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Hamiltonians for polaron models with
subcritical ultraviolet singularities

Jonas Lampart ∗

October 10, 2023

We treat the ultraviolet problem for polaron-type models in nonrel-
ativistic quantum field theory. Assuming that the dispersion relations
of particles and the field have the same growth at infinity, we cover all
subcritical (superrenormalisable) interactions. The Hamiltonian with-
out cutoff is exhibited as an explicit self-adjoint operator obtained by
a finite iteration procedure. The cutoff Hamiltonians converge to this
operator in the strong resolvent sense after subtraction of a perturbative
approximation for the ground-state energy.
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1 Introduction

In this article we consider models for a particle interacting with a bosonic quantum
field by a linear coupling. Such nonrelativistic quantum field theory (QFT) models
play an important role in mathematical physics, on the one hand as approximations
for more fundamental relativistic QFTs, and on the other hand as effective models
that feature interactions with a field of quasi-particles. Examples of such models
include the Nelson model [24, 11, 20], the optical Fröhlich model for an electron
and phonons in a solid [7, 10], and the Bogoliubov-Fröhlich model for an impurity
interacting with excitations of a Bose-Einstein condensate [13, 19].

We will consider translation-invariant models and fix the total momentum, the
sum of the momenta of the particle and the field. The formal expression for the
polaron Hamiltonian of one particle interacting with the field at total momentum P
is given on the momentum Fock space F by

H = Ω(dΓ(k) − P ) + dΓ(ω) + a(v) + a∗(v), (1)

where Ω, ω are the dispersion relations of the particle and the field, respectively, a, a∗

denote bosonic annihilation/creation operators and dΓ(A) acts as the one-particle
operator A on each boson (see Section 1.3 for a summary of the notation). This
expression, taken literally, defines an operator with dense domain only if v is an
element of the one-particle space L2(Rd), as otherwise a(v) is not closable and a(v)∗

is not densely defined.
The goal of this article is to make sense of the operator (1) in situations presenting

an ultraviolet (UV) singularity, that is v /∈ L2 due to the behaviour of v ∈ L2
loc

for large momentum. Although we only treat here the model with one particle, we
expect that our results can be generalised to any fixed number of particles interacting
with the field. This problem has been studied for several classes of Ω, ω, v in the
literature [24, 6, 12, 14, 10, 11, 33, 20, 26, 27]. The novelty of our result is the
introduction of a new general and explicit method allowing for stronger singularities
than previous results, up to the threshold of critical singularities that we explain
below. This method generalises the one used in [18, 19] for the specific case of
the Bogoliubov-Fröhlich Hamiltonian. The underlying idea is that one might be
able to make sense of the expression (1) if one can find a domain D such that the
action of the individual terms in H on Ψ ∈ D may not yield an element of F ,
but, due to cancellations between the different terms, their sum is an element of F .
The conditions on Ψ leading to such cancellations are known as (abstract) interior
boundary conditions and have recently been studied for a variety of models [31, 34,
30, 16, 21, 20, 18, 28, 26, 27, 32, 15, 22, 17, 2].
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1.1 Ultraviolet scaling

The strength of the UV singularity depends on the behaviour of the functions Ω, ω, v
(from Rd to R) as their argument tends to infinity. This can be analysed heuristically
if the functions are (essentially) homogeneous. Assume for the moment that Ω(p) =
|p|γ , ω(k) = |k|β, v(k) = g|k|−α are exactly homogeneous with exponents β, γ ≥ 0,
α ∈ R, and coupling strength g > 0. Let Uλψ(k) = λd/2ψ(λk) be the unitary
rescaling on L2(Rd). Conjugating each term in (1) with the lift Γ(Uλ) of this unitary
to Fock space (acting as Uλ on each tensor factor), we obtain

Γ(Uλ)HΓ(Uλ)∗ = λγΩ(dΓ(k) − λ−1P ) + λβdΓ(ω) + λd/2−α(a(v) + a∗(v)), (2)

which is of a similar form as (1) but with modified total momentum Pλ = λ−1P and
new pre-factors for each term. If we factor out λmax{β,γ}, the coupling constant to
the interaction becomes gλ = λd/2−α−max{β,γ}g.

The large-momentum, respectively small-distance, behaviour of the model is re-
lated to the rescaled model with large λ. This has a small coupling constant if
d/2−α−max{β, γ} < 0, and we call this scaling subcritical (d/2−α−max{β, γ} = 0,
or > 0, would be critical and supercritical, respectively). The fact that the coupling
becomes small for large λ suggests that, concerning the UV behaviour, the inter-
action may be treated perturbatively. One expects such models to be superrenor-
malisable. This means, roughly speaking, that a renormalised model without UV
cutoff can be defined after taking into account a finite number of divergences that
are determined by perturbation theory. This is what we will show, under technical
hypothesis that are sharp if β = γ and in the precise sense of Theorem 1.2 below.

1.2 Main result

We make the following assumptions on the dispersion relations and the interaction.

Assumption 1.1. The functions v : Rd → R, ω : Rd → R+, Ω : Rd → R+ are
invariant under rotations. We assume that we have parameters, α < d/2, γ ∈ {1, 2}
satisfying

δ := d− 2α− γ < γ,

and constants C > 0, c1 > 0, c2 ≥ 0 so that Ω ∈ Cγ(Rd) and the inequalities

|v(k)| ≤ C|k|−α,

ω(k) ≥ C(c1 + k2)γ/2,

Ω(p) ≥ C(c2 + p2)γ/2,

|∂νΩ(p)| ≤ C(c2 + p2)(γ−|ν|)/2, |ν| ∈ {1, γ},

hold.
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The first consequence of this hypothesis is that vω−1 ∈ L2(Rd), since∫
Rd

|v(ξ)|2

ω(ξ)2 dξ ≤ C

∫
Rd

dξ
|ξ|2α(c1 + ξ2)γ

, (3)

and 2α + 2γ > d. Note that the hypothesis on α, γ is sharp in this regard. This
implies that a(v)dΓ(ω)−1 is bounded (see Lemma B.1). For E0 ≥ 0 we set

H0 := Ω(dΓ(k) − P ) + dΓ(ω) + E0. (4)

Let T be any operator such that H0 +T is self-adjoint on D(H0) and invertible (for
appropriate E0). We define (this is well defined as under our hypothesis H−1

0 a∗(v)
is bounded by Lemma B.1)

GT := −(H0 + T )−1a∗(v). (5)

Theorem 1.2. Let P ∈ Rd and suppose Ω, ω, v satisfy Assumption 1.1. There
exist a symmetric and H0-bounded operator (T,D(T )) on F , a bounded symmetric
operator R ∈ L (F), and a number E0 such that the following hold.

1) The operator

H := (1 −GT )∗(H0 + T )(1 −GT ) +R− E0

is self-adjoint on

D(H) = {Ψ ∈ F : (1 −GT )Ψ ∈ D(H0)} (6)

and bounded from below.

2) For Λ ≥ 0, let vΛ(k) = v(k)1(|k| ≤ Λ) and

HΛ := Ω(dΓ(k) − P ) + dΓ(ω) + a∗(vΛ) + a(vΛ).

The operators HΛ are self-adjoint on D(H0) and for the numbers EΛ given in (37)
we have

lim
Λ→∞

(
HΛ − EΛ

)
= H

in the strong resolvent sense.

3) For all Ψ ∈ D(H) the equality

HΨ = Ω(dΓ(k) − P )Ψ + dΓ(ω)Ψ + a∗(v)Ψ + a(v)(1 −GT )Ψ + (T +R)Ψ

holds in the dual of D(H0).
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This theorem is proved at the end of Section 2. The operator T is constructed
explicitly by an iterative procedure with number of iterations

n∗ = max
{
n ∈ N : n(1 − δ/γ) ≤ 1

}
=
⌊ γ

2γ + 2α− d

⌋
.

Note that our conditions on γ, α are exactly such that n∗ is finite. The operator R
is given as a function of T in Proposition 2.4.

The condition (1−GT )Ψ ∈ D(H0) prescribes the behaviour of Ψ ∈ D(H) at large
momentum, respectively the singularities of its Fourier transform. Since T preserves
the boson number, it can be read as a the relation between

Ψ(n) −GT Ψ(n−1) ∈ D(H0) (7)

for n ∈ N. Expanding the resolvent of H0 + T in GT , one finds the leading contri-
bution

√
nΨ(n)(K, kn) ∼ v(kn)

Ω(kn) + ω(kn)Ψ(n−1)(K) (8)

for |kn| → ∞. The presence of T gives lower order corrections to this, see [18, 19, 17].
Such conditions are known as interior-boundary conditions [30] and can be related
to the general theory of self-adjoint extensions [2, 25].

The equality in point 3) can be interpreted as follows. The operator a(v) is defined
on D(H0) and not

D(H) ⊂ D(H0) ⊕GT F . (9)

If we extend it by setting

a(v)GT Ψ := (T +R)Ψ, (10)

where T : F → D(T )′ ⊂ D(H0)′, then the equality reads

HΨ = Ω(dΓ(k) − P )Ψ + dΓ(ω)Ψ + a∗(v)Ψ + a(v)Ψ. (11)

Note that here neither of the three terms needs to be an element of F . The individual
terms are rather elements of D(H0)′, with only the sum in F due to cancellations
enforced by the condition (1 −GT )Ψ ∈ D(H0).

Theorems on renormalisation with statements as in point 2) of Theorem 1.2 are
abundant in the literature, see e.g. [24, 29, 6, 12, 14, 11, 33, 20, 26, 27, 1]. However,
they are almost entirely constrained to cases which require only one renormalisation
step, i.e. with n∗ = 1. The recent results [11, 33] are essentially sharp within this
class, as the hypothesis amount roughly to δ < γ

2 (see also Remark 3.3). A notable
exception is the article [12], which treats the critical case β = γ = δ = 1. However,
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the renormalised operator H is obtained by an abstract compactness argument, so
very little is known about its properties (see also [4]). The articles [18, 19, 17]
were the first to explicitly treat cases with n∗ = 2. Models with n∗ = 2 that are
slightly different from the polaron-type Hamiltonian were treated in [29, 21] (see
also Remark 3.3).

Remark 1.3. Our technical hypothesis are not optimal when ω, Ω have different
homogeneity, i.e., ω(k) ∼ |k|β, Ω(k) ∼ |k|γ , with d − 2α − 2 max{β, γ} < 0 and
β ̸= γ. In this case, the iteration number should be

n∗ =
⌊ max{β, γ}

2 max{β, γ} + 2α− d

⌋
. (12)

The generalisation of our results to the case β > γ is straightforward and we omit
it here in favor of a simpler notation since it seems to be less relevant to physics.
Concerning the case γ > β, the Nelson model (where β = 1, γ = 2 and n∗ = 1)
was treated in [20]. In general, this case brings with it the additional difficulty that,
while Ω(dΓ(k) −P ) can be used to remedy the lack of integrability of v, it does not
control the number of bosons and a(v). Thus in all the relevant bounds there is a
balance to be struck between gaining decay at k → ∞ by using Ω and control of the
boson number by dΓ(ω). The number of iterations n∗ will be sufficient to render
all expressions finite, for any given finite number of bosons. However, the operator
R will not be bounded, but bounded by some power of the boson number N . The
requirement that this power be less than one will impose additional conditions on
the range of δ depending on the difference γ−β. A similar statement to Theorem 1.2
will still hold for appropriate values of δ, but the proof will be more involved as it
will require tracking a family of bounds and later selecting the appropriate ones,
similarly to the considerations of [20, Sect.3.3]. Alternatively, one could impose a
cutoff on the boson number, and our method of proof should then work on the whole
range of subcritical models (compare [17]).

1.3 Notation

For normed spaces X,Y we denote by L (X,Y ) the normed space of bounded linear
maps from X to Y and by X ′ = L (X,C) the topological dual to X. We denote by
F the symmetric Fock space over L2(Rd),

F :=
∞⊕

n=0
L2(Rd)⊗sn =

∞⊕
n=0

F (n). (13)

For a unitary U ∈ L (L2(Rd)) we define the unitary Γ(U) ∈ L (F) by Γ(U)|F(n) =
U⊗n and for a self-adjoint A,D(A) on L2(Rd) we define dΓ(A) as the generator of
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Γ(e−itA). In particular, we denote by N := dΓ(1) the number operator on F , and
by dΓ(k) = (dΓ(k1), . . . ,dΓ(kd)) the vector-valued field momentum.

For real valued functions f, g : X → R on a set X, we employ the notation

f(x) ≲ g(x) (14)

for the statement that there exists C > 0 so that for all x ∈ X

f(x) ≤ Cg(x). (15)

For symmetric linear operators the notation A ≲ B refers to the corresponding
inequality of quadratic forms as usual.

For a multi-index ν ∈ Nk
0 we denote by |ν| =

∑k
j=1 νj the sum of its entries. For

a vector X ∈ (Rd)n or a multi-index X ∈ Nn
0 , we denote its components by the

corresponding lower case letter, and by

Xb
a := (xj)b

j=a = (xa, . . . , xb) (16)

the element of Rd(b−a+1), respectively Nb−a+1
0 , given by the entries xj with 1 ≤ a ≤

j ≤ b ≤ n. Similarly, we denote for an index set M = (m1, . . . ,mk) ∈ Nk with
mi ̸= mj for i ̸= j,

XM = (xm1 , . . . , xmk
),

XMc = (xj)j /∈{m1,...,mk).
(17)

Note that inXM the entries occur in the order given by the numbering ofm1, . . . ,mk,
which can differ from the ordering of the mj by magnitude. For k = n, XM is a
permutation of X. In XMc entries occur in the same order as in X.

Moreover, we denote

ω(Xb
a) :=

b∑
j=a

ω(xj). (18)

2 Construction of the Hamiltonian

In this section we give a detailed outline of the iterative construction procedure for
the Hamiltonian, while postponing the technical work of proving the required bounds
to Section 3. The general strategy of this construction should also be applicable to
models with a different structure than the polaron models we consider, though of
course the requirements for obtaining appropriate bounds will depend on the details.

We begin by explaining how the auxiliary operator T enters into the story. We
will outline its construction below. Let T be any operator such that H0 + T is
self-adjoint and invertible on D(H0), and set as above

GT := −
(
a(v)(H0 + T )−1)∗ = −(H0 + T )−1a∗(v). (19)
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As (H0 + T )GT = −a∗(v) we have the following short calculation, which at this
point is purely formal,

(1 −G∗
T )(H0 + T )(1 −GT ) = (H0 + T + a(v))(1 −GT )

= H0 + a(v) + a∗(v) + T − a(v)GT . (20)

Hence, if we were able to make sense of T − a(v)GT , say as a bounded operator,
then we could define

H := (1 −G∗
T )(H0 + T )(1 −GT ) + a(v)GT − T − E0, (21)

and this would be self-adjoint on (1 − GT )−1D(H0). The role of T here is twofold.
On the one hand, the domain of H depends on T via GT , and on the other hand T
must be chosen so that a(v)GT −T has good properties. Since a(v)GT is not defined
a priori, the latter means there are cancellations between the two terms.

In order to make this discussion well defined and explain the relation to renor-
malisation, we introduce a sharp UV-cutoff Λ ≥ 0 and set

vΛ(k) := v(k)1(|k| ≤ Λ). (22)

For any bounded operator TΛ we set

GTΛ := −(H0 + TΛ)−1a∗(vΛ), (23)

and then have the identity

HΛ = Ω(dΓ(k) − P ) + dΓ(ω) + a(vΛ) + a∗(vΛ)
= (1 −G∗

TΛ
)(H0 + TΛ)(1 −GTΛ) − TΛ − a(vΛ)(H0 + TΛ)−1a∗(vΛ) − E0.

(24)

If TΛ has a limit T for Λ → ∞ so that, for example, T is H0-bounded with bound
less than one, then the first term in the sum above defines a self-adjoint operator
also for Λ = ∞. If we could choose the operators TΛ such that

a(vΛ)GTΛ − TΛ = −a(vΛ)(H0 + TΛ)−1a∗(vΛ) − TΛ = EΛ (25)

for some numbers EΛ, then we could give meaning to the operator HΛ −EΛ for Λ =
∞. It is not clear whether operators solving this equation can be found. However, we
will show that under the assumption δ < γ we can iteratively construct approximate
solutions, up to error terms that are eventually well behaved for Λ → ∞. To find a
formula for TΛ, consider for a moment the interaction form factor vg = gv. We then
make an ansatz as a power series in g2, i.e.,

TΛ =
n∑

j=1
g2jTΛ,j . (26)
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That is, TΛ,j is homogeneous of degree 2j in v. The equation (25) gives for j = 1

g2TΛ,1 = −a(gvΛ)H−1
0 a∗(gvΛ) − g2EΛ,1, (27)

with a natural choice for EΛ,1 given by

EΛ,1 = −⟨∅, a(vΛ)H−1
0 a∗(vΛ)∅⟩P =0

= −
∫

|k|≤Λ

v(k)2

Ω(k) + ω(k) + E0
dk ∼ Λδ. (28)

Now TΛ,j+1 should be the coefficient of g2j+2 in

−a(gvΛ)
(
H0 +

j∑
ℓ=1

g2jTΛ,ℓ

)−1
a∗(gvΛ) −

j∑
ℓ=1

g2ℓTΛ,ℓ − g2j+1EΛ,j+1. (29)

To obtain an explicit formula, we use the following resolvent expansion that follows
by induction from the resolvent formula, see [3, Lem.3.13].

Lemma 2.1. Let H0 be closed and and set Hn = H0 +
∑n

m=1 g
2mTm for some H0-

bounded operators Tm, m ∈ {1, . . . , n}. For −z ∈ ρ(H0) ∩ ρ(Hn) and any L ∈ N0 it
holds

(Hn + z)−1 = (H0 + z)−1
L∑

ℓ=0
g2ℓSℓ − g2L+2

L∑
ℓ=0

n∑
j=ℓ+1

(Hn + z)−1Tj(H0 + z)−1SL−ℓ

with

S0 = 1, Sℓ =
ℓ∑

ν=1
(−1)ν

∑
1≤j1,...,jν ≤n
j1+···+jν =ℓ

ν∏
µ=1

Tjµ(H0 + z)−1, ℓ ∈ N.

The expansion of Lemma 2.1 yields the recursive formula for TΛ,j (using the
notation J = (j1, . . . , jν))

TΛ,j+1 + EΛ,j+1 =
j∑

ν=1
(−1)ν+1 ∑

J∈{1,...,j}ν

|J|=j

a(vΛ)H−1
0

( ν∏
ℓ=1

TΛ,jℓ
H−1

0

)
a∗(vΛ), (30)

where the numbers EΛ,j can be chosen to be the vacuum expectation values of TΛ,j

with P = 0. These numbers arise naturally in the formal perturbation series for
the ground state energy at P = 0. The coupling constant g was only introduced
here as a marker in the power counting argument, hence we again set g ≡ 1 for the
remainder of the article.
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Roughly speaking, the terms in TΛ,j involve j of each creation and annihilation
operators and 2j − 1 resolvents of H0. If we were not missing one resolvent, we
could expect these operators to be bounded, but this defect should become less and
less important for large j. We thus expect more and more regular behaviour as j
increases. Moreover, the numbers EΛ,j should diverge more slowly, or not at all, for
larger j. Simply adding up the homogeneities of the different factors, we expect that

EΛ,n ∼ Λ2n(d/2−α)−(2n−1)γ = Λδ−(n−1)(γ−δ), (31)

when v, ω,Ω are essentially homogeneous. Note that the exponent of Λ is non-
negative exactly if n ≤ n∗, so there should be no more divergent contributions for
n > n∗.

The ansatz (28) for EΛ,1 is well known, e.g. from the Nelson model, where it
diverges logarithmically. When higher-order contributions EΛ,j are also divergent
for Λ → ∞ these higher orders must also be taken into account when constructing
H. For example, in the Bogoliubov-Fröhlich model, EΛ,1 ∼ Λ, EΛ,2 ∼ log(1 + Λ)
and since by the results of [18, 19] the operators HΛ +EΛ,1 +EΛ,2 converge to H as
Λ → ∞, HΛ + EΛ,1 cannot have a limit.

The important point is now that the definition of the operators TΛ can be extended
to Λ = ∞. For this, it is necessary to understand the cancellations between the
divergent sequences EΛ,j and the other terms in TΛ,j . Consider TΛ,1. It involves one
creation operator on the right and an annihilation operator to the left. To bring it
into a sort of normal order, we use the pull-through formula

aq(Ω(dΓ(k) − P ) + dΓ(ω))−1 = (Ω(dΓ(k) + q − P ) + dΓ(ω) + ω(q))−1aq. (32)

With this, we obtain

TΛ,1 = −a(vΛ)(H0 + E0)−1a∗(vΛ) − EΛ,1

= −
∫

dqdr ar
vΛ(q)vΛ(r)

Ω(dΓ(k) − P ) + dΓ(ω) + E0
a∗

q − EΛ,1

= −
∫

dqdr a∗
q

vΛ(q)vΛ(r)
Ω(dΓ(k) + q + r − P ) + dΓ(ω) + ω(q) + ω(r) + E0

ar (33)

−
∫

dqdr vΛ(q)vΛ(r)δ(q − r)
Ω(dΓ(k) + r − P ) + dΓ(ω) + ω(r) + E0

− EΛ,1. (34)

Note that (34) acts on the n-boson space as a multiplication operator, while (33)
acts essentially as an integral operator, and vanishes on the vacuum. Hence (33)
will make sense even for Λ = ∞ on functions that decay sufficiently fast, while (34)
will have a limit for Λ → ∞ by choice of EΛ,1 (note that this is the value of the
integral with zero bosons and P = 0). For general n = 1, . . . , n∗ we define

TΛ,n =
n∑

m=0
θΛ,n,m, (35)
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where θΛ,n,j is the part of T that, after normal ordering as above, contains exactly j
creation and annihilation operators and EΛ,n is absorbed into θΛ,n,0 (i.e., for n = 1
we have θΛ,1,0 = (34) and θΛ,1,1 = (33)). The θΛ,n,m are given by a recursive formula,
see (80) for m > 0 and (87) for m = 0. For the operators θΛ,n,0 we may take the
limit Λ → ∞, while for θΛ,n,j , j ≥ 1, we can simply set Λ = ∞ and obtain an
unbounded operator. This defines the operator Tn := T∞,n.

Proposition 2.2. Let n ≤ n∗.

a) For all s < 1
2n(1−δ/γ) there exists a constant C > 0 so that for all Λ ∈ R+∪{∞}

and Ψ ∈ D(H0)

∥TΛ,nΨ∥F ≤ C∥(dΓ(ω) + E0)−sH0Ψ∥F ;

b) For all Ψ ∈ D(H0)

lim
Λ→∞

∥TΛ,nΨ − TnΨ∥F = 0;

c) TΛ,n defines a symmetric operator on D(H0) for Λ ∈ R+ ∪ {∞}.

This proposition is key to our proof of Theorem 1.2 and requires the most work.
It is proved in Section 3.3. Note that by a), TΛ,n is bounded relative to H0 uniformly
in Λ, and for E0 large enough the relative bound is less than one.

We set

T =
n∗∑

j=1
Tj , D(T ) := D(H0). (36)

We also define

EΛ :=
n∗∑

m=1
EΛ,m (37)

with EΛ,m given explicitly in (86).
From Proposition 2.2 we know that H0 + TΛ is self-adjoint and positive for E0

sufficiently large. We can thus make sense of GTΛ .

Proposition 2.3. For E0 ≥ 0 sufficiently large and Λ ∈ R+ ∪ {∞}, the operator

GTΛ := −(H0 + TΛ)−1a∗(v)

is bounded on F uniformly in Λ ∈ R+ ∪ {∞}. Moreover, (1 −GTΛ) is invertible with
uniformly bounded inverse and GTΛ converges to GT strongly as Λ → ∞.

11



Proof. First note that, by Proposition 2.2a), we can choose E0 sufficiently large so
that for all Λ ∈ R+ ∪ {∞}

∥(H0 + TΛ)−1∥ + ∥TΛ(H0 + TΛ)−1∥ ≤ 1. (38)

Then, we use Lemma B.1 to obtain for 1
2(1 + δ/γ) < s < 1

∥a(v)H−1
0 ∥ ≤ ∥vω−s∥L2∥dΓ(ω)sH−1

0 ∥
≤ ∥vω−s∥L2Es−1

0 . (39)

Hence

∥G∗
TΛ

∥ = ∥a(v)H−1
0 TΛ(H0 + TΛ)−1 − a(v)H−1

0 ∥ ≤ 2∥vω−s∥L2Es−1
0 . (40)

The adjoint of this operator, that is GTΛ , is also bounded, with the same norm.
Moreover, for E0 large enough, this norm is less than one and 1 −GTΛ is invertible
by Neumann series with uniformly bounded inverse.

Finally,

G∗
T −G∗

TΛ
= G∗

TΛ
(TΛ − T )(H0 + T )−1 (41)

converges to zero strongly, because (TΛ − T )(H0 + T )−1 → 0 by Proposition 2.2b)
and G∗

TΛ
is uniformly bounded.

Using the resolvent expansion 2.1 we can calculate the remainder in the represen-
tation (24) of HΛ − EΛ, i.e. with EΛ =

∑n∗
j=1EΛ,j ,

RΛ := −a(vΛ)(H0 + TΛ)−1a∗(vΛ) − TΛ − EΛ (42)

= a(vΛ)(H0 + TΛ)−1
n∗−1∑
ℓ=0

n∗∑
j=ℓ+1

TΛ,j

×
n∗−1−ℓ∑

ν=1
(−1)ν

∑
J⊂{1,...,n∗}ν

|J|=n∗−1−ℓ

( ν∏
µ=1

H−1
0 TΛ,jµ

)
H−1

0 a∗(vΛ).

The individual factors in this expression are defined also for Λ = ∞ and using the
same methods as in the proof of Proposition 2.2 we can show that R := R∞ is a
bounded operator.

Proposition 2.4. The operator

R = G∗
T

n∗−1∑
ℓ=0

n∗∑
j=ℓ+1

Tj

n∗−1−ℓ∑
ν=1

(−1)ν
∑

J⊂{1,...,n∗}ν

|J|=n∗−1−ℓ

( ν∏
µ=1

H−1
0 Tjµ

)
G0

is bounded on F . The family RΛ, Λ ∈ R+ ∪{∞} is uniformly bounded and converges
to R strongly as Λ → ∞.
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This proposition is proved in Section 3.3. We now have all the necessary ingredi-
ents to prove Theorem 1.2.

Proof of Theorem 1.2. We first prove self-adjointness of

H := (1 −GT )∗(H0 + T )(1 −GT ) +R− E0 (43)

on D(H). By Proposition 2.2, T = Tn∗ is H0-bounded with relative bound less
than one. Thus for E0 sufficiently large, H0 + T is self-adjoint and invertible by the
Kato-Rellich theorem. Choosing E0 sufficiently large so that (1 − GT ) is invertible
by Proposition 2.3, we then have that the operator

(1 −GT )∗(H0 + T )(1 −GT ) (44)

is symmetric on D(H) = (1 − GT )−1D(H0) and invertible. Hence it is self-adjoint,
and as R− E0 is a bounded symmetric operator this proves that H is self-adjoint.

We now prove that HΛ − EΛ → H in strong resolvent sense. First, note that HΛ
is self-adjoint by the Kato-Rellich theorem, since

∥a(vΛ)Ψ + a∗(vΛ)Ψ∥F ≤ ∥vΛ∥L2∥(N + 1)1/2Ψ∥F ≲ ∥H1/2
0 Ψ∥F . (45)

Now we write HΛ as in (24) and use the definition of RΛ in (42) to obtain

HΛ − EΛ = (1 −GTΛ)∗(H0 + TΛ)(1 −GTΛ) +RΛ − E0. (46)

With this, we have (in the sense of quadratic forms)

(H + i)−1 − (HΛ − EΛ + i)−1

= (HΛ − EΛ + i)−1(RΛ −R)(H + i)−1 (47)
+ (HΛ − EΛ + i)−1(1 −G∗

T )(TΛ − T )(1 −GT )(H + i)−1 (48)
+ (HΛ − EΛ + i)−1(G∗

T −G∗
TΛ

)(H0 + TΛ)(1 −GT )(H + i)−1 (49)
+ (HΛ − EΛ + i)−1(1 −G∗

TΛ
)(H0 + TΛ)(G∗

T −GTΛ)(H + i)−1. (50)

The first line (47) defines a bounded operator, and since RΛ − R → 0 strongly by
Proposition 2.4 this converges to zero strongly. The second line (48) also defines a
bounded operator, because

(1 −GT )(H + i)−1 : F → D(H0) ⊂ D(T ) (51)

is bounded, and TΛ − T converges strongly to zero on D(H0) by Proposition 2.2b).
For (49) we have

(49) = (HΛ − EΛ + i)−1(G∗
T −G∗

TΛ
)(H0 + T )(1 −GT )(H + i)−1 (52)

+ (HΛ − EΛ + i)−1(G∗
T −G∗

TΛ
)(T − TΛ)(1 −GT )(H + i)−1. (53)

13



The first term converges to zero because G∗
T − G∗

TΛ
→ 0 by Proposition 2.3, and

the second one because G∗
T − G∗

TΛ
is uniformly bounded by Proposition 2.3 and

T − TΛ → 0 by Proposition 2.2b).
For the final term (50), note that

(HΛ −EΛ +i)−1(1−G∗
TΛ

)(H0 +TΛ) =
(
(H0 +TΛ)(1−GTΛ)(HΛ −EΛ +i)−1

)∗
(54)

extends to a uniformly bounded operator on F , since

(H0 + TΛ)(1 −GTΛ)(HΛ − EΛ + i)−1

= (1 −G∗
TΛ

)−1
(
HΛ − EΛ −RΛ

)
(HΛ − EΛ + i)−1

= (1 −G∗
TΛ

)−1
(
1 − i −RΛ

)
(HΛ − EΛ + i)−1 (55)

is uniformly bounded by Propositions 2.3, 2.4. Hence (50) converges to zero strongly
for the same reason as (49). This proves strong resolvent convergence HΛ − EΛ →
H.

3 Construction of T

As outlined above, the goal of this section is to prove Proposition 2.2 by writing

Tn =
n∑

j=0
θn,j , (56)

with an operator of multiplication θn,0 and operators of integral type θn,j , j =
1, . . . , n. We then prove bounds on the kernels of θn,j and in an iteration step
deduce from these bounds on the kernels of θn+1,j . To present these arguments in a
clear way, we first introduce the relevant spaces of operators.

3.1 Integral operators on F and their products

We denote K0 the vector space of normal operators on F acting as

κ
(
dΓ(k) − P,dΓ(ω) + E0

)
(57)

for a locally bounded function κ : Rd × R+ → C. Note that in particular H0 ∈ K0
with the function given by

H0(p,E) = Ω(p) + E, (58)
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and also

H−1
0 (p,E) = 1

Ω(p) + E
. (59)

It is also not difficult to see that (see Lemma 3.4 below)

θ1,0 : = lim
Λ→∞

θΛ,1,0

= − lim
Λ→∞

(∫ |vΛ(ξ)|2dξ
Ω(dΓ(k) + ξ − P ) + dΓ(ω) + E0 + ω(ξ) + EΛ,1

)
(60)

converges to a locally bounded function of dΓ(k) − P , dΓ(ω) +E0 and thus defines
an element of K0.

For j = 1, . . . , n, the operators θn,j will act as

κΨ =
∫

Rdm×Rdℓ

( m∏
i=1

a∗
qi

)
κ
(
Q,R, dΓ(k) − P,dΓ(ω) + E0

)( ℓ∏
i=1

ari

)
Ψ dQdR (61)

for some κ ∈ L2
loc(Rmd × Rℓd × Rd × R) with m = ℓ = j. Note that the action

of a(v), a∗(v) can also be represented in the form (61), with (m, ℓ) = (0, 1) and
(m, ℓ) = (1, 0), respectively. In the following, we will use the same notation for an
operator of this type and its (operator-valued) integral kernel.

We will assume bounds on such kernels that ensure that κ defines an operator
from some dense domain D ⊂ F to F . Denote for n ∈ N and λ ∈ R

ρn,λ(Q,E) =

n−1∏
j=1

|v(qj)|
E + ω(Qn

j )

 |v(qn)|
(E + ω(qn))(1+λ)/2

ρ̃n,λ(R,E) = |v(r1)|
(E + ω(r1))(1+λ)/2

 n∏
j=2

|v(rj)|
E + ω(Rj

1)

 .
(62)

with the notation defined in (16), (18).

Definition 3.1. Let n ∈ N0.

• For n > 0 the space Kn = Kn,0 is the space of operators acting as (61) with
m = ℓ = n whose kernels satisfy

|κ(Q,R, p,E)| ≲ min
s∈[−1,1]

ρn,s(Q,E)ρ̃n,−s(R,E).

• For n > 0, λ > 0 the space Kn,λ is the subspace of Kn such that κ ∈ Kn,λ

satisfies for all 0 ≤ σ ≤ 1 with σ < λ and E ≥ 1

|κ(Q,R, p,E)| ≲ E−(λ−1)+ min
s∈[σ−1,1−σ]

ρn,σ+s(Q,E)ρ̃n,σ−s(R,E).
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• For n = 0 and λ ≥ 0 we denote by K0,λ the subspace of K0 such that for
κ ∈ K0,λ we have for all 0 ≤ σ < λ and E ≥ 1

|κ(p,E)| ≲ H0(p,E)E−σ.

By Lemma B.2 an element of Kn, n ≥ 1, defines an operator from D(H0) to F .
Note that Kn,λ ⊂ Kn,λ′ for λ′ ≤ λ.

Note from (33) that θ1,1 has kernel

θΛ,1,1(q, r, p, E) = − vΛ(q)vΛ(r)
Ω(p+ q + r) + E + ω(q) + ω(r) , (63)

so it is clearly an element of K1,0 for Λ ∈ R+ ∪ {∞}.
In order to construct the kernels θn,j for n > 1 we will need to take products of

such operators. We will see that these can again be expressed as linear combinations
of elements in Kj for different j’s. Moreover, one gains some decay of the kernels in
this process.

If we take the product κκ′ of κ ∈ Kn, κ′ ∈ Km, we will need to commute all the
creation operators in κ′ to the left and the annihilation operators in κ to the right
in order to put the product into the form (61). Since the commutator of ar with a∗

q′

is δ(q′ − r), this leads to “contractions” between a variable r of κ and a variable q′

of κ′. That is, some of the integrals become part of the definition of a new integral
kernel and do not involve variables of Ψ any more. Moreover, when we commute
creation or annihilation operators with functions of dΓ(k) and dΓ(ω), we must take
into account the pull-through formulas

arf(dΓ(k)) = f(dΓ(k) + r)ar

arf(dΓ(ω)) = f(dΓ(ω) + ω(r))ar,
(64)

as well as their adjoint relations (these hold by inspection in the sense that when
acting on Ψ ∈ D(N 1/2f(·)) both sides give the same element of L2(Rd,dr) ⊗ F).

With this, we can write

κκ′ =
min{n,m}∑

ℓ=0
κ ⋆ℓ κ

′, (65)

where ⋆ℓ denotes the part of the product with exactly ℓ contractions (i.e., ℓ com-
mutators [ari , a

∗
q′

j
]). When there are exactly ℓ contractions, these involve ℓ of the

components of R, ri1 , . . . , riℓ
, with i1 < i2 < · · · < iℓ. Each of these is then paired

with one of the components of Q, i.e. qj1 , . . . , qjℓ
, where the jµ are pairwise different

16



but otherwise arbitrary. Summing over all possibilities, the kernel of κ ⋆ℓ κ
′ takes

the form

κ ⋆ℓ κ
′(Q,R, p,E) (66)

=
∑

1≤i1<···<iℓ≤n

1≤j1 ̸=... ̸=jℓ≤m

∫
Rℓd

κ

(
Qn

1 , S, p+
n+m−ℓ∑
ν=n+1

qν , E +
n+m−ℓ∑
ν=n+1

ω(qν)
)∣∣∣∣ SI =Ξ

SIc =Rn−ℓ
1

× κ′
(
U,Rn+m−ℓ

n−ℓ+1 , p+
n−ℓ∑
µ=1

rµ, E +
n−ℓ∑
µ=1

ω(rµ)
)∣∣∣∣ UJ =Ξ

UJc =Qn+m−ℓ
n+1

dΞ,

where we used the notation (17). We will also use the notation κ ⋆ℓ κ
′ for products

with ℓ contractions of operators acting as in (61) for which Q, R have different
dimensions, notably a(v), a∗(v) . The expression for the kernel κ ⋆ℓ κ

′ in this case
can be easily obtained from (66) by appropriately adjusting the arguments (see
Lemma A.5 for the precise formulas).

Using the bound provided by the definition of Kn, it is not difficult to see that
the integral over Ξ in (66) converges, since we can always choose the parameter s in
that bound in such a way that there is a resolvent for each contracted variable (i.e.,
take s = −1 for κ and s′ = 1 for κ′). However, in general, κ ⋆ℓ κ

′ is not an element
of Kn+m−ℓ. For us the following will be more important.

Theorem 3.2. Let E0 ≥ 1 and let n,m ∈ N0, λ, λ′ ≥ 0, and κ ∈ Kn,λ, κ′ ∈ Km,λ′.
Then for ℓ ≤ min{n,m}

κH−1
0 ⋆ℓ κ

′ ∈ Kµ,σ,

where

µ = m+ n− ℓ,

σ = λ+ λ′ + ℓ(1 − δ/γ).

Proof. The basic idea is that every contraction comes with an integral∫ |v(ξ)|2

(E + ω(ξ))2 dξ ≲ E−(1−δ/γ). (67)

The details of the bounds on the integrals are given in Section A of the appendix.
The case ℓ = 0 follows from Lemma A.2 (respectively the fact that the kernel is just
the product of kernels in case m = n = 0). The case 0 < ℓ < max{n,m} is obtained
from Lemma A.3 (the case excluded there does not arise since 1 + δ/γ > 1). The
remaining case ℓ = m = n is Lemma A.4 (the loss of decay in this lemma is the
main reason why we restrict to σ < λ in the definition of Kn,λ).
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If we set K :=
⊕∞

n=0 Kn, then

(κ, κ′) 7→ κH−1
0 ⋆ℓ κ

′ (68)

defines a binary operation on K. We will view this as a product, even though it is
not, in general, associative. Associativity can fail for ℓ ̸= 0 since the expression

κ ⋆1 (κ′ ⋆1 κ
′′) (69)

has contributions with one or zero contractions between κ and κ′, whereas in

(κ ⋆1 κ
′) ⋆1 κ

′′ (70)

there is exactly one contraction between κ and κ′. However, in the special case
m = n = ℓ, the operation

Kn × Kn → Kn, (κ, κ′) 7→ κ ⋆n H
−1
0 κ′ (71)

is associative. The reason is that in κH−1
0 ⋆n κ

′ all the available variables are con-
tracted, and thus all the additional contractions in

(κH−1
0 ⋆n κ

′)H−1
0 ⋆n κ

′′ (72)

occur between κ′ and κ′′.
Similar classes of integral operators and products with contractions occur through-

out the literature on quantum field theory. Let us emphasize, however, that the
classes Kn and the product ⋆ℓ differ from the common ones (see e.g. [8]) in the fact
that the kernel additionally depends on dΓ(k), dΓ(ω) and thus an element of Kn acts
non-trivially on all bosons, not just n of them. This is crucial for our argument, as
it allows us to shift decay from one variable to another as needed.

3.2 The algorithm for Tn

We now describe the algorithm for the construction of Tn. Assume that we have
given, for Λ ∈ R+ ∪ {∞} and k ≤ n

TΛ,k =
k∑

j=0
θΛ,k,j (73)

with θΛ,k,j ∈ Kj . We now want to write explicit formulas for θn+1,m, m = 0, . . . , n+1.
Our task will then be to derive appropriate bounds on these kernels.
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In view of (30), the operator θΛ,n+1,m is the sum over ν, J = (j1, . . . , jν) ∈
{1, . . . , n}ν , |J | = n of those terms in the expression

a(vΛ)H−1
0

 ν∏
µ=1

TΛ,jµH
−1
0

 a∗(vΛ) = a(vΛ)H−1
0

 ν∏
µ=1

jµ∑
iµ=0

θΛ,jµ,iµH
−1
0

 a∗(vΛ)

(74)

which have exactly m creation (and annihilation) operators after putting these in
normal order. For a given sequence i1, . . . , iν , there are a total of 1 +

∑ν
µ=1 iµ

creation operators, so there must be exactly 1 +
∑ν

µ=1 iµ − m contractions. Fixing
I = (i1, . . . , iν), the corresponding term can be expressed as the sum over L =
(ℓ0, ℓ1, . . . , ℓν) of(

a(v)H−1
0 ⋆ℓ0

((
θΛ,j1,i1H

−1
0 ⋆ℓ1 θΛ,j2,i2

)
H−1

0 ⋆ℓ2 · · ·
)

︸ ︷︷ ︸
=:τΛ,I,Lν−1

1

)
H−1

0 ⋆ℓν a
∗(v), (75)

such that
ν∑

µ=0
ℓν = 1 +

ν∑
µ=1

iµ −m, (76)

with the constraints (imposed by the fact that we must have ℓ ≤ min{n,m} in (66)),

0 ≤ ℓµ ≤ min
{ µ∑

ι=1
iι −

µ−1∑
ι=1

ℓι, iµ+1
}

for 0 < µ < ν

0 ≤ ℓ0 ≤ min
{

1,
ν∑

ι=1
iι −

ν−1∑
ι=1

ℓι
}

0 ≤ ℓν ≤ min
{

1, 1 +
ν∑

ι=1
iι −

ν−1∑
ι=0

ℓι
}
.

(77)

Here we can take Λ ∈ R+ ∪ {∞}, since by Theorem 3.2 and our knowledge about
Tk, k ≤ n we have τI,Lν−1

1
∈ Km+ℓ0+ℓν . To be completely precise, we can define τI,L

recursively by setting τΛ,i1,∅ = θΛ,j1,i1 and

τΛ,(i1,...,iµ+1),(ℓ1,...ℓµ) = τΛ,(i1,...,iµ),(ℓ1,...ℓµ−1)H
−1
0 ⋆ℓµ θjµ+1,iµ+1 . (78)

For J ∈ {1, . . . , n}ν , I ∈ Nν
0 and L as above, we then set

ϑΛ,J,I,L =
(
a(vΛ)H−1

0 ⋆ℓ0 τΛ,I,Lν−1
1

)
H−1

0 ⋆ℓν a
∗(vΛ), (79)
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and for m = 1, . . . , n+ 1

θΛ,n+1,m :=
n∑

ν=1
(−1)ν+1 ∑

J∈{1,...,n}ν

|J|=n

∑
I∈Nν

0
iµ≤jµ

∑
L∈Nν+1

0
with (76), (77)

ϑΛ,J,I,L. (80)

We will see in Theorem 3.5 below that θΛ,n+1,m is well defined, including for Λ = ∞
and θn+1,m ∈ Km. The basic reason for this is that there always remain uncontracted
variables, and using the bound from Definition 3.1 we can then pair every contracted
variable with two instances of H−1

0 that contain this variable. Note that the sums
simplify considerably in some cases, e.g. for m = n+ 1 the only possibility for given
ν, J is iµ = jµ and L = (0, . . . , 0). Note also that

⟨∅, θΛ,n+1,m∅⟩ = 0, m ̸= 0. (81)

For m = 0, the expression (80) is not well defined for Λ = ∞. In order to remedy
this, we need to subtract its vacuum expectation value, the numbers EΛ,n, and take
the limit Λ → ∞. For m = 0, the constraint (76) for m = ν becomes

0 = 1 +
ν∑

µ=1
iµ −

ν∑
µ=0

ℓµ =
ν∑

µ=1
iµ −

ν−1∑
µ=1

ℓµ − ℓ0︸ ︷︷ ︸
(77)
≥ 0

+1 − ℓν . (82)

We deduce that ℓν = 1 and

ℓ0 =
ν∑

µ=1
iµ −

ν−1∑
µ=1

ℓµ =
ν−1∑
µ=1

iµ −
ν−2∑
µ=1

ℓµ − ℓν−1︸ ︷︷ ︸
(77)
≥ 0

+iν . (83)

From this and ℓν ≤ 1 we deduce that iν ≤ 1 and thus also ℓν−1 ≤ 1. Recursively
we thus obtain that iµ ∈ {0, 1}, ℓµ ∈ {0, 1}. Moreover, ℓ0 = 1 exactly if at least one
of iν and

∑ν−1
µ=1 iµ −

∑ν−2
µ=1 ℓµ equal one. If both are equal to one, then we also have

ℓν−1 = 1. Then we see that ℓµ = 1 if and only if i1 = 1 = i2, and then
2∑

µ=1
iµ − ℓ1 = 1 = ∥I2

1 ∥∞. (84)

Continuing with this reasoning, we see that for given I ∈ {0, 1}ν this leaves only one
possible choice of L, which amounts to taking ℓµ = 1 at every position where this
makes sense, and ℓµ = 0 otherwise. The constraints (76), (77) become for m = 0

ℓ0 = ∥I∥∞

ℓµ = min{∥Iµ
1 ∥∞, iµ+1}

ℓν = 1.
(85)
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We thus set for Λ ∈ R+ and L = (ℓ0, . . . , ℓν) given by (85)

EΛ,n+1 :=
n∑

ν=1
(−1)ν+1 ∑

J∈{1,...,n}ν

|J|=n

∑
I∈{0,1}ν

iµ≤jµ

⟨∅, ϑΛ,J,I,L∅⟩|P =0︸ ︷︷ ︸
=:EΛ,J,I,L

, (86)

and

θΛ,n+1,0 :=
n∑

ν=1
(−1)ν

∑
J∈{1,...,n}ν

|J|=n

∑
I∈{0,1}ν

iµ≤jµ

(ϑΛ,J,I,L − EΛ,J,I,L), (87)

where ϑΛ,J,I,L is given by (79). We will show below that the limit

lim
Λ→∞

θΛ,n+1,0 (88)

exists, and defines an element of K0 satisfying appropriate bounds.

Remark 3.3. As an example note that EΛ,2 hast two contributions, coming from
i = i1 ∈ {0, 1}, namely

EΛ,2 = ⟨∅, a(vΛ)H−1
0 θΛ,1,0H

−1
0 ⋆1 a

∗(vΛ)∅⟩
+ ⟨∅, a(vΛ)H−1

0 ⋆1 θΛ,1,1H
−1
0 ⋆1 a

∗(vΛ)∅⟩. (89)

Observe that θΛ,1,0 involves EΛ,1 via θΛ,1,0 so EΛ,2 encodes the “nested” divergence
after EΛ,1 has been subtracted from HΛ.

The second term here is negative, since θΛ,1,1 has a negative integral kernel
(see (63)), and the first term is positive for large Λ (if it diverges), because θ1,0
(cf. (60)) is bounded from below but not necessarily from above. It is thus possible
to have cancellations between the two for some special cases. This is exactly what
happens for the models considered in [21, 29], which correspond to γ = 2, δ = 1.
The scaling behaviour would suggest that EΛ,2 diverges logarithmically as in [18, 19].
However, the special choice of the masses (“infinite” mass of the particles in [21],
mass preservation upon boson creation in [29]) arranges for the divergences to cancel
each other and EΛ,2 has a finite limit for Λ → ∞.

Lemma 3.4. Assume the hypothesis 1.1. The expression (60) is well defined and

θ1,0 ∈ K0,(1−δ/γ).

Moreover, (p,E) 7→ θ1,0(p,E) is continuously differentiable in E and γ-times differ-
entiable in p with

∂Eθ1,0 ∈ K0,1+(1−δ/γ)

∂ν
pθ1,0 ∈ K0,|ν|/γ+(1−δ/γ).
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Proof. We give the proof for for δ ≥ 1 (which only occurs for γ = 2). When δ < 1 the
development to second order in (92) is not necessary, which simplifies the argument.
Note that EΛ,1 corresponds to the evaluation of the first term in (60) at p = 0,
E = E0. By Taylor expansion we thus have

− θ1,0(p,E)

= lim
Λ→∞

∫
|ξ|≤Λ

|v(ξ)|2
∫ E

E0

(
∂t

1
Ω(ξ) + ω(ξ) + t

)
dtdξ (90)

+ lim
Λ→∞

∫
|ξ|≤Λ

|v(ξ)|2
〈
p,∇q

1
Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=0

dξ
〉

(91)

+ lim
Λ→∞

∫
|ξ|≤Λ

|v(ξ)|2
∫ 1

0
(1 − t)

〈
p,∇2

q

1
Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=tp

p

〉
dtdξ.

(92)

We have (since δ > 0)∣∣∣∣ lim
Λ→∞

∫
|ξ|≤Λ

|v(ξ)|2
∫ E

E0

(
∂t

1
|Ω(ξ) + ω(ξ) + t

)
dtdξ

∣∣∣∣
≤
∫ E

0

∫
Rd

|v(ξ)|2

(ω(ξ) + t)2 dξdt
(141)
≲

∫ E

0

1
t1−δ/γ

≲ E1−(1−δ/γ). (93)

For the derivatives in p, first note that

∇q
1

Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=0

= − (∇Ω)(ξ)
(Ω(ξ) + ω(ξ) + E)2 . (94)

Since Ω is rotation invariant, ∇Ω(ξ) is proportional to ξ/|ξ|, and by rotation invari-
ance of v, ω the integral (91) equals zero (note however that the integrand in (91)
may not be absolutely integrable, so it is necessary to interpret the limit as an im-
proper integral). For the remaining term (92) note that the Hessian satisfies the
bound∣∣∣∣∇2

p

1
Ω(p+ ξ) + ω(ξ) + E

∣∣∣∣ ≲ 1
(Ω(p+ ξ) + ω(ξ) + E)2 . (95)

Hence the integrand in (92) integrable (in (ξ, t)) and we have

(92) ≲ p2
∫ 1

0
(1 − t)

∫
Rd

|v(ξ)|2

(ω(ξ) + E)2 dtdξ
(141)
≲ |p|γEδ/γ−1. (96)

This proves that the limit Λ → ∞ exists, and satisfies

|θ1,0(p,E)| ≲ H0(p,E)E−(1−δ/γ), (97)
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so θ1,0 ∈ K0,(1−δ/γ).
To prove the bounds on the derivatives, note that

θ1,0(p,E + h) − θ1,0(p,E) =
∫ E+h

E

∫
Rd

|v(ξ)|2

(Ω(p+ ξ) + ω(ξ) + t)2 dξdt, (98)

which is absolutely convergent. From this we easily deduce that the derivative in E
exists and satisfies the bound

|∂Eθ1,0(p,E)| ≲ E−(1−δ/γ) ≤ H0(p,E)E−1−(1−δ/γ), (99)

as claimed.
For the first derivative in p we also first take the difference and then use Taylor

expansion once, to obtain

θ1,0(p+ h,E) − θ1,0(p,E)

= lim
Λ→∞

∫
|ξ|≤Λ

∫ 1

0

〈
h,∇q

|v(ξ)|2

Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=p+th

〉
dtdξ (100)

=
∫
Rd

∫ 1

0

∫ 1

0

〈
h,∇2

q

|v(ξ)|2

Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=s(p+th)

(p+ th)
〉

dsdtdξ,

where we have used rotation invariance and the bound on the Hessian as above.
From this, we see that ∂ν

pθ1,0 exists for |ν| = 1 and

|∂ν
pθ1,0(p,E)| ≲ |p|Eδ/γ−1 ≤ H0(p,E)E−1/γ−(1−δ/γ). (101)

For the second derivative one proceeds in the same way, writing the difference of
derivatives as

∂jθ1,0(p+ h,E) − ∂jθ1,0(p,E)

=
∫
Rd

∫ 1

0

〈
ej ,∇2

q

|v(ξ)|2

Ω(ξ + q) + ω(ξ) + E

∣∣∣
q=p+th

h

〉
dtdξ, (102)

which implies the claim by the same arguments as above.

Theorem 3.5. Assume the hypothesis 1.1 and let 0 ≤ m ≤ n ≤ n∗. Then for
Λ ∈ R+ ∪ {∞} :

a) The operator θΛ,n,m defined by (80), (87) satsifies

θΛ,n,m ∈ Km,(n−m)(1−δ/γ),

where the bounds required by Definition 3.1 hold uniformly in Λ;
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b) The kernel θΛ,n,m(Q,R, p,E) is invariant under simultaneous rotations of its
arguments in Rd, i.e, the maps

Q,R, p 7→ Oq1, . . . , Orm, Op, (103)

for O ∈ SO(d).

c) The kernel θΛ,n,m(Q,R, p,E) is continuously differentiable in E, γ-times differ-
entiable in p, and satisfies

∂EθΛ,n,m ∈ Km,1+(n−m)(1−δ/γ)

∂ν
pθΛ,n,m ∈ Km,|ν|/γ+(n−m)(1−δ/γ), |ν| ≤ γ,

uniformly in Λ;

d) The kernels θΛ,n,m and their derivatives converge pointwise to θn,m and its deriva-
tives as Λ → ∞.

Note that θΛ,n,m is a sum of terms ϑΛ,J,I,L that are essentially given as (a(v)H−1
0 ⋆ℓ0

τΛ,I,Lν−1
1

)H−1
0 ⋆ℓν a

∗(v), where τΛ,I,Lν−1
1

is defined by (78) as a ⋆-product involving
only the factors H−1

0 and θΛ,j,i, i ≤ j ≤ n (thereby τΛ,I,Lν−1
1

depends implicitly on
J). Before proving Theorem 3.5 we thus prove a Lemma on τΛ,I,Lν−1

1
that proves the

corresponding statement for τ and also plays a role in the proof of Proposition 2.4.
Lemma 3.6. Assume the hypothesis 1.1. Let 1 ≤ ν ≤ n ≤ n∗, J ∈ {0, . . . , n}ν with
|J | < n∗, I ∈ Nν

0 with iµ ≤ jµ for µ = 1, . . . , ν. For ν = 1 set L = ∅ and for ν > 1
let L ∈ Nν−1

0 satisfying

ℓµ ≤ min
{

|Iµ
1 | − |Lµ−1

1 |, iµ+1
}
, µ = 1, . . . , ν − 1.

Assume that the statement of Theorem 3.5 holds for all θΛ,j,i for 0 ≤ i ≤ j ≤ n and
Λ ∈ R+ ∪ {∞}.

For Λ ∈ R+ ∪ {∞} and τΛ,I,L defined by (78) we then have
a) The kernel τΛ,I,L is invariant under simultaneous rotations of Q,R, p ∈ Rd(2m+1),

m = |I| − |L|;

b) The kernel τΛ,I,L(Q,R, p,E) is continuously differentiable in E and γ-times dif-
ferentiable in p;

c) For all 0 ≤ |µ| ≤ γ and uniformly in Λ

∂µ
p τΛ,I,L ∈ K|I|−|L|,|µ|/γ+σ,

∂EτΛ,I,L ∈ K|I|−|L|,1+σ

with

σ := (|J | − |I| + |L|)(1 − δ/γ);
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d) For Λ → ∞, τΛ,I,L and its derivatives converge pointwise to τI,L and its deriva-
tives.

Proof. We proceed by (finite) induction on ν = 1, . . . , n. For ν = 1, we have
J = (j1), L = ∅ and τΛ,i1,∅ = θΛ,j1,i1 satisfies all the claimed properties since the
statement of Theorem 3.5 was assumed to hold and j1 = |J | < n∗.

For part a), observe that changing variables ξ1, . . . , ξℓ 7→ Oξ1, . . . , Oξℓ in the
formula (66) shows that the ⋆ℓ-product preserves the property of being invariant
under a simultaneous rotation of all arguments.

Part b) will be proved together with the bound on the derivatives of part c).
Assume that the statement of the Lemma holds for 1 ≤ ν−1 < n∗. for J = (Jν−1

1 , jν)
we have by Theorem 3.2 (taking Lν−2

1 = ∅ if ν = 2)

τΛ,I,L = τΛ,Iν−1
1 ,Lν−2

1
H−1

0 ⋆ℓν−1 θΛ,jν ,iν ∈ Km,σ, (104)

with

m = |Iν−1
1 | − |Lν−2

1 | + iν − ℓν−1,

σ = (|Jν−1
1 | − |Iν−1

1 | + |Lν−2
1 | + jν − iν + ℓν−1)(1 − δ/γ),

(105)

due to the induction hypothesis and the assumed properties of θΛ,jν ,iν . This shows
part c) for µ = 0.

Now let |µ| = 1. By Assumption 1.1 we have

∣∣(H0∂piH
−1
0 )(p,E)

∣∣ =
∣∣∣∣ ∂piΩ(p)
Ω(p) + E

∣∣∣∣ ≲ Ω(p)1−1/γ

Ω(p) + E
≤ 1

(Ω(p) + E)1/γ
. (106)

It then follows from Lemma A.2 (in case Iν−1
1 ̸= 0, otherwise the product is just the

pointwise product and the analogous bound is is trivial) that for all

0 ≤ λ < σν−1 := (|Jν−1
1 | − |Iν−1

1 | + |Lν−2
1 |)(1 − δ/γ) (107)

we have, setting t = s+ 1/γ,∣∣∣τΛ,Iν−1
1 ,Lν−2

1
(∂piH

−1
0 )H0(Q,R, p,E)

∣∣∣ (108)

≲
1

(E + Ω(Q))1/γ
min

s∈[λ−1,1−λ]
ρ|Iν−1

1 |−|Lν−2
1 |,λ+s(Q,E)ρ̃|Iν−1

1 |−|Lν−2
1 |,λ−s(R,E).

≤ min
t∈[λ+1/γ−1,1−λ+1/γ]

ρ|Iν−1
1 |−|Lν−2

1 |,λ+t(Q,E)ρ̃|Iν−1
1 |−|Lν−2

1 |,λ+1/γ−t(R,E).

Hence

τΛ,Iν−1
1 ,Lν−2

1
(∂piH

−1
0 )H0 ∈ K|Iν−1

1 |−|Lν−2
1 |,1/γ+σν−1

, (109)
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and by the induction hypothesis ∂piτΛ,Iν−1
1 ,Lν−2

1
is an element of the same class. Thus

by Theorem 3.2
(∂piτΛ,Iν−1

1 ,Lν−2
1

H−1
0 ) ⋆ℓν−1 θΛ,jν ,iν

+ τΛ,Iν−1
1 ,Lν−2

1
H−1

0 ⋆ℓν−1 ∂piθΛ,jν ,iν ∈ Km,σ+1/γ , (110)

with m,σ as in (105). Since the bounds on the kernels are uniform in p and the
internal integrals absolutely convergent (cf. Lemmas A.3, A.4), this shows that τΛ,I,L

is continuously differentiable in p, with derivative given by (110). For the derivatives
in p of order |µ| = 2 = γ and the derivative in E the claim follows from the same
argument, in view of the inequalities∣∣(H0∂

µ
pH

−1
0 )(p,E)

∣∣ ≲ H0(p,E)−1, |µ| = γ,∣∣(H0∂EH
−1
0 )(p,E)

∣∣ ≲ H0(p,E)−1.
(111)

This proves b) and c).
Concerning part d), the uniform bounds on τΛ,Iν−1

1 ,Lν−2
1

, and θΛ,jν ,iν together with
the fact that the integrals in ⋆ℓ converge absolutely (cf. Lemmas A.3, A.4) imply
that τΛ,I,L converges pointwise to τI,L for Λ → ∞, by dominated convergence. The
same holds for the derivatives in E, p. This completes the proof of the Lemma.

Proof of Theorem 3.5. We proceed by induction on n.

Base case n = 1 The base case for θΛ,1,0 is established in Lemma 3.4. The kernel
θΛ,1,1 is invariant under the rotation (q, r, p) 7→ (Oq,Or,Op), O ∈ SO(d), by rotation
invariance of v, ω,Ω (and the sharp UV-cutoff), so b) holds. We have

|θΛ,1,1(q, r, p, E)| = |vΛ(q)vΛ(r)|
Ω(p+ q + r) + ω(q) + ω(r) + E

≤ min
s∈[−1,1]

ρ1,s(q, E)ρ̃q,−s(r, E),

(112)
so θΛ,1,1 ∈ K1,0 uniformly in Λ, and a) holds for θΛ,1,1. Moreover, as E ≥ 1 we have
for all 0 ≤ λ ≤ 1

|∂EθΛ,1,1(q, r, p, E)| = |vΛ(q)vΛ(r)|
(Ω(p+ q + r) + ω(q) + ω(r) + E)2

≤ min
s∈[λ−1,1−λ]

ρ1,λ+s(q, E)ρ̃1,λ−s(r, E), (113)

so ∂EθΛ,1,1 ∈ K1,1 uniformly in Λ. For the p-derivatives, we use the inequality (106)
to obtain for all 0 ≤ λ ≤ 1/γ

|∇pθΛ,1,1(q, r, p, E)| ≲ |v(q)v(r)|
(Ω(p+ q + r) + ω(q) + ω(r) + E)1+1/γ

≤ min
s∈[λ−1,1−λ]

ρ1,λ+s(q, E)ρ̃1,λ−s(r, E), (114)
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whence ∂ν
pθΛ,1,1 ∈ K1,1/γ for ν = 1. If γ = 1 this already shows c). If γ = 2

calculating the second derivative and bounding it in the same way yields c).
We have convergence θΛ,1,1(q, r, p, E) → θ1,1(q, r, p, E) for Λ → ∞ by convergence

of vΛ → v and thus d). This establishes the base case n = 1.

Induction step for m = 0 To perform the induction step for θn+1,0 we need to
take the limit Λ → ∞, so we need to consider Λ < ∞ first. It is sufficient to prove
the claim for each summand in (87), i.e. for

lim
Λ→∞

(ϑΛ,J,I,L − EΛ,J,I,L) (115)

where ϑΛ,J,I,L is given by (79) with ν ≤ n, J ∈ {1, . . . , n}ν with |J | = n, I ∈ Nν
0

with iµ ≤ jµ, 1 ≤ µ ≤ ν and L = (ℓ1, . . . , ℓν) is chosen according to (85).
There are two somewhat distinct cases, I = 0 and I ̸= 0, to be considered. For

I = 0, we have ℓν = 1, Lν−1
1 = 0, and

ϑΛ,J,0,(0,...,1) − EΛ,J,0,(0,...,1) (116)

=
∫

|ξ|≤Λ

|vΛ(ξ)|2τΛ,0,0(p+ ξ, E + ω(ξ))
(Ω(p+ ξ) + ω(ξ) + E)2 −

|vΛ(ξ)|2τΛ,0,0(ξ, ω(ξ) + E0)
(Ω(ξ) + ω(ξ) + E0)2 dξ.

In view of properties of τΛ,0,0(p,E) from Lemma 3.6 the limit Λ → ∞ can be treated
in complete analogy to Lemma 3.4 by Taylor-expanding the integrand (appealing
to rotation invariance to eliminate the first-order term if necessary, and using that
(n+ 1)(1 − δ/γ) ≤ 1).

For I ̸= 0 we have ℓ0 = ℓν = 1, and |I| − |Lν−1
1 | = 1 by (85). Then

ϑΛ,J,I,L − EΛ,J,I,L (117)

=
∫

|ξ|≤Λ

∫
|η|≤Λ

v(ξ)v(η)τΛ,I,Lν−1
1

(ξ, η, p, E)
(Ω(p+ ξ) + ω(ξ) + E)(Ω(p+ η) + ω(η) + E)

−
v(ξ)v(η)τΛ,I,Lν−1

1
(ξ, η, 0, E0)

(Ω(ξ) + ω(ξ))(Ω(η) + ω(η) + E0)dξdη.

Invariance of θΛ,n+1,0 under rotations p 7→ Op follows from this formula by changing
variables ξ, η 7→ Oξ,Oη and using the rotation invariance of τΛ,I,Lν−1

1
, Ω, ω, and v.

If we express this using Taylor expansion as in Lemma 3.4 (for γ = 2, for γ = 1
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we expand only once in p), we find

ϑΛ,J,I,L − EΛ,J,I,L =
E∫

E0

∫
|ξ|≤Λ

∫
|η|≤Λ

∂tF (ξ, η, 0, t)dtdξdη (118)

+
1∫

0

∫
|ξ|≤Λ

∫
|η|≤Λ

〈
p,∇qF (ξ, η, q, E)

∣∣∣
q=0

〉
(119)

+
1∫

0

(1 − t)
∫

|ξ|≤Λ

∫
|η|≤Λ

〈
p,∇2

qF (ξ, η, q, E)
∣∣∣
q=tp

p

〉
(120)

with

F (ξ, η, p, E) =
v(ξ)v(η)τΛ,I,Lν−1

1
(ξ, η, p, E)

(Ω(p+ ξ) + ω(ξ) + E)(Ω(p+ η) + ω(η) + E) . (121)

By Lemma 3.6 c) with |J | = n, |I|−|Lν−1
1 | = 1, we have for λ < (n−1)(1−δ/γ) < 1,∣∣∣∣

E∫
E0

∫
|ξ|≤Λ

∫
|η|≤Λ

∂tF (ξ, η, 0, t)dtdξdη
∣∣∣∣

≲
∫ E

0
t−λ

(∫
Rd

|v(ξ)2

(t+ ω(ξ))2 dξ
)2

dt

(141)
≲

∫ E

0
t−λ−2(1−δ/γ)dt ≲ E1−λ−2(1−δ/γ), (122)

as λ+ 2(1 − δ/γ) < (n+ 1)(1 − δ/γ) ≤ 1 for n+ 1 ≤ n∗.
The term (119) vanishes due to rotation invariance of Ω, ω, v, and τ , as argued in

Lemma 3.4.
To bound (120) we use Lemma 3.6 c) to obtain with λ as above (keeping in mind

that γ = 2)∣∣∣∣
1∫

0

(1 − t)
∫

|ξ|≤Λ

∫
|η|≤Λ

〈
p,∇2

qF (ξ, η, q, E)
∣∣∣
q=tp

p

〉∣∣∣∣
≲ p2E−λ

1∫
0

(1 − t)
(∫

Rd

|v(ξ)|2

(ω(ξ) + E)2 dξ
)

≲ |p|γE−λ−2(1−δ/γ). (123)

The limit of for Λ → ∞ thus exists and satisfies the required bound. The bounds
on the derivatives are obtained by arguing as in Lemma 3.4. This proves all claims
for θΛ,n+1,0.
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Induction step for m > 0 Now consider θΛ,n+1,m for m > 0. The summand
ϑJ,I,L is given by

ϑΛ,J,I,L =
(
a(vΛ)H−1

0 ⋆ℓ0 τΛ,I,Lν−1
1

)
H−1

0 ⋆ℓν a
∗(vΛ), (124)

where

m = |I| − |Lν−1
1 | + 1 − ℓ0 − ℓ1 = |I| − |L| + 1 (125)

is the number of uncontracted variables.
In the case I ̸= 0, the claim of part a) follows immediately from Lemma 3.6 c)

and Lemma A.5.
The case I = 0 only occurs for m = 1 and with ℓ0 = ℓ1 = 0. Using Lemma 3.6 c)

we obtain in this case for λ < n(1 − δ/γ)

|ϑΛ,J,I,L(q, r, p, E)| =
∣∣∣∣vΛ(q)vΛ(r)τΛ,0,0(p+ q + r, E + ω(q) + ω(r)

H0(p+ q + r, E + ω(q) + ω(r))2

∣∣∣∣
≲

|v(q)||v(r)|
(E + ω(q) + ω(r))1+λ

, (126)

which clearly satisfies a) with n+ 1 −m = n.
Rotation invariance of these kernels, part b), follows from a change of variables in

the formulas of Lemma A.5, as in Lemma 3.6 a).
Part c) is proved in the same way as Lemma 3.6 c) for the derivatives, making

use of the bounds on derivatives of τI,Lν−1
1

and Lemma A.5.
Moreover, we have pointwise convergence of ϑΛ,J,I,L to ϑJ,I,L as Λ → ∞ by our

uniform bounds and the fact that the integrals in Lemma A.5 converge absolutely.
This completes the proof.

3.3 Proof of Propositions 2.2 and 2.4

Proof of Proposition 2.2. a) We need to show that TΛ,n =
∑n

m=1 θΛ,n,m is bounded
relative to H0dΓ(ω)−s for, s < 1

2n(1 − δ/γ), uniformly in Λ ∈ R+ ∪ {∞}.
For m = 0, we have from Theorem 3.5 a) the bound

|θn,0(dΓ(k) − p, dΓ(ω) + E0)| ≲ H0(dΓ(ω) + E0)−s, (127)

for s < n(1 − δ/γ), which is better than required.
For m > 0, we have the bound of Theorem 3.5 a), which together with Lemma B.2

proves that for Ψ ∈ D(H0)

∥θn,mΨ∥ ≲ ∥(dΓ(ω) + E0)1−sΨ∥ (128)
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for s < 1
2n(1 − δ/γ). This proves the bound of Proposition 2.2 a).

b) We need to prove strong convergence of TΛ,n to Tn in the sense of bounded
operators from D(H0) to F . Since by a) the familiy TΛ is uniformly bounded in
L (D(H0),F) it is sufficient to prove this on a dense subset D ⊂ D(H0). As this
set we choose the elements Ψ ∈ F that are finite linear combinations of compactly
supported functions in L2(Rdk), k ≥ 0. The pointwise convergence of the kernels
θΛ,n,m to θn,m, m ≤ n, established in Theorem 3.5 implies that for Ψ ∈ D, we have

lim
Λ→∞

(
θΛ,n,mΨ

)(k)(K) =
(
θn,mΨ

)(k)(K) (129)

pointwise in K ∈ Rdk. For m = 0, convergence in L2(Rdk) follows immediately
from the uniform bound on the multiplication operator θΛ,n,0 and dominated con-
vergence. Moreover, by the bound of Theorem 3.5 a), we have that, for k ≥ m > 0,
|θΛ,n,mΨ(k)(K)| is (up to symmetrisation and a numerical prefactor) given by∫

Rdm

∣∣∣θΛ,n,m

(
Km

1 ,Ξ, ω(Kk
m+1) + E0

)
Ψ(k)(Ξ,Kk

m+1)
∣∣∣dΞ

≲ ρm,1(Km
1 , ω(Kk

m+1) + E0)
∫

Rdm

ρ̃m,−1(Ξ, ω(Kk
m+1) + E0)

∣∣Ψ(k)(Ξ,Kk
m+1)

∣∣dΞ.

This expression has compact support in Kk
m+1 since Ψ(k) has compact support,

and it is square integrable in Km
1 because ρm,1(Km

1 , E0) is square integrable. Thus
θΛ,n,mΨ(k) converges to θn,mΨ(k) in L2(Rdk) by dominated convergence. This proves
part b) of Proposition 2.2.

c) The fact that Tn is well defined on D(H0) follows from part a). By construc-
tion, TΛ,n is symmetric. Indeed, the formula (30) shows inductively that TΛ,n takes
the form a(vΛ)SΛa

∗(vΛ) with a symmetric operator SΛ. Hence by the convergence
proved in part b) Tn is also symmetric on D(H0).

We now turn to the remainder RΛ, Λ ∈ R+ ∪ {∞}.

Proof of Proposition 2.4. For Λ ∈ R+ ∪ {∞} the operator RΛ is given as

RΛ = G∗
TΛ

n∗−1∑
m=0

n∗∑
j=m+1

TΛ,j

n∗−1−m∑
ν=1

(−1)ν
∑

J⊂{1,...,n∗}ν

|J|=n∗−1−m

( ν∏
µ=1

H−1
0 TΛ,jµ

)
G0.

We first prove uniform bounds on G0, G
∗
TΛ

where we gain some decay. Then we
show a (form) bound on the operator between G0, G∗

TΛ
that allows us to conclude

boundedness of RΛ.
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First, G∗
0dΓ(ω)s is bounded for 1−s > 1

2(1+δ/γ), i.e., s < 1
2(1−δ/γ), by Lemma

B.1, since

∥a(v)Hs−1
0 ∥ ≤ ∥vωs−1∥L2 . (130)

Hence dΓ(ω)sG0 is also bounded. For G∗
TΛ

we find

∥G∗
TΛ

dΓ(ω)s∥ ≤ ∥a(v)H−1
0 dΓ(ω)s − a(v)(H0 + TΛ)−1TΛH

−1
0 dΓ(ω)s∥

≤ ∥G∗
0dΓ(ω)s∥ + ∥GTΛ∥∥TΛH

−1
0 dΓ(ω)s∥, (131)

where the last norm is finite for s < 1
2(1 − δ/γ) by Proposition 2.2 a). Similarly, we

have for t > 1
2(1 + δ/γ)

∥G∗
0H0dΓ(ω)−t∥ ≤ ∥vω−t∥L2 (132)

by Lemma B.1.
We now consider the factor between G∗

TΛ
, G0. Fix one summand, i.e., j = j0 ∈

{m+ 1, n∗ − 1}, J ⊂ {1, . . . , n∗} with |J | = n∗ − s−m. We can then expand each
TΛ,jµ , µ ∈ {0, . . . , ν} into

TΛ,jµ =
jµ∑

iµ=1
θΛ,jµ,iµ (133)

and the operator products into the kernel products ⋆ℓ with all possible choices of ℓ,
as in Section 3.2. After this, a fixed summand takes the form

(−1)νθΛ,j0,i0H
−1
0 ⋆ℓ0 τΛ,I,L. (134)

Note that |J | < n∗ so Lemma 3.6 applies to τΛ,I,L. We then obtain from Theorem 3.2
with Theorem 3.5

θΛ,j0,i0H
−1
0 ⋆ℓ0 τΛ,I,L ∈ Kk,λ (135)

with
λ = (j0 + n∗ − 1 −m− k)(1 − δ/γ),
k = i0 + |I| − ℓ0 − |L|.

(136)

We have k = 0 only if i0 = 0 and I = 0. Then, by choice of n∗, we have n∗(1 −
δ/γ) > δ/γ so there exists s < 1

2(1−δ/γ), t > 1
2(1+δ/γ) with t−s−n∗(1−δ/γ) < 0.

Thus

∥G∗
TΛ
θΛ,j0,0H

−1
0 τΛ,0,0G0∥

≤ ∥G∗
TΛ

dΓ(ω)s∥∥dΓ(ω)−sθΛ,j0,0H
−1
0 τΛ,0,0dΓ(ω)tH−1

0 ∥∥dΓ(ω)−tH0G0∥

≲ ∥G∗
TΛ

dΓ(ω)s∥∥dΓ(ω)−s+t−n∗(1−δ/γ)∥dΓ(ω)−tH0G0∥ (137)
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is bounded.
For k ≥ 1, an operator in Kk,λ is form-bounded relative to dΓ(ω)2s if 2s >

1 − λ − k(1 − δ/γ) by Lemma B.3. Since j + n∗ − m − 1 ≥ n∗, we can choose
s > 1

2(1 − δ/γ) so that this holds. Consequently,

∥G∗
TΛ
θΛ,j0,i0H

−1
0 ⋆ℓ0 τΛ,I,LG0∥

≤ ∥G∗
TΛ

dΓ(ω)s∥∥dΓ(ω)−sθΛ,j0,i0H
−1
0 ⋆ℓ0 τΛ,I,LdΓ(ω)−s∥∥dΓ(ω)sG0∥ (138)

is bounded uniformly in Λ. This shows that RΛ, Λ ∈ R+∪{∞} is uniformly bounded.
Strong convergence of RΛ to R for Λ → ∞ follows from these bounds together

with the convergence GTΛ → GT , and the convergence of the kernels θΛ,n,m → θm,n

proved in Theorem 3.5 (see the proof of Proposition 2.2 b)).
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A Products in Kn

In this appendix we derive in detail the quantitative bounds on κ ⋆ℓ H
−1
0 κ′ that

imply Theorem 3.2 and are used in the proof of Theorem 3.5.
Recall the definition (62) of ρn,λ, ρ̃n,λ and note that

ρ̃n,λ(R,E) = ρn,λ((rn, . . . , r1), E). (139)

We also have the property

ρm,1(Q,E + Ω(Q′))ρm′,λ(Q′, E) = ρm+m′,λ((Q,Q′), E)
ρ̃m,λ(R,E)ρ̃m′,1(R′, E + Ω(R)) = ρ̃m+m′,λ((R,R′), E).

(140)

We will frequently use an elementary bound on a class of integrals. The proof
makes explicit the role of the parameters α, γ.

Lemma A.1. Assume the hypothesis 1.1. Let s, t ≥ 0 with s ̸= 1 + δ/γ and s+ t >
1 + δ/γ. Then for b > 0, a ≥ 0∫ |v(ξ)|2dξ

(a+ ω(ξ))s(b+ ω(ξ))t
≲ (a+ 1)−(s−1−δ/γ)+b− min{s+t−1−δ/γ,t}, (141)
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Proof. By the hypothesis 1.1 the integral is bounded by

(141) ≲
∫ dξ

|ξ|2α(a+ (c1 + ξ2)γ/2)s(b+ |ξ|γ)t
. (142)

For s > 1 + δ/γ, i.e. 2α + sγ > d, we drop |ξ|γ from the second factor in the
denominator and obtain

(141) ≲ b−t
∫ dξ

|ξ|2α(a+ (c1 + ξ2)γ/2)s
≲ (a+ 1)−s−2α/γ+d/γb−t, (143)

which yields the claim as −2α/γ + d/γ = 1 + δ/γ. For s < 1 + δ/γ, we have
2α+ sγ < d and

(141) ≲
∫ dξ

|ξ|2α+sγ(b+ |ξ|γ)t
≲ b−s−t−2α/γ+d/γ , (144)

which proves the claim.

The following Lemmas propagate bounds on κ ∈ Kn, κ
′ ∈ Kn′ to κH−1

0 ⋆ℓ κ
′. We

treat the cases ℓ = min{n, n′} = 0, 0 < ℓ < max{n, n′}, and ℓ = n = n′ separately,
starting with the case ℓ = min{n, n′} = 0.

Lemma A.2. Let n ∈ N and κ ∈ Kn, κ′ ∈ K0. Suppose that for some µ ≥ 0,
0 ≤ λ ≤ 1, and λ′ ≥ 0 we have the bounds

|κ(Q,R, p,E)| ≲ E−µ min
s∈[λ−1,1−λ]

ρn,λ+s(Q,E)ρ̃n,λ−s(R,E)

|κ′(p,E)| ≲ H0(p,E)E−λ′
.

Then with

σ = min{λ+ λ′, 1},
τ = µ+ (λ+ λ′ − 1)+,

we have

|κH−1
0 ⋆0 κ

′|(Q,R, p,E) ≲ E−τ min
s∈[σ−1,1−σ]

ρn,σ+s(Q,E)ρ̃n,σ−s(R,E),

|κ′H−1
0 ⋆0 κ|(Q,R, p,E) ≲ E−τ min

s∈[σ−1,1−σ]
ρn,σ+s(Q,E)ρ̃n,σ−s(R,E).

Proof. The kernel of κ′H−1
0 ⋆0 κ is

κ′H−1
0 ⋆0 κ(Q,R, p,E) =

κ′
(
p+

∑n
µ=1 qµ, E + ω(Q)

)
κ(Q,R, p,E)

Ω(p+
∑n

µ=1 qµ) + E + ω(Q) . (145)
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We thus have for any t ∈ [λ− 1, 1 − λ]

|κ′H−1
0 ⋆0 κ(Q,R, p,E)| ≲ E−µ(E + ω(Q))−λ′

ρn,λ+t(Q,E)ρ̃n,λ−t(R,E)
≲ E−µρn,λ+2λ′+t(Q,E)ρ̃n,λ−t(R,E). (146)

Choosing t = s− σ + λ for s ∈ [σ − 1, 1 − 2λ+ σ] ⊃ [σ − 1, 1 − σ], this becomes

|κ′H−1
0 ⋆0 κ(Q,R, p,E)| ≲ E−µρn,2λ+2λ′−σ+t(Q,E)ρ̃n,σ−s(R,E)

≲ E−τρn,σ+t(Q,E)ρ̃n,σ−s(R,E). (147)

The proof for the κH−1
0 ⋆0 κ

′ is essentially the same, with the roles of Q,R reversed.

The next Lemma treats the general case of κ ⋆ H−1
0 κ′, except for the special case

n = n′ = ℓ.

Lemma A.3. Let n, n′ ∈ N and κ ∈ Kn, κ′ ∈ Kn′. Suppose that for some µ, µ′ ≥ 0
and 0 ≤ λ, λ′ ≤ 1 with λ+ λ′ ̸= 1 + δ/γ we have the bounds

|κ(Q,R, p,E)| ≲ E−µ min
s∈[λ−1,1−λ]

ρn,λ+s(Q,E)ρ̃n,λ−s(R,E)

|κ′(Q′, R′, p, E)| ≲ E−µ′ min
s∈[λ′−1,1−λ′]

ρn′,λ′+s(Q′, E)ρ̃n′,λ′−s(R′, E).

Then for all 0 ≤ ℓ ≤ min{n, n′} with ℓ < max{n, n′} and

σ = min{λ+ λ′ + ℓ(1 − δ/γ), 1},
τ = µ+ µ′ + (λ+ λ′ + ℓ(1 − δ/γ) − 1)+,

we have

|κH−1
0 ⋆ℓ κ

′|(Q,R, p,E) ≲ E−τ min
s∈[σ−1,1−σ]

ρn+n′−ℓ,σ+s(Q,E)ρ̃n+n′−ℓ,σ−s(R,E).

Proof. For ℓ = 0, we then have from (140) (taking s = 1 − λ and s′ = λ′ − 1)

|κ ⋆0 H
−1
0 κ′|((Q,Q′), (R,R′), p, E)

≲ E−µ−µ′ ρ̃n,2λ−1(R,E + ω(Q′))ρ̃n′,1(R′, E + ω(R))
E + ω(Q′) + ω(R)

× ρn,1(Q,E + ω(Q′))ρn′,2λ′−1(Q′, E + ω(R))

≤ E−µ−µ′ ρn+n′,2λ′−1((Q,Q′), E)ρ̃n+n′,2λ−1((R,R′), E)
E + ω(q′

n′) + ω(r1)
≤ E−µ−µ′

ρn+n′,2λ′+t((Q,Q′), E)ρ̃n+n′,2λ−t((R,R′), E), (148)
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for any −1 ≤ t ≤ 1. Setting s = λ′ − λ + t and bounding any inverse powers of
E + ω(r1), E + ω(qn+n′) in excess of one by inverse powers of E gives the desired
inequality.

Now let ℓ > 0. In view of (66), we need to integrate in Ξ = (ξ1, . . . , ξℓ) the
quantity∣∣∣κ(Qn

1 , S, p+
n′−ℓ∑
µ=1

qn+µ, E + ω(Qn+n′−ℓ
n+1 )

)∣∣∣
E + ω(Ξ) + ω(Qn+n′−ℓ

n+1 ) + ω(Rn−ℓ
1 )

×
∣∣∣κ′
(
U,Rn+n′−ℓ

n−ℓ+1 , p+
n−ℓ∑
µ=1

rµ, E + ω(Rn−ℓ
1 )

)∣∣∣ (149)

evaluated at SI = Ξ = UJ , SIc = Rn−ℓ
1 , UJc = Qn+n′−ℓ

n+1 , where I = (i1, . . . , iℓ)
with 1 ≤ i1 < · · · < iℓ ≤ n and J = (j1, . . . jℓ) with pairwise different j1, . . . , jℓ ∈
{1, . . . , n′}.

We first restrict to ℓ < min{n, n′}. As for ℓ = 0, we then use hypothesis with
s = 1 − λ, s′ = λ′ − 1 to obtain

(149) ≤
ρ̃n,2λ−1(S,E + ω(Qn+n′−ℓ

n+1 ))ρn′,2λ′−1(U,E + ω(Rn−ℓ
1 ))

E + ω(Ξ) + ω(Qn+n′−ℓ
n+1 ) + ω(Rn−ℓ

1 )
(150)

× E−µ−µ′
ρn,1(Qn

1 , E + ω(Qn+n′−ℓ
n+1 )ρ̃n′,1(Rn+n′−ℓ

n−ℓ+1 , E + ω(Rn−ℓ
1 )).

(151)

We expand ρ, ρ̃ in (150) using the definition (62) and evaluate the variables S,U
according to the prescription above. For any pair with iν ̸= 1, jν ̸= n′, ν = 1, . . . , ℓ,
we group the two factors containing v(siν ) = v(ξν) = v(ujν ) together and drop ω(ξν)
from all other factors, which gives an upper bound. The integral over ξν is then given
by ∫ |v(ξν)|2dξν

(E + ω(ξν) + ω(Riν−1
1 ) + ω(Qn+n′−ℓ

n+1 ))(E + ω(ξν) + ω(Rn−ℓ
1 ) + ω(Qn+n′−ℓ

jν+1 ))
(141)
≲ (E + ω(r1) + ω(qn+n′−ℓ))δ/γ−1. (152)

If ν = 1 and i1 = 1, j1 ̸= n′, we include the factor with v(r1) (here we use that
ℓ < n and thus r1 = sa for some a > 1) before dropping ω(ξ1), which gives an upper
bound on the ξ1-integral by

|v(r1)|
∫ |v(ξ1)|2dξ1

(E + ω(ξ1))λ(E + ω(ξ1) + ω(r1) + ω(qn+n′−ℓ))2

(141)
≲

|v(r1)|
(E + ω(r1) + ω(qn+n′−ℓ))λ+1−δ/γ

, (153)
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since λ ≤ 1 < 1 + δ/γ. If for some ν ∈ {1, . . . , ℓ}, jν = n′ and iν ̸= 1 the argument
is the same with v(r1) replaced by v(qn+n′−ℓ) and ξ1 by ξν .

This gives us the inequality

∫
(150)

∣∣∣∣∣
SI=Ξ

SIc =Rn−ℓ
1

UJ =Ξ
UJc =Qn+n′−ℓ

n+1

dΞ

≲
ρn′−ℓ,2λ′−1(Qn+n′−ℓ

n+1 , E)ρ̃n−ℓ,2λ−1(Rn−ℓ
1 , E)

(E + ω(r1) + ω(qn+n′−ℓ))1+ℓ(1−δ/γ) (154)

Combining this with (151) and splitting the denominator as in the case ℓ = 0 gives
a bound by

E−τρn+n′−ℓ,σ+s(Q,E)ρ̃n+n′−ℓ,σ−s(R,E), (155)

with 2λ′ −1−σ ≤ s ≤ σ+1−2λ, which is a weaker condition than σ−1 ≤ s ≤ 1−σ.
This proves required bound for the terms with jν ̸= n′.

If I, J are such that i1 = 1 and j1 = n′ we include both the factor with v(r1) and
v(qn+n′−ℓ) in the ξ1-integral, leading to

|v(r1)||v(qn+n′−ℓ)|
∫ |v(ξ1)|2dξ1

(E + ω(ξ1))λ+λ′(E + ω(ξ1) + ω(r1) + ω(qn+n′−ℓ))2

(141)
≲

|v(r1)||v(qn+n′−ℓ)|
(E + ω(r1) + ω(qn+n′−ℓ))min{λ+λ′+1−δ/γ,2}E

−(λ+λ′−1−δ/γ)+

≲
|v(r1)||v(qn+n′−ℓ)|

(E + ω(r1) + ω(qn+n′−ℓ))σ−(ℓ−1)(1−δ/γ)E
−(λ+λ′+ℓ(1−δ/γ)−1)+ (156)

where we used that 1 + δ/γ ̸= λ + λ′. From here we conclude as before, and this
proves the claim for ℓ < min{n, n′}.

The remaining case is ℓ = min{n, n′}. Let ℓ = n, ℓ < n′. We then use the
hypothesis differently, keeping the freedom of choosing the value of s′ ∈ [λ′−1, 1−λ′].
Instead of (150), (151), this gives for the case at hand

(149) =

∣∣∣κ(Qn
1 ,Ξ, p+

∑n′−ℓ
µ=1 qn+µ, E + ω(Qn+n′−ℓ

n+1 )
)
κ′(U,R, p,E)

∣∣∣
E + ω(Ξ) + ω(Qn+n′−ℓ

n+1 )

≲
ρ̃n,2λ−1(Ξ, E + ω(Qn+n′−ℓ

n+1 ))ρn′,λ′+s′(U,E)
E + ω(Ξ) + ω(Qn+n′−ℓ

n+1 )
(157)

× E−µ−µ′
ρn,1(Qn

1 , E + ω(Qn+n′−ℓ
n+1 ))ρ̃n′,λ′−s′(R,E)). (158)
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The integral over ξ1 = ξi1 is then bounded using the denominator in (157), which
gives for j1 ̸= n′

∫ |v(ξ1)|2dξ1

(E + ω(ξ1) + Ω(Qn+n′−ℓ
n+1 ))1+λ(E + ω(ξ1) + Ω(Qn+n′−ℓ

n+j1+1))
(141)
≲ (E + ω(qn+n′−ℓ))−λ−1+δ/γ . (159)

If j1 = n′, then we additionally include the factor with v(qn+n′−ℓ) as we did for
ℓ < min{n, n′} and obtain (with (1 + λ′ − s′)/2 ≤ 1)

|v(qn+n′−ℓ)|
∫ |v(ξ1)|2dξ1

(E + ω(ξ1) + ω(qn+n′−ℓ))2+λ(E + ω(ξ1))(1+λ′−s′)/2

≲
|v(qn+n′−ℓ)|

(E + ω(qn+n′−ℓ))1−δ/γ+(1+2λ+λ′−s′)/2 . (160)

This gives us a bound on the integral by∫
(157)

∣∣∣∣ UJ =Ξ

UJc =Qn+n′−ℓ
n+1

dΞ ≲ ρn′−ℓ,2λ+λ′+2ℓ(1−δ/γ)+t(Qn+n′−ℓ
n+1 , E). (161)

Combining with (158) and setting s = s′ + σ − λ′ (with the resulting restriction
s ∈ [σ − 1, 1 + σ − 2λ′] ⊃ [σ − 1, 1 − σ]) gives the claim.

We now turn to the remaining case ℓ = n = m.

Lemma A.4. Let n ∈ N and κ, κ′ ∈ Kn. Suppose that for some µ, µ′ ≥ 0 and
0 ≤ λ, λ′ ≤ 1 we have the bounds

|κ(Q,R, p,E)| ≲ E−µ min
s∈[λ−1,1−λ]

ρn,λ+s(Q,E)ρ̃n,λ−s(R,E)

|κ′(Q,R, p,E)| ≲ E−µ′ min
s∈[λ′−1,1−λ′]

ρn,λ′+s(Q,E)ρ̃n,λ′−s(R,E)

for E ≥ 1. Then for all 0 ≤ σ ≤ 1 satisfying

max{λ, λ′} ≤ σ < λ+ λ′ + n(1 − δ/γ)

and

τ = µ+ µ′ + (λ+ λ′ + n(1 − δ/γ) − 1)+

we have for E ≥ 1

|κ ⋆n H
−1
0 κ′|(Q,R, p,E) ≲ E−τ min

s∈[σ−1,1−σ]
ρn,σε+s(Q,E)ρ̃n,σ−s(R,E).
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Proof. This is the case n = ℓ = n′ of the previous lemma and we adopt the notation
from there. In the present case we have iν = ν, and j1, . . . , jn is just a permutation
of 1, . . . , n. The integral then simplifies to

∫ ∣∣∣κ(Q,Ξ, E)
)
κ′(ΞJ , R,E)

∣∣∣
E + Ω(Ξ) dΞ ≲ E−µ−µ′

ρn,λ+t(Q,E)ρ̃n,λ′−t′(R,E)

×
∫
ρ̃n,λ−t(Ξ, E)ρn,λ′+t′(ΞJ , E)

E + ω(Ξ) dΞ, (162)

where ΞJ = (ξj1 , . . . , ξjn) are the permuted variables. Hence we only need to prove
that the integral (162) is bounded by E−(λ+λ′+n(1−δ/γ)−1)+ for appropriate choices
of t, t′.

Let us first consider the case j1 = n. Then the integral is bounded by

(162) ≤
∫ |v(ξ1)|2

(E + ω(ξ1))2+(λ−t+λ′+t′)/2

n∏
j=2

|v(ξj)|2

(E + ω(ξj))(E + ω(Ξj
1))

dΞ

(141)
≲

∫ |v(ξ1)|2dξ1
(E + ω(ξ1))2+(λ−t+λ′+t′)/2+(n−1)(1−δ/γ) . (163)

For the final integral to be finite, we need

2 + (λ+ λ′ − t+ t′)/2 + (n− 1)(1 − δ/γ) > 1 + δ/γ. (164)

Now let σ ≤ 1 as in the statement, and set for σ − 1 ≤ s ≤ 1 − σ

t = s+ σ − λ , t′ = s− σ + λ′. (165)

These choices are admissible since σ ≥ λ, λ′. Because σ < λ + λ′ + n(1 − δ/γ), we
have

(162) ≲
∫ |v(ξ)|2dξ

(E + ω(ξ))2+(λ+λ′+(n−1)(1−δ/γ)−σ)

(141)
≲ E−(λ+λ′+n(1−δ/γ)−σ). (166)

As τ − µ− µ′ ≤ (λ+ λ′ + n(1 − δ/γ) − σ), this yields

|κ ⋆n H
−1
0 κ′|(Q,R, p,E) ≲ E−τ min

s∈[σ−1,1−σ]
ρn,σ+s(Q,E)ρ̃n,σ−s(R,E). (167)

This proves the claim for the case j1 = n.
The case j1 ̸= n arises only for n ≥ 2. We choose t, t′ as before, and we then

group the denominator in (162) with the ξj1-integral. This is then bounded by∫ |v(ξj1)|2dξj1

(E + ω(ξj1))(1+2λ′+s−σ)/2(E + ω(ξ1) + ω(ξj1))2

(141)
≲ (E + ω(ξ1))−(1−δ/γ)−(1+2λ′+s−σ)/2, (168)
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since 2λ′ + s− σ ≤ λ′ + s ≤ 1. Treating the integrals over ξν , ν = 2, . . . , n, ν ̸= j1,
in the same way as before, we are left with the ξ1-integral

(162) ≲
∫ |v(ξ)|2dξ

(E + ω(ξ))2+(λ+λ′+(n−1)(1−δ/γ)−σ) . (169)

This proves the claim by the same argument as for j1 = 1.

In the proof of Theorem 3.5 we additionally need bounds on a(v)H−1
0 ⋆ℓ κH

−1
0 ⋆ℓ′

a∗(v).

Lemma A.5. Let n ∈ N, κ ∈ Kn and ℓ, ℓ′ ∈ {0, 1} with ℓ+ ℓ′ ≤ n. Suppose that for
some µ ≥ 0 and 0 ≤ λ ≤ 1 we have

|κ(Q,R, p,E)| ≲ E−µ min
s∈[λ−1,1−λ]

ρn,λ+s(Q,E)ρ̃n,λ−s(R,E).

Then

κℓ,ℓ′ :=
(
a(v)H−1

0 ⋆ℓ κ
)
H−1

0 ⋆ℓ′ a∗(v) ∈ Kn+1−ℓ−ℓ′ ,

and for

σ = min{λ+ (ℓ+ ℓ′)(1 − δ/γ), 1}
τ = µ+ (λ+ (ℓ+ ℓ′)(1 − δ/γ) − 1)+

we have

|κℓ,ℓ′(Q,R, p,E)| ≲ E−τ min
s∈[σ−1,1−σ]

ρn,σ+s(Q,E)ρ̃n,σ−s(R,E).

Proof. The kernel of κ0,0 is

κ0,0(Q,R, p,E)

=
v(r1)v(qn+1)κ

(
Qn

1 , R
n
1 , p+ r1 + qn+1, E + ω(r1) + ω(qn+1)

)
(E + ω(Q) + ω(r1))(E + ω(R) + ω(qn+1)) . (170)

Using the hypothesis, it thus satisfies

|κ0,0(Q,R, p,E)|

≲
|v(r1)||v(qn+1)|ρn,1(Qn

1 , E + ω(qn+1))ρ̃n,2λ−1(Rn+1
2 , E + ω(r1) + ω(qn+1))

(E + ω(qn+1) + ω(r1))1+µ+λ(E + ω(R))1−λ

= ρn+1,−1(Q1, E))ρ̃n+1,−1(R,E)
(E + ω(qn+1) + ω(r1))1+λ+µ

≤ E−µρn+1,λ+s(Q,E))ρ̃n+1,λ−s(R,E) (171)
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for any −1 − λ ≤ s ≤ 1 + λ.
For the case ℓ + ℓ′ = 1, we give the details only for κ0,1 (the proof for κ1,0 is

similar, but the term corresponding to i = 1 below does not occur). The kernel of
the first parenthesis, where there is no contraction, satisfies∣∣∣a(v)H−1

0 ⋆0 κ(Q,R, p,E)
∣∣∣

≲ E−µ |v(r1)|ρn,λ+s(Q,E)ρ̃n,λ−s(Rn+1
2 , E + ω(r1))

E + ω(Q) + ω(r1) . (172)

Distinguishing the contraction with the first variable from the remaining ones, where
we take s = λ− 1, we obtain

|κ0,1(Q,R, p,E)|

=
∣∣∣∣∣
n+1∑
i=1

∫ (
a(v)H−1

0 ⋆0 κ
)
(Q,S, p, E)v(ξ)

E + ω(ξ) + ω(R)

∣∣∣∣ si=ξ
S{i}c =R dξ

∣∣∣∣∣
≲ E−µρn,λ+s(Q,E)ρ̃n,λ−s(R,E)

∫ |v(ξ)|2dξ
(E + ω(ξ) + ω(Q))(E + ω(ξ) + ω(R))

+ |v(r1)|ρ̃n−1,1(Rn
2 , E + ω(r1))ρn,2λ−1(Q,E)

E + ω(Q) + ω(r1)

×
n+1∑
i=2

∫ |v(ξ)|2dξ
(E + ω(ξ) + ω(Ri−1

1 ))(E + ω(ξ) + ω(R))
(141)
≲ E−µ ρn,λ+s(Q,E)ρ̃n,λ−s(R,E)

(E + ω(r1) + ω(qn))1−δ/γ

+ nE−µ ρ̃n,−1+2(1−δ/γ)(R,E)ρn,2λ−1(Q,E)
E + ω(r1) + ω(qn)

≲ E−µ−(λ−δ/γ)+ρn,σ+s(Q,E)ρ̃n,σ−s(R,E) (173)

for σ− 1 ≤ s ≤ 1 − σ (in fact, the range can be chosen larger here). This shows the
bound as claimed.

For ℓ = ℓ′ = 1 recall that we suppose that n ≥ 2. The kernel we need to bound is

|κ1,1(Q,R, p,E)|

=

∣∣∣∣∣∣
n∑

i,j=1

∫
v(ξ1)

E + ω(ξ1) + ω(Q)
v(ξ2)

E + ω(ξ2) + ω(R)κ(U, S, p, E)
∣∣∣∣ uj=ξ1
U{j}c =Q

si=ξ2
S{i}c =R

dξ1dξ2

∣∣∣∣∣∣
≲ E−µ

( n∑
j=1

∫ |v(ξ1)|ρn,λ+s(U,E)
E + ω(ξ1) + ω(qn−1)

∣∣∣∣ uj=ξ1
U{j}c =Q dξ1

)
(174)

×
( n∑

i=1

∫ |v(ξ2)|ρ̃n,λ−s(S,E)
E + ω(ξ2) + ω(r1)

∣∣∣∣ si=ξ2
S{i}c =R dξ2

)
(175)
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To bound the integral (175), we expand ρ̃ as a product of fractions with numerator
|v(sν)| using its definition. For i ≥ 2, we drop ω(ξ2) from the denominators of all
factors except the one of v(ξ2) = v(si), which gives the bound∫ |v(ξ)|ρ̃n,λ−s(S,E)

E + ω(ξ) + ω(r1)

∣∣∣∣ si=ξ
S{i}c =R dξ ≤ ρ̃n−1,λ−s(R,E)

∫ |v(ξ)|2

(E + ω(ξ) + ω(r1))2

(141)
≲ ρ̃n−1,λ−s+2(1−δ/γ)(R,E). (176)

For i = 1 we do not drop ω(ξ) in the factor of v(r1) = v(s2). This leads to (keeping
in mind that 1 + λ− s ≤ 2)∫ |v(ξ)|ρ̃n,λ−s((ξ,R), E)

E + ω(ξ) + ω(r1) dξ

≤ ρ̃n−2,1(Rn−1
2 , E + ω(r1))

∫ |v(r1)||v(ξ)|2dξ
(E + ω(ξ))(1+λ−s)/2(E + ω(ξ) + ω(r1))2

(141)
≲ ρ̃n−1,λ−s+2(1−δ/γ)(R,E) ≤ E−(λ−δ/γ)+ ρ̃n−1,σ−s(R,E). (177)

Arguing in the same way for the other integral (174) proves the claim.

B Operator bounds

We first give a well known Lemma on the boundedness of a(v)dΓ(ω)−s.

Lemma B.1. For s > 1
2(1 + δ/γ)

∥a(v)dΓ(ω)−s∥ ≤ ∥vω−s∥L2 .

Proof. Let n ∈ N0 and Ψ ∈ F (n+1). Then, using Cauchy-Schwarz inequality, the
symmetry of Ψ, and the fact that 2s ≥ 1, we have

∥a(v)dΓ(ω)−sΨ∥2
F(n)

= (n+ 1)
∫
Rdn

∣∣∣∣ ∫
Rd

v(ξ)
ωs(ξ)

ωs(ξ)Ψ(K, ξ)
(ω(ξ) +

∑n
j=1 ω(kj))s

dξ

∣∣∣∣2dK
≤ ∥vω−s∥2(n+ 1)

∫
R(n+1)d

ω2s(kn+1) |Ψ(K)|2(∑n+1
j=1 ω(kj)

)2sdK

= ∥vω−s∥2
∫
R(n+1)d

∑n+1
ℓ=1 ω

2s(kℓ)
(
∑n+1

j=1 ω(kj))2s
|Ψ(K)|2dK

≤ ∥vω−s∥2
L2∥Ψ∥2

F(n+1) . (178)

This proves the claim.
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The following Lemmas provide bounds on elements of Kn,λ, as operators respec-
tively quadratic forms. Similar bounds (with n = 1) appear in the literature on
contact interactions [5, 23, 9].

Lemma B.2. Let κ ∈ Kn with kernel satisfying

|κ(Q,R, p,E)| ≲ ρn,1(Q,E)ρ̃n,2λ−1(R,E),

for some 0 ≤ λ ≤ 1. Then for any non-negative s > 1 − λ − 1
2n(1 − δ/γ), the

formula (61) defines a bounded operator

κ : D
(
dΓ(ω)s

)
→ F .

Proof. Let Φ,Ψ ∈ F be finite linear combinations of compactly supported functions
in L2(Rdn) and note that the set of such elements is dense in F . We have for any
function h on Rd

|⟨Φ, κΨ⟩|

≤
∫

Rdn×Rdn

∣∣∣∣∣
〈( n∏

i=1
aqi

)
Φ, κ(Q,R, dΓ(k) − P,dΓ(ω) + E0)

( n∏
i=1

ari

)
Ψ
〉∣∣∣∣∣ dQdR

≲
∫

Rdn×Rdn

∥∥∥∥∥ρn,1(Q,dΓ(ω))
( n∏

i=1
aqi

)
Φ
∥∥∥∥∥
∥∥∥∥∥ρ̃n,2λ−1(R,dΓ(ω))

( n∏
i=1

ari

)
Ψ
∥∥∥∥∥dQdR

≤
(∫ ( n∏

i=1

h(qi)
h(ri)

)〈( n∏
i=1

aqi

)
Φ, ρn,1(Q,dΓ(ω))2

( n∏
i=1

aqi

)
Φ
〉

dRdQ
)1/2

(179)

×
(∫ ( n∏

i=1

h(ri)
h(qi)

)〈( n∏
i=1

ari

)
Ψ, ρ̃n,2λ−1(R,dΓ(ω))2

( n∏
i=1

ari

)
Ψ
〉

dQdR
)1/2

.

(180)

We choose h(q) = ω(q)t/|v(q)|2 with t = 1 + δ/γ + ε/n, where ε > 0 is such that
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t ≤ 2. Then
∫ dq

h(q) < ∞ and, using the pull-through formula (64),

(180) ≲
〈

Ψ,
∫

Rdn

( n∏
i=1

h(ri)a∗
ri

)
ρ̃n,2λ−1(R,dΓ(ω))2

( n∏
i=1

ari

)
ΨdR

〉1/2

=
〈

Ψ,
∫

Rdn

( n∏
i=1

a∗
ri

) ω(r1)t

(dΓ(ω) + ω(r1))2λ

×
( n∏

j=2

ω(rj)t

(dΓ(ω) + ω(Rj
1))2

)( n∏
i=1

ari

)
ΨdQ

〉1/2

=
〈

Ψ,
∫

Rdn

( n∏
i=2

a∗
ri

)
ω(r1)ta∗

r1ar1dΓ(ω)−2λ

×
( n∏

j=2

ω(rj)t

(dΓ(ω) + ω(Rj
2))2

)( n∏
i=2

ari

)
ΨdQ

〉1/2

.

Now since t ≥ 1,∫
Rd
ω(ri)ta∗

r1ar1dΓ(ω)−2λdqn = dΓ(ωt)dΓ(ω)−2λ ≤ dΓ(ω)t−2λ. (181)

Assume first that t ≥ 2λ. Then dΓ(ω)t−2λ ≤ (dΓ(ω)+ω(r2))t−2λ, and we can iterate
this argument to obtain

∫
Rdν

( ν∏
i=1

a∗
ri

) ω(r1)t

(dΓ(ω) + ω(r1))2λ

 n∏
j=2

ω(rj)t

(dΓ(ω) + ω(Rj
1))2

( ν∏
i=1

ari

)

≤ (dΓ(ω) + ω(rν+1))tν−2(ν−1)−2λ

 n∏
j=ν+1

ω(rj)t

(dΓ(ω) + ω(Rj
ν+1))2

 , (182)

as long as

tν − 2(ν − 1) − 2λ = ν(δ/γ − 1) + 2 − 2λ+ εν

n
≥ 0. (183)

Now if λ+ 1
2n(1 − δ/γ) ≤ 1 this holds true up to ν = n and we obtain

(180) ≲
〈
Ψ, dΓ(ω)2−2λ+n(δ/γ−1)+ε)Ψ

〉1/2
= ∥dΓ(ω)1−λ−n(1−δ/γ)/2+ε/2Ψ∥. (184)

If λ+ 1
2n(1 − δ/γ) > 1, let ν0 be the smallest ν ≥ 1 (which exists for small enough

ε) such that tν − 2ν + 2 − λ+ εν/n ≤ 0. Then we proceed as before, but bound the
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negative power of dΓ(ω) by a constant, which gives

∫
Rdν0

( ν0∏
i=1

a∗
ri

) ω(r1)t

(dΓ(ω) + ω(r1))2λ

 n∏
j=2

ω(rj)t

(dΓ(ω) + ω(Rj
1))2

( ν0∏
i=1

ari

)

≲
n∏

j=ν0+1

ω(rj)t

(dΓ(ω) + ω(Rj
ν0+1))2

, (185)

These remaining factors lead to a bounded operator by the same reasoning, because
t ≤ 2, so we obtain in this case

(180) ≲ ∥Ψ∥. (186)

By the same argument, up to renaming of R,Q, we also have

(179) ≲ ∥Φ∥, (187)

and thus

|⟨Φ, κΨ⟩| ≲ ∥Φ∥∥dΓ(ω)(1−λ−n(1−δ/γ)/2+ε/2)+Ψ∥, (188)

which proves the claim.

Lemma B.3. Let κ ∈ Kn with kernel satisfying

|κ(Q,R, p,E)| ≲ ρn,λ(Q,E)ρ̃n,λ(R,E),

for some 0 ≤ λ ≤ 1. Then for any non-negative s > 1 − λ− n(1 − δ/γ), κ defines a
quadratic form on D

(
dΓ(ω)s/2

)
satisfying

|⟨Φ, κΨ⟩| ≲ ∥dΓ(ω)sΦ∥∥dΓ(ω)sΨ∥.

In particular, if λ+ n(1 − δ/γ) > 1 then κ defines a bounded operator on F .

Proof. As in the proof of Lemma B.2, we take Φ,Ψ as finite combinations of com-
pactly supported functions and obtain

|⟨Φ, κΨ⟩|2 (189)

≤
∫

Rdn×Rdn

( n∏
i=1

h(qi)
h(ri)

)〈( n∏
i=1

aqi

)
Φ, ρn,λ(Q,dΓ(ω))2

( n∏
i=1

aqi

)
Φ
〉

dRdQ

×
∫

Rdn×Rdn

( n∏
i=1

h(ri)
h(qi)

)〈( n∏
i=1

ari

)
Ψ, ρ̃n,λ(R,dΓ(ω))2

( n∏
i=1

ari

)
Ψ
〉

dQdR.
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With the identical choice for h, we conclude using the arguments of Lemma B.3 that

|⟨Φ, κΨ⟩| ≲ ∥dΓ(ω)(1−λ−n(1−δ/γ)+ε)/2Φ∥∥dΓ(ω)(1−λ−n(1−δ/γ)+ε)/2Ψ∥, (190)

if λ+ n(1 − δ/γ) ≤ 1, and

|⟨Φ, κΨ⟩| ≲ ∥Φ∥∥Ψ∥ (191)

if λ+ n(1 − δ/γ) > 1. This proves the claim.
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