). [ |

5.3 Further regularity for the stationary linear system

In this section we show the proof of Theorem [3.8f We recall that the conditions — and —
are assumed and that ¢ € C*(Q21) N C*(Q2).

Proof of Theorem[3.8, The regularity result is a direct consequence of Proposition 1.4 in [4I]. In fact,
the well-posedness of the stationary L-ESVM for a given ¢ € C*°(Q1) N C>(Q2) is ensured by Theorem
Moreover, under , we do not allow more than two subdomains to be in contact, thus all the
boundary domains 991,92, and 92 are smooth, and we gain the desired regularity. |

6 Analysis of the L-VM

In this section we first show a formal proof of the segregation property of the VM. We are then interested
in the quantitative behavior of the stationary L-VM. We show the existence of a pressure jump using the
formalism of a transmission problem.

6.1 Proof of the segregation property

This section is dedicated to the formal proof of Proposition [3.9

Proof of Proposition[3.94 We present a formal proof of the segregation property in the case 81 = 2. We
introduce the population fractions ¢ and c2 on the set where n > 0,

We note that the full segregation (44) can be written as,
ncice = 0.

Given 1 = (2, we obtain v1 = v3 in -. We use equations and to derive an equation for
the product ncice. It reads,

Oi(ncica) = =V - (neicavr) 4+ neicz (c2G1(pe) + c1Ga(pe)) -

Integrating on R? we obtain,

d

7 (ncice) de = / neice (c2G1(pe) + c1Ga(pe)) dx. (67)
t RrRd Rd

Under the assumption on the growth functions (43)), and assuming n; > 0,n2 > 0, equation yields,

— (ncie2) de < G ncice dx.
dt R4 RrRd

We deduce by solving the differential inequality that if the densities are initially segregated, that is,

n™ ™ ey = 0, then,
neica =0, Y(t, ) € [0;+00) x R
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6.2 Pressure jump of the stationary L-VM

The corresponding stationary transmission problem for the L-VM is a special case of the transmission
problem for the L-ESVM in the case where ¢ = 0. From proposition we obtain the following
transmission problem by taking ¢ = 0 in (73),

—B1Avi +v1 =0 in Q°,
—B1Avy +v1 — —VV vy =0 in Ql,
_BlAvl + v — - VV =0 in QQ,
—B2Avs +v2 =0 in Q°,
—B2Ava + v2 — iVV cv2 =0 in Q,
—ﬂgA’Ug + vo — o —VV-v1=0 in Q,
Bil(Vor)e, — (Vor)ee] -7 = [p] — =(V - v1)e, )|V on I',
(TVM) /32[(V1)2)Ql - (V'U2)Q<‘] 12: [p’f - %(V . ’U1)91)]I7; on Fl,
Brl(Vvr)a, — (Vvi)ae] - i = [p2 — ¥(V “v2)0,)]H on Ty,
Bal(Voz)ay — (Vos)ac] - i = 55 — 2 (V - v2)o i on T».
Ail(Vur)e, = (Voi)a,] - 7= [(p1 — p3) + %(V ‘v2)e,) = 5 (V- vi)e,J7 on T,
B2[(Vv2)a, — (Vv2)a,] - ¥ = [(p] —p3) + S V- v2)a,) — i(v “v1)o, |V on I’
(vl)ﬂl = (’01)3'227 (UQ)Ql ( ) Qyy VI V=v2-7, on T,
(v1)a, = (vi)ae,  (v2)a, = (v2)ar, on Iy,
(v1)a, = (v1)ae,  (v2)a, = (v2)ar, on I,
v =1v2=0 on 00O.

We recall that with our choice of linear growth functions G1(s) = ¢g1(p — s), and Ga(s) = gg( —3)

with g1, g2, p1,p5 > 0, the expression of the pressure p on the interfaces I'1,I's and T reduces to , SO
that the transmission conditions on the interfaces become,

Bi[(Voi)a, — (Vui)ee] - 7 = B2[(Vv2)a, — (Vuz)ac] - 7 = [(p)a, — (P)ac]é  on I'i,
Bi[(Vor)a, — (Voi)ee] - fi = B2[(Vv2)a, — (Vv2)ae] - i = [(p)a, — (p)ac]ii  on I's, (68)
Bil(Vvi)a, — (Vui)e,] - 7 = B2[(Vvz)a, — (Vo2)a,] - 7= [(p)o; — (P)a,]¥  on T.

In models incorporating surface tension, the pressure jump depends on the free boundary curvature
(see [I] for example in the case of a Cahn-Hilliard equation). In our case, the presence of the viscosity
parameters 3; > 0 is behind the discontinuity of the pressure as can be seen in . This is in accordance
with previous results on Darcy’s law [46]. In the case where the velocity follows the Brinkman law and
taken of gradient form, which is the framework of [48], a pressure jump is also shown (see also [42] for
explicit computations of the pressure jump in multi-dimensions).

Remark 6.1. When 81 = (2 we have vi = vz, which yields V - v1 = V - va. Since on the interface we
have V -v1 = G1(p) = g1(pi — p) and V - v2 = Ga2(p) = g2(p5 — p), the pressure jump vanishes at the
interface and p is continuous on I'.

We now prove the existence of a pressure jump. Since, from , the jumps of the pressure and the

jumps of the gradients of the velocities are very related, we first prove that the gradients of the velocities
have jumps.

Proposition 6.2. Under the assumptions — and , we have vi,ve ¢ H*(0)?, with (v1,v2)
the solution of the system (Tv ).

Proof. Let (v1,v2) be the solution of the (Tyar). Then by Thoorcm (v1,v2) € H5(©)? x Hi(O)2.
Furthermore by Theorem vy, v2 lie in C*° (1) ﬂC’o(Qg) ﬂC"C(Q ). Then we have vy, v2 in Hz(Ql)
H?(922)? N H?*(Q°)?. We now proceed by contradiction: let us assume that v, v2 € H2((9)2 and show
that there is a contradiction. For each of the three first equations in (Tyar), we multiply (dot product)

—Awv; and integrate on their respective domains. By summing the result, we obtain thanks to an
additional Green’s identity,

1 1
,81HA111||2L2(@) + HVleQLz(@) = f—/ VV v - Avide — — VYV vy - Av de. (69)
g1 Ja, 2 JQy
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Using twice Green’s identity, we compute the last term as,

S VV - va - Avy dx
92 Ja,
1 1 ﬂ
= —/ V. v AV v de — — V vy Avy - fido(z)
92 Ja, 92 Jaq,
= L 9w vV de+ 2 [ V(Y w) - fde(@) -~ [ V-vs Avy - do(a).
92 Ja, 92 Joq, 92 Joq,

Reinserting in and using the same computation for the first term of the right-hand-side, we obtain,

2 2
BillAvilli2e) + IIVvillz2(e)

= = 2 9w VOV ) det = [ Vew [V(V-w1) — Av] - Fdo(z)
91 Jo, g1 Joa,
= L 9w v de+ L [V [V(V0) = Av] - jido(x).(70)
92 Ja, 92 Joaq,

Now, using the assumption v, v2 € HQ(@)Q, we get that Vv and Vg are continuous across all interfaces

T'1, I, T'. We therefore deduce from (Tv 1) that,

0= [p; gil(v v)e)# on T, (71)
0=[ps — g%(v-w)n?)m on T, (72)
o:[(pi—p;>+gi2<vvz>nz>—gilw-vl)mw on T (73)

Coming back to , we get,

1 1
&\|Am||i2<@>+\lwlllia(@+g—1|\V(V-m>||izml>+g—2/Q V(V-v2) - V(V-v1)de
2

= L Vo VYV - An-Tdo@) +— [ Vu [V 01) — Avil - jido(z)
91 Joq, 92 Jaq,

= b1 [ V(T w) - Al do(a) 5 [ V(T 0) - Au] - do(a)
Iy T2
1 1 iR
—|—/ (—V s U1 — —V . 1)2) [V(V . 111) — A’Ul] . uda(m)
r \g1 g2
— b1 [ V(T 0) - A do(a) 53 [ V(T 0) - Au] - fdo(a)
ry o
+ [ i = p3) (VT 00) = A - 7do(a)
r
_ pi/ [V(V~v1)—Av1]~l7da(a:)+p§/ [V(V - 01) — Avi] - fido(z). (74)
151958 (2195
Applying a final Green’s identity gives, for j = 1,2,
/ V(Y- v1) — Avi] - #do(z) = / V- [V(V - 1) — Av] do = 0,
o Q;

so that,

1 1
BillAvi|| 320y + IVV1ll72(0) + gTHV(V 01|20, + g;/ﬂ V(V-v2) - V(V-v1)dz=0.

2
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Following the same procedure for v, and summing the result, we finally get
2 2 2 2
Bil|Avi||12(e) + B2llAv2|lT2(e) + [IVU1llz2(0) + [VV2(l72(0)
1 2 1 2
+EHV(V 1) 220y + 9*2||V(v ~v2)[172(0y)

1 1
+— V(V-v2)-V(V-vi)de + — V(V-v2)-V(V-v1)de =0.
g1 Jo, 92 Ja,

Then using Young’s inequality on the two last terms we get
BillAvi]lL2ey2 + VUil L2(ey2 + BallAv2|lL2(0)2 + Vo2l L2(0)2

1 2 1 2
‘*‘g:”VV “v2l|72(0,)2 + ;”VV 12200,
1 > 1 2 1 2 1 2
S EHVV . v1||L2(Ql>2 + @va . UQHLz(Ql)Z + g—QHVV . U2HL2(Q2)2 + @HVV . ’Ul”Lz(Qz)z
We then can write
1 D20 12 ONLE: 1 D2, 12 Vo |2 <0
B — 4792 I Ul||L2(e)2 + || U1||L2(e)2 + (B2 — Tgl I ’U2HL2(@)2 + | U2||L2(e)2 = U

The ellipticity condition gives positive coefficients in the above inequality. Then we can deduce
that Vv; = 0 on ©. This is incompatible with , so that we have a contradiction, which proves the
result.

|

As a corollary we obtain Proposition [3.12]

Proof of Proposition[3.13 Taking ¢ € (€ (©))? we have, using the C* regularity of v; on each subset
Q1, Q2 and Q°,

(Avi,¢) = /v1-A¢dm
)

/m-Ad)dw—l—/ U1-A¢dm+/ v1 - Apdx
Q Q2

c

Avy - ¢pdr + Avy - ¢pdr + Avy - ¢pdx
Q o Qc

+/1"1u1" Vouvr-vdo(z) + /F2UF Vo - iido(x) +/ Vv, - Tdo(x)

I'1ur,Uoe

[ (ena o vdo@) - [ (Tona, o dote) - [ (Vor)ae ¢ 7do(2),
Tur Ul T U’ Uoe

where 7 is the outward normal vector to 2°. In particular we have ¥ = —7 on I'y and ¥ = —f on T's.
Now, let us assume that p is continuous across I'1 UI'> UT". Then by the transmission conditions in ,
we have that the jump of Vuv; - 7 across 'yt UT'2 UT' is zero. Therefore, in the above computation, the
integrals on all the interfaces vanish. Finally we can write,

(A1, @) < ]l 2(e) (I1D*vill 202 + ID*v1ll 1202 + D01l 1200)2),

then Av; € L*(©)? and we obtain v; € H?*(©)2. Similarly we get v2 € H?(0)2. This is impossible
according to Proposition and therefore, we have proved that p cannot be continuous across the
interfaces. u
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7 Discussion

We presented an evolution model of two proliferating tissues in contact with each other and subject to
an enforced segregation (ESVM). Apart from the enforced segregation, the novelty of this model lies in
the law of the velocity: it is governed by the Brinkman law considered in a bounded domain, whose
boundaries might affect the dynamics of the system. This setting allows to see swirling motions (non
trivial curl) within the tissues, which corresponds to our biological motivation coming from the modelling
of the embryo elongation.

We then established the formal incompressible limit for this model and obtained an incompressible
system (L-ESVM) with a geometric description of the free boundaries. In this step we derived an
evolution equation on the repulsion pressure, which, unintuitively, remains present at the limit, even
though we attain full segregation. This repulsion pressure affects the dynamics of the shape of the
tissues, specifically the velocities of the outer boundaries of the tissues and of their common interface.
We called this a ghost effect. This effect is also supported by our numerical tests that show a finite effect
of the repulsion pressure in the ESVM in its incompressible asymptotic regime.

One first question that arises is: what does this remaining repulsion pressure reveal about the embryo’s
tissues 7 Having a closer look at our numerical simulations, we observed that the repulsion pressure affects
the swirling motions in the PSM. More precisely, it allows adjacent zones of opposite curls to appear
in the anterior part of the PSM, a pattern that is observed in the experiments on the bird embryo.
Such pattern is not recovered when only passive segregation is assumed, that is, when the repulsion
pressure is removed from the model. This suggests that an active segregation is at play to maintain
tissue segregation in the vertebrate embryo. This question still requires to be fully explored numerically
and compared to experimental data. This will be the subject of a future work.

A second striking feature arising from the model at the incompressible limit is the existence of a
pressure jump across the interfaces. We showed this result in particular in situations where the repulsion
pressure vanishes. This feature had already been observed in the specific case where the velocity obeys
the Brinkman law and can be written as a gradient in [48]. This situation is for example met if the
system is considered in the whole space. Here, we extend the result to situations in bounded domains
with boundary conditions that may affect the dynamics. We mention that the pressure jump should also
exist in the case where the repulsion pressure does not vanish, as the jump is viscosity-induced.

The derivation of the incompressible system that we presented here is formal. The case of a velocity
that is not in a gradient form, and in the case of a single species, has not been made rigorous yet. We
pursue this aim in a future work.

A Derivation of the transmission problem

This section is devoted to the derivation of the transmission problems in R2. We first do the complete
computations of the derivation of the transmission problem in the case of a single species for simplicity.
Similar rigorous computations (though not shown in this paper) hold for the transmission problems (7%)
and (Tv ) respectively for the L-ESVM for a given ¢*° and for the L-VM. We then present a formal
version of the transmission problem when ¢ is a stationary solution of 1) (and not anymore a
given L? function as in the simplified framework of section [3.2| and section [5)).

A.1 Derivation of the transmission problem for the single species case

If we take either densities (n1 or n2) equal to zero in the VM, we obtain a single species model (SS) for
the density and the velocity. The system (SS) is as follows: for all (t,z) € [0; +00) x R?,

o+ V - (nv) = nG(pe), (75)

—BAv+v = —Vp., (76)
n

Pe=eq - (77)

Notice here that this system, with the general form of the velocity we consider, includes the system in
[48] where the velocity is of gradient form. In this case, we can also obtain the incompressible limit by
taking ¢ — 0, and the limiting system can be easily deduced from — by taking either ni® or n3°
equal to zero, and ¢*° = 0.
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A stationary transmission problem can also be formalized, and we obtain, as a straightforward con-
sequence of the two-species case, the well-posedness and the elliptic regularity results (Theorem |[3.8)
as well as the expression of the pressure jump (Proposition . Note that the one-species system is
elliptic for any 8 > 0 and g > 0, so that the results apply without any supplementary condition on these
parameters.

The stationary system on the velocity in the single species case is posed in a bounded domain © C R2.
We assume 2 C © to be a smooth bounded subdomain with Q C ©.

The one-species problem coupled with homogeneous Dirichlet boundary conditions on v*° is as follows,

—BAV® +v®° = —V[(p* - 1V -v®)xa] on 6,
50 {

9
v>®° =0 on 00,
with xq the indicator function of the domain €.

Proposition A.1 (TransmissLon problem, one species). Let 2 be a smooth bounded domain with Q C ©,
and let T := 9Q and Q° = O\Q. Let 3 >0, g >0 and p* > 0.
Then the solution of system (S1) solves the following transmission problem (T1),

—BAV + v — %V(V -0*°) =0 in Q,
—BAV + v =0 n QF°,
(1) { BI(Ve™)a — (Vo®)acls = [p" — (V- v®)ali  on T,
(v™)a = (v7)ae on T,
v =0 on 00O,

with U the outward normal on I' and with the notations (-)a and (-)ae defined in (AI)).

Remark A.2. Note that in the following proof we only use the C' regularity of v™° in each subdomain
(up to the boundary) Q and Q¢. This ensures that the proof remains valid for the case of more than one
species, thanks to Theorem .

Proof. We consider the weak formulation of (S1),

B/ Vvoo:V(bdm—i—/ v°°~¢dw+/ (p*—gvv“’) xaV-pdr =0, forall¢ €C (0)> (78)
® e e

where the Frobenius inner product is used in the first integral. Then by extension of test functions
¢ € C(2)? (by 0 outside Q) we obtain,

— BAV™ — éV(V W) +0® =0 in D'(Q).

Similarly, by extension of test functions ¢ € C°(2°)? (by 0 outside ¢) we obtain,
— BAV® +0* =0 in D'(Q°).

It remains to obtain the transmission conditions at the interface. For this, we use a sequence of
smooth functions (xn)» that are localized around the interface. More precisely these functions satisfy
the following properties,

Xn € C*(0), for all n > 0 large enough, (79)
as well as,
LP(©)
Xn —— 0, for all p € [1, 00), (80)
n— oo

and finally, for any function w € C(Q) N C(Q¢),

lim w-Vxnder = /F(w)gc -Pdo(x) — /F(w)g -Udo(x), (81)

n—-+oo o

with the notations of (41f), with & the normal vector to I' and do(x) the surface measure along I'. Such
sequence can be constructed explicitly.
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_ Now, we consider a test function ¢ € CZ° (@) which does not necessarily vanish close to I', and define
On == dXn. We insert the test function an in and get,

ﬁ/ va:quEndx—k/ vw-éndx:/(p*—lv-voo)XQVn;ndw, (82)
e e e g
which we rewrite,
B/XTLVUOO: Vodxr + 6/ Vo™ Vxn®¢)dac+/ - dxn dx (83)
e
= [l = LT 0T ode+ [ (7= LV )a(Vi) - (1)
) g <) g

Now using the convergences and together with the C! regularity of v on each subdomain Q
and Q¢ (up to the boundaries), we can pass to the limit n — oo and get,

oo oo N * 1 oo -
5[ (T = (V7)) (78 6)dota) == [ (0" = 2 (V- 0™) )0 Pio(a).
r r
As this is verified for all ¢ € C°(©)?, particularly by extension of ¢ € C2°(T")?, we have the following
condition on the interface,

Bl(Vo™)q — (Vo™)ae] - 7 = [p" — ﬁ(v Yol on T. (85)

Then we see that a solution to the variational problem (S1), using the regularity result and the compu-
tations above, is a solution to (71), where the continuity condition comes from the fact that v*° is in
H'(©)? and is then continuous across any hypersurface of ©. |

This section was dedicated to the rigorous derivation of the transmission problem in the single-
species case. Similar computations can be made for the two-species case by adapting the choice of the
test function ¢, to be localized on the interface between the two tissues and on their outer boundaries.

A.2 A formal transmission problem for the general two species case

We now present the transmission problem one can obtain formally for the stationary L-ESVM, when ©,
Q1, Q2 are chosen as in (34)—(37). Contrarily to the simplified framework of section [3.2] and section
where ¢ is considered given, ¢ is here a stationary solution of -. We can rewrite these equations
as in in 1 and in Q2. Then, supposing that g is smooth enough inside each subdomain 2; and
Qg, the limiting model defined by the equations — is equivalent at equilibrium to the following
transmission problem (75) considered on ©, and coupled with Dirichlet boundary conditions on 90,

—ﬁlAvl + v —ivv~vl =0 in Q1,
(T2*;Ql) —/BQA'UQ + Vg — ivv sV = —Vq in Ql,
V- (log(q + 1)v2) = g2log(q + 1)[ps — (b1 — ;- V-v1 +¢)]  in Qu.

—B1Av +v1 — =VV vy = —Vg in Qo,
*ﬁzA’02+'U2 — g%vv'vz =0 in QQ,
V- (log(q + 1)v1) = grlog(q + 1)[pi — (05 — -V -v2+¢q)]  in Q.

T2 QQ

—ﬁlAvl +v1 =0 in 967

T2 Qc { —ﬂQAUQ +v2 =0 in Q°.
B1l(Vui)a, — (Vui)ae] - 7 = [pT — i(v “v1)ay [P on I'y,
(T3, B2l(Vv2)a, — (Ve2)ae] -7 = [pi + (@)a, — - (V- v1)e )7 on Ty,
(v1)o, = (v1)ae, (v2)a, = (v2)ae, (v2q), V=0 onT.
Bil(Vur)a, — (Vor)ee] -7 = [p3 + (¢)a, — o5 (V - v2)0,]7  on Ty,
(T5r,) 8 Be[(Vv2)a, — (Vv2)ac] - 7 = [p — é(v - v2) 0, |7 on Ty,

vi)oe, (v2)a, = (v2)ac,  (vig)a, V=0 on I'z.



Bil(Vvi)a, — (Vvi)e,] - 7 = [(p1 — p3) — (¢)a, + é(v “v2)Q, — i(v ‘v1), )7 onT,
(Tsr) 8 Bel(Vvz)a, — (Vo2)a,] - 7= [(pT — p3) + (@), + 55 (V- v2)a, — 5 (V- v1)e,]7 onT,
(v1)o; = (V1)a,,  (V2)a; = (V2)a,, vi-T=v2-U, (@a, = (9o, on I'.

This transmission problem gives us some insight on the behaviour of the system. It shows on the one
hand that ¢ does not have a jump on I'1, 2, I', unlike the pressure p. On the other hand we can observe
that the jumps of the gradients of the velocities of the two species at the interface I' are not equal in
general.

B Complementary numerical simulations

B.1 Segregation in the ESVM for initially mixed densities

In this section we exhibit the role of the repulsion pressure in the ESVM in segregating initially mixed
ini

densities. We consider initially two mixed densities n1 and n2 such that n1""(z) = 0.7x(xer2;)x|<0.3}
and ném(at) = 02X (X = (w,y)€R2;(c—0.4)2 442 <0.3}, With X the indicator function, see Figure We use the
following parameters m = 30, = 0.001,e¢ = 0.1, and choose the growth functions and viscosities as in
. At initial time, the densities share a mixing region nins represented in Figure @ At t =0.1 we
observe the segregation of the densities n; and n2, see Figure[b} In Figure [6d] we represent the mixing
region between the densities at ¢ = 0.1 and notice that the maximum of nine is largely reduced compared

to ny Nog .

1 1 1 1 1 1
08 0.9 909 08 0.9 409
06 0s | o8 06 - 08| Hos
04 07 [ Hor 04 07 | {o7
02 06| 106 0.2 06| {os

0 05| Hos 0 05| {os
02 04| o4 02 04| {oa4
04 03| 103 04 03| {03
06 02| Ho2 06 02| {o2
08 01| Ho1 08 01| {01
-1 o o -1 o o

-1 05 0 05 1 -1 05 0 05 1

(a) Initial conditions of n1 and nas. (b) The densities n1 and ng at ¢t = 0.1.
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Figure 6: Segregation of two initially mixed population densities in the ESVM. The top panels represent the
densities n; and ngy respectively at time ¢ = 0 in Panel @ and ¢ = 0.1 in Panel @ The bottom panels
represent the mixing region njns respectively at ¢ = 0 in Panel and ¢ = 0.1 in Panel @
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These simulations highlight the role of the repulsion pressure in segregating the densities in finite
time. This segregation is not perfect as some mixing still appears at the interface between the densities.
At the incompressible limit we recover full segregation as proven in Section [

B.2 Effects of ¢, a, and m on the solution of the ESVM

In this section we investigate the role of each of the parameters €, o, and m on the solution of the ESVM
in the case of the vertebrate embryo. In Figurem7 we represent the densities n1 and n2 in the left panels
and the mixing region (the product ninz) in the right panels for different sets of parameters (m, «, €) in
the ESVM, at final time ¢ = 0.1.

In Figures the ESVM is simulated with the parameters (m,a,e¢) = (30,0.001,0.1) , similar to
those used in section 223} In Figure[7B] we notice the very thin region of mixing at the interface between
the densities.

In Figures we change the value of the repulsion parameter to m = 10 (with « and e unchanged).
We notice that the densities’ shapes are affected and the density overlap is more significant. Decreasing
the parameter m then results in a concentrated mixing around the interface.

‘When changing the parameter « as in Figures@-@where we set it to a = 0.01, the width of the mixing
region increases significantly compared to [7b} This shows that large values of « result in the mixing of
the densities on a larger region. Changing « also appears to affect the shape of the densities, with the
PSM (density in red) enveloping posteriorly the NT (green species) compared to Figure ‘We note
here that our choice of the parameter « is sufficient to maintain the stability of the system ESVM. We
refer the reader to [I7] where authors exhibit in dimension 1 (and with Darcy’s law for the velocities) the
role of small values of « in creating instabilities with the appearance of alternating population densities.
Finally, we change the parameter € and set it to 1 in Figures[Tg{7l] The mixing between the densities is
qualitatively not affected. The densities n1 and ns reach a maximum of around 0.87 (lighter colors on
the colorbar) compared to the other simulations where ¢ = 0.1 and the maximum is reached at around
0.98. A smaller € increases the densities which become closer to the maximal density 1 as per our choice
of pressure law @ This observation exhibits the role of the parameter € in controlling the congestion
of the densities.

We note here that v and m cannot independently tend to their respective asymptotic limits as they are
both involved in the segregation of the densities. In fact, o cannot be taken too small when m is large
as it balances the instability of the system ESVM caused by the segregation pressure.

Overall, the observed effects of €, @ and m on the ESVM in this preliminary parameter study are aligned
with those observed in [I7].

30



)

with (b) The mixing region mnine with

[ [ E1 [
(m,a,€) = (30,0.001,0.1) at t = 0.1. (m,a,e) = (30,0.001,0.1) at t = 0.1.

[~ Y :

1 05 0 05 1 , 1 05 0 05 1

08 0.9 0.9 08 0.9
06 08 08 06 08
04 07 07 04 07
02 06 06 02 06

05 05 0 05
0.2 0.4 0.4 02 0.4
0.4 03 03 0.4 03

02 02 06 02

01 01 08 01

E1 0 0 E1 0
(c) Variation of m: the densities ni,ns with  (d) Variation of m: the mixing region ning
(m,a,€) = (10,0.001,0.1) at ¢ = 0.1. with (m,a,€) = (10,0.001,0.1) at ¢ = 0.1.

El,{ 1 El,{

1 05 0 05 1 , 1 05 0 05 1

08 0.9 0.9 08 0.9
06 08 08 06 08
04 07 07 04 07
02 06 0.6 02 0.6

0 05 05 0 05
0.2 0.4 0.4 0.2 04
0.4 03 03 0.4 03
0.6 0.2 0.2 06 0.2
08 01 01 0.8 01

(e ]’ [ '
(e) Variation of o: the densities ni,no with  (f) Variation of a: the mixing region ning
(m,a,e) = (30,0.01,0.1) at final time ¢ = 0.1. with (m,a,e) = (30,0.01,0.1) at ¢ = 0.1.

El,{ 1 1 El,{ 1

1 05 0 05 1 1 05 0 05 1

08 0.9 0.9 08 0.9
06 08 08 06 08
04 07 07 04 07
02 06 0.6 02 0.6

05 05 0 05
0.2 04 0.4 02 0.4
0.4 03 03 0.4 03
0.6 0.2 0.2 06 0.2
08 01 01 0.8 01

) Y °
(g) Variation of e: the densities ni,n2 with (h) Variation of e: the mixing region ning
(m,a,€) = (30,0.001,1) at t = 0.1. with (m,a,e) = (30,0.001,1) at ¢t = 0.1.

)

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

-0.8 0.9 0.9 -0.8 0.9
-06 0.8 0.8 -06 0.8
04 0.7 0.7 04 07
-02 0.6 0.6 -0.2 0.6

0.5 0.5 0 0.5
0.2 0.4 0.4 0.2 0.4
0.4 0.3 0.3 0.4 0.3
0.6 0.2 0.2 0.6 0.2
0.8 0.1 0.1 0.8 0.1

(a) The densities ni,n2

)

Figure 7: The left panels illustrate the densities n; (in green) and nsy (in red) and the right panels illustrate
the mixing region ning at t = 0.1 in the ESVM with different sets of parameters (m, a, €).
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B.3 Segregation in the VM and in the L-VM

In this section we support our conjecture in Remark [3.-10] by exhibiting numerical simulations of the VM
with € = 1, and the VM in asymptotic regime with ¢ = 0.1 in dimension 1 for clarity. The densities
are initially segregated with n1***(z) = 0.8x[0.3,1](z) (in green) and n2"*(z) = 0.8x(—1,—0.3(z) (in red)
and the viscosities are taken as (81, 32) = (3,1). In Figures [3a] and [8c| we show the initial data n1,ns, p.
respectively in the VM with € = 1 and in the VM with ¢ = 0.1. At ¢ = 10, the green and red densities
appear to maintain their segregation throughout their evolution in the case ¢ = 1, see Figure [8b} and
e = 0.1, see Figure The pressure pe in orange is continuous (Figures as expected as it is a
function of the total density n = ni + na, but its gradient exhibits sharp discontinuities at the interface.
To sum up, these simulations are strongly in favor of our conjecture (Remark that the VM and the
L-VM propagate segregation from initial data.
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Figure 8: Left: initial conditions for the densities n1,n2 and the pressure p. in the VM for e = 1 (top) and
e = 0.1 (bottom). Right: the densities and the pressure at ¢t = 10 in the VM for € = 1 (top) and € = 0.1
(bottom).

C Numerical scheme for the L-VM

The numerical simulations of the L-VM are performed in Freefem++ [31] using a finite element scheme.
The densities are initialized as indicator functions,

"™ (z) = Xqini(z)  and g™ (z) = Xoyi (),
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with Qi = [~1/3;1/3] x [~1;0] and Q5" = ([~1; —1/3]U[1/3;1]) x [~1;0]. We consider solutions under
the form of an indicator function and therefore:

ni(z,t) = X, (®) and  n2(z,t) = Xa,@) ()

The growth functions are considered linear as in (39). At the initialization a triangular mesh is generated
by Freefem++. At each time step the velocity is computed according to the variational formulation of
(147)-(48]), combined with the complementary relation (50). Thus for all (¢1,¢2) € C°(©) we have,

ﬁl/Vvl :V¢1+/’ul ~¢1:/ (plf—V-v])szth/ (ps — —V-0v3°) V-1,
S) e Q1 (t) g1 Qo (t) g2

oo oo e * 1 oo * 1 [ee]
ﬁQ/VUQ 5V¢2+/'U2 ‘@2:/ (plffv"l)l)v'¢2+/ (p3 — —V-v3") V- ¢o.
S) e Qq(t) 9 Qo (t) g2

The solutions of this system with Dirichlet boundary conditions are easily computed in Freefem++ using
piecewise constant discontinuous finite element (PO element). We then compute the new domains
and €22 by moving the mesh with the new velocities. Note that the movement of the mesh needs to be
carefully performed to ensure triangles are not flipping over.
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