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Abstract 
The concept of a geologically istantaneous earliest Zanclean reflooding of the Mediterranean Basin 
after the Messinian drawdown has dominated geological thinking and is ingrained in the scientific 
literature. The base of the Trubi Formation in southern Italy -formally defined as the Zanclean 
Global Boundary Stratotype Section and Point (GSSP) at 5.33 Ma- has traditionally been 
considered as marking the marine reflooding of the Mediterranean. However, several studies 
provide evidence that marine reflooding occurred prior to the Zanclean GSSP, the most reliable of 
which comes from southern Calabria. Here, we show that the sedimentary coastal prism cropping 
out extensively right below the base of the Trubi Formation in this region and correlatable with the 
Arenazzolo Unit in Sicily, contains a fully marine micropaleontological association of calcareous 
nannofossils and dinoflagellate cysts, thus pointing to both a high sea level and marine conditions 
before deposition of the Trubi Formation, i.e., in the latest Messinian.  
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Introduction 
The Mediterranean Messinian Salinity Crisis (MSC) (Selli 1954; Hsü et al. 1973a) was an 
extraordinary event as it has been estimated that 5% of the dissolved salt of the global ocean 
precipitated in a few hundred of thousand years to form a deposit with a volume of more than 1 
million km3 (Ryan 2009) with considerable effects on global atmospheric, oceanographic, and 
climatic patterns (e.g., Adams et al. 1977; Thunnel et al. 1987; Sternai et al. 2017). After sporadic 
pioneering work both on land (e.g. Ogniben 1957; Selli 1960; Decima 1964; Ruggieri 1967) and 
offshore (e.g. Glangeaud et al. 1966; Montadert et al. 1970), the MSC attracted considerable 
attention when Deep Sea Drilling Project (DSDP) Leg 13 drilled the top of the evaporites in several 
western Mediterranean sites and confirmed the existence of an extensive volume of Messinian 
evaporites (Hsü 1972; Hsü et al. 1973a, b). Since DSDP Leg 13, the MSC has been the focus of 
extensive research resulting in an intense international debate mainly focused on its process, 
timing, and consequences.  
The MSC is now envisioned as a two-step process (Clauzon et al. 1996), a scenario largely 
accepted by the scientific community (CIESM 2008; Roveri et al. 2014): 

- the first step affected the Mediterranrean peripheral basins (including Sicily) and is 
characterized by thick deposits of evaporites due to a drop of about 150 m in the 
Mediterranean Sea level; 

- the second step affected the Mediterranean central basins where thick evaporites were 
deposited as a result of the sea-level drawdown of about 1,500 m, which also caused intense 
subaerial erosion of the margins, mainly by the rivers.  

The specialized community unanimously agrees on a chronology ranging from 5.97 to 5.60 Ma for 
the 1st step of the MSC (Gautier et al. 1994; Krijgsman et al. 1999, 2001; Manzi et al. 2013). There 
is a wide agreement about the age of the onset of the paroxysmic 2nd step of the MSC at 5.60 Ma. 
The end of the MSC, which corresponds to the sudden reflooding of the Mediterranean Basin by 
Atlantic waters, is usually dated at 5.33 Ma, i.e., the age of the base of the Trubi Formation 
(Zanclean GSSP) established both in Sicily and southern Calabria (Channell et al. 1988; Hilgen 
and Langereis 1993; Van Couvering et al. 2000). Brolsma’s proposal (1975, 1976) that marine 
reflooding occurred prior to the Zanclean (i.e., at the base of the Arenazzolo deposits underlying 
the Trubi Formation) introduced the first doubts concerning the robustness of the reflooding age at 
5.33 Ma. Later, several works provided evidence that marine conditions existed on the 
Mediterranean margins prior to the beginning of the Zanclean (Cavazza and DeCelles 1998; 
Londeix et al. 2007; Carnevale et al. 2008; Bache et al. 2012; Pellen et al. 2017), a context that 
was considered likely by Riding et al. (1998), Aguirre and Sánchez-Almazo (2004), Cornée et al. 
(2006), Soria et al. (2008), Melinte-Dobrinescu et al. (2009), Do Couto et al. (2014) and Clauzon 
et al. (2015) despite the absence of conclusive relationships with the formal basal Zanclean. 
According to Bache et al. (2012, 2015), the continuous input of Atlantic waters in the almost 
desiccated Mediterranean central basins started during the late Messinian (at ca. 5.55 Ma) and 
ended with the sudden and dramatic reflooding estimated at 5.46 Ma. The presence of marine 
microplankton in the drilled uppermost part of the central evaporites (2nd step of the MSC) has long 
been known (Cita 1973; Cita et al. 1978; Iaccarino and Bossio 1999) although its reliability is still 
under discussion (Popescu et al. 2015). Marine reflooding of the Mediterranean Basin is 
interpreted as occurring at either 5.46 Ma (Bache et al. 2015; Clauzon et al. 2015; Popescu et al. 
2015; Suc et al. 2015) or 5.33 Ma (Roveri et al. 2014; Krijgsman et al. 2018). Although not 
directly linked with the purpose of this paper, but closely associated with the reference sections in 
Sicily, the ongoing debate concerning Lago Mare (LM) needs clarifying: characterized by the 
occurrence of Paratethyan species in the Mediterranean, one episode is considered as closing the 
MSC (Roveri et al. 2014) and three distinct episodes have been chronologically distinguished by 
Clauzon et al. (2005) and Popescu et al. (2015). 
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Southern Calabria provides the most robust evidence of a pre-Zanclean coastal sedimentary prism 
(DeCelles and Cavazza 1992, 1995; Cavazza and DeCelles 1998), exposed immediately below the 
Trubi Formation in the areas of Monte Singa (Zijderveld et al. 1986; Hilgen 1987, 1991; Hilgen 
and Langereis 1993) and Capo Spartivento (Channell et al. 1988), which are among the reference 
sections for the establishment at Eraclea Minoa of the Miocene–Pliocene boundary (Van 
Couvering et al. 2000). Our target was to find marine microfossils (possibly biostratigraphic 
markers) within the Calabrian coastal prism underlying the formal Lower Pliocene, with the aim of 
proving that the Mediterranean reflooding occurred significantly before the earliest Zanclean.     
 
Geological framework  
The Calabria-Peloritani Terrane (CPT) is an exotic terrane composed of several nappes piled up 
during Alpine-age deformation and involving an ancient crystalline basement affected by the 
Hercynian orogeny (Amodio-Morelli et al. 1976; Bonardi et al. 2001). Although originally part of 
the European southern continental margin, the CPT rifted off the margin in the Oligocene after the 
Alpine collision and drifted southeastward during the Neogene until it collided with the African 
continental margin in the Langhian (early Middle Miocene) time (Alvarez et al. 1974; Dercourt et 
al. 1985; Malinverno and Ryan 1986; Dewey et al. 1989; Gueguen et al. 1998; Jolivet and 
Faccenna 2000; Cavazza et al. 2004). The Ionian coast of southeastern Calabria is arguably the only 
place in western and central Mediterranean regions where an Alpine-age continental collision has 
not occurred. In this region, northwestward subduction of the Ionian Neotethyan oceanic 
lithosphere is still underway, albeit passively, under the Calabrian microplate, as indicated by a 
northwestward dipping subduction plane (e.g. Spakman and Wortel 2004) and by the mostly 
Quaternary calcalkaline volcanism of the Aeolian Islands (e.g. De Astis et al. 2003).  
The Ionian forearc basin is located between the subduction zone and the CPT basement units 
cropping out on land (Fig. 1B-C). The term ‘‘forearc’’ is used here to define the location of the 
basin between the Ionian subduction zone and the corresponding calcalkaline volcanic arc of the 
Aeolian Islands, with no implications as to the mechanism responsible for the development of the 
basin. The proximal portion of the Ionian forearc basin fill crops out extensively along the 
southeastern coast of Calabria due to rapid uplift of the CPT since the Middle Pleistocene (Tortorici 
et al. 1995). This uplift has been interpreted as resulting from unflexing of the Ionian foreland 
lithosphere upon break-off of its subducted slab following the docking of the CPT (e.g. Spakman 
and Wortel 2004). 
Along the Ionian coast of southeastern Calabria, the proximal portion of the forearc basin fill is 
>2,000 m thick and comprises upper Oligocene to Quaternary lithostratigraphic units (Figs. 2, 3) 
(Cavazza et al. 1997; Bonardi et al. 2001), with an overall upward-shallowing trend. The basal part 
of the basin fill is formed by uppermost Chattian–Burdigalian turbidite deposits of the Stilo–Capo 
d’Orlando Formation (Bonardi et al. 1980; Cavazza 1989; Cavazza and DeCelles 1993) 
conformably overlain by a large-scale olistostrome mélange informally named Varicoloured clays 
(Cavazza and Barone 2010). The latter is overlain by the San Pier Niceto Formation, a Serravallian-
Tortonian succession of proximal marine conglomerate, sandstone and mudstone (Critelli et al. 
2015a, b). The Messinian stratigraphy is described in more detail below. The carbonate-marl 
rhythms of the Zanclean Trubi Formation onlap all the older lithostratigraphic units and are, in turn, 
overlain by Upper Pliocene-Lower Pleistocene shallow marine calcarenite, siliciclastic sandstone, 
and mudstone. Beach and fluvial terraces discontinuously cover older formations and can be found 
at elevations more than 1,000 meters above sea level, indicating a dramatic uplift of the Calabrian 
block during the last 700 ka (e.g. Tortorici et al. 1995). 
 
Messinian physical stratigraphy and sedimentological facies 
This section mostly refers to previously published data (DeCelles and Cavazza 1992; Cavazza and 
DeCelles 1998) that are briefly summarized here. The Messinian evaporitic and post-evaporitic 
succession that crops out along the Ionian coast of southeastern Calabria comprises three units 
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(Figs. 2 and 3). Lower Messinian evaporites and pelites (Unit 1) are conformable or slightly 
unconformable with respect to the underlying units, whereas the upper Messinian siliciclastic 
deposits (units 2 and 3) are mainly sub-horizontal, essentially undeformed, and are separated from 
the underlying succession by an angular unconformity or a laterally equivalent disconformity. Some 
of the more complete outcrops of the Messinian post-evaporitic succession are located between the 
towns of Guardavalle to the north and Caulonia to the south (Fig. 1). In the present study, we 
mainly focused on such outcrops but also conducted observations on the Messinian stratigraphy 
over ca. 80 km along depositional strike.  

 
The limestone-gypsum succession of Unit 1 
Unit 1 (Formazione di Cattolica of Critelli et al. 2015a, b) is made of a thin discontinuous 
limestone-gypsum succession conformably overlying the Serravallian–Tortonian succession of the 
San Pier Niceto Formation and the lowermost, pre-evaporitic Messinian (Figs. 3, 4). The maximum 
total thickness of Unit 1 is ca. 100 m. In the study area, the limestone member (known elsewhere as 
Calcare di Base; Ogniben 1957) is largely recrystallized, and its original fabric is difficult to 
recognize. It is composed of micritic-microsparitic aggregates, probably pseudo-oolites related to 
algal activity (see Decima et al. 1988), or fecal pellets, set in microsparitic cement. In other areas, 
this lithostratigraphic unit comprises abundant filament-like peloids, arguably due to the activity of 
cyanobacteria (Guido et al. 2007) similar to those described in the Messinian evaporites by Vai and 
Ricci Lucchi (1977) and Manzi et al. (2011). Thin layers of macro- and mesocrystalline gypsum 
with swallow-tail twinning are occasionally present within the limestone. The gypsum member of 
Unit 1 discontinuously overlies the limestone member described above. It is made of epiclastic 
gypsum-arenite and gypsum-rudite; no primary gypsum was found.  
 
The fanglomerates of Unit 2 
Unit 2 (Formazione di Monte Canolo of Critelli et al. 2015a, b) is up to 80 m thick and thins 
progressively southeastward (Fig. 5) or southward (Fig. 6) up to <10 m, although the actual pinch-
out is not visible. It consists of poorly to medium sorted cobble to boulder conglomerate. Average 
maximum clast size in individual beds ranges from 15 to 160 cm; no clear vertical trends in grain-
size are visible although the bulk of Unit 2 fines systematically eastward. The most common 
conglomerate lithofacies are generally clast supported and comprise horizontally stratified, 
imbricated and structureless conglomerate. At a larger scale, the bedding is crudely lenticular. 
Imbrications indicate south-southeastward paleoflow. Unit 2 is interpreted as deposits of stream-
dominated alluvial fans (Cavazza and DeCelles 1998). Conglomerate clast composition is 
dominated by plutonic and subordinate phyllitic rocks, with small amounts (<5%) of Mesozoic and 
Lower Cenozoic carbonates. Taken together, compositional and paleocurrent data indicate that the 
upper Messinian fanglomerates of Unit 2 were derived from the Hercynian basement complex 
directly to the west-northwest of the study area.  

 
The sedimentary prism of Unit 3 
The thickness of Unit 3 in the outcrops ranges from 0 to 52 m. In the Guardavalle fence diagram 
(Fig. 5), Unit 3 pinches out south-eastward, whereas in the Caulonia fence diagram, it can be seen 
pinching out north-westward and its eastward continuation lies in the subsurface (Fig. 6). Based on 
stratigraphic/sedimentological measurements and field observations, this unit has a ribbon 
geometry elongated along the strike of the latest Messinian depositional system and nearly parallel 
to the present-day coastline. Based on geometric considerations, the width of Unit 3 perpendicular 
to depositional strike is estimated to be 3–4 km. A variety of sedimentological facies and facies 
associations are observed in Unit 3 (e.g., Figs. 7, 8). The following is a concise description; 
interested readers should refer to DeCelles and Cavazza (1992) and Cavazza and DeCelles (1998) 
for details. 
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The stratigraphy of Unit 3 is characterized by poorly cemented, very fine- to coarse-grained 
sandstone arranged in vertically coherent sequences typically consisting of structureless medium- 
to coarse-grained sandstone, overlain by medium- to coarse-grained trough cross-stratified and 
hummocky cross-stratified (HCS) sandstone, in turn overlain by low-angle, laminated, very well 
sorted sandstone (e.g. Fig. 7). An irregular erosional surface, overlain by coarse-grained trough 
cross-stratified sandstone or imbricated pebble conglomerate, forms the upper part of a few of 
these sequences. These recurring sequences have been interpreted as progradational shallow marine 
to fluvial parasequences (DeCelles and Cavazza, 1992; Cavazza and DeCelles, 1998). The shallow 
marine parts of these sequences consist of a storm-dominated surf zone, beach, and beach-ridge 
deposits. Where present, the beach-ridge deposits comprise large-scale, low-angle, bidirectional 
cross-stratification, and are associated with interlayered claystone and siltstone (or very fine-
grained sandstone) with flaser bedding, starved ripples and wavy lamination. This association  of 
finer grained lithofacies has been interpreted as the deposits of shallow lagoons on the landward 
sides of beach ridges (DeCelles and Cavazza, 1992; Cavazza and DeCelles, 1998).  
Overall, the Messinian sediments of Unit 3 in eastern Calabria were deposited along an east-facing 
shoreline rather resembling the modern shoreline, where ephemeral gravelly braided streams drain 
the nearby highlands and form small braid-delta systems along an otherwise straight and open 
shoreface dominated by storm-wave-driven currents and negligible tidal processes. Spits parallel to 
the shore occasionally separate the alongshore deflected fluvial channels from the open shoreface 
and shallow lagoons develop where fluvial channels are abandoned. Locally, a thin dark clayey bed 
caps Unit 3 deposits (sections A2, A4, C4; Figs. 6, 8, 10), in sharp colour contrast to the 
immediately overlying white first carbonate bed of the Trubi Formation. The interpretation of this 
distinctive bed, shown in the sections of Figure 6, is proposed below.  

 
Overall interpretation of Messinian stratigraphy 
Despite local erosional features, the evaporites of Messinian Unit 1 are substantially concordant 
with the underlying succession and document continuous evolution from open marine (Tortonian) 
to progressively restricted (early Messinian) environments. Conversely, a sharp angular 
unconformity separates the coarse-grained conglomerates of Messinian Unit 2 from all underlying 
units, including the Hercynian basement complex and the pre-conglomerate Cenozoic sedimentary 
succession (Figs. 3, 4). The older Cenozoic rocks generally dip 30–50º eastward, and must have 
been rotated after Tortonian time, but prior to deposition of the Messinian fanglomerates. This 
geometric relationship demonstrates that deposition of the Messinian fanglomerates (Unit 2) cannot 
merely be the product of the lowering of the base level due to the desiccation of the Mediterranean 
Sea, as also demonstrated by the fact that such conglomerates are not restricted to incised valleys 
but are also preserved in a structurally and topographically high position in the Calabrian orogenic 
wedge. In addition, this unconformity is widespread in the Mediterranean region (e.g. Decima and 
Wezel 1973; Fabbri and Curzi 1979; Dondi 1985; Kastens et al. 1990; Butler et al. 1995; Riding et 
al. 1998; Braga et al. 2003), clearly pointing to intra-Messinian tectonic activity that significantly 
modified the regional physiography (Jolivet et al. 2006).  
 
Micropaleontology: methods and results 
Seventeen samples were collected for micropaleontological analyses near Guardavalle focusing on 
easily accessible clayey and silty facies within the upper part of Unit 3 and the lowermost layers of 
the Trubi Formation (Figs. 5–6). Information on the locations sampled is provided in Table 1: most 
of the samples came from Unit 3 (location G3: samples 1–3; location G5: samples 1–2; location 
A2: sample 1; location A4: sample 1; location C4: samples 1–6; Careri : sample 1); a few samples 
came from the lowermost Trubi Formation (location A2: samples 2–3; Careri: sample 2). Careri 
(Fig. 8) is located outside the mapped area in Figure 1.   
The methods used for microfossil extraction and identification were as follows: 
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- calcareous nannofossils: 2 grams of sediment were used to prepare smear slides; the 
calcareous nannofossil analyses were performed using a light polarizing microscope 
at 1600× magnification; their taxonomic identification follows Perch-Nielsen (1985) 
and Young (1998); 

- foraminifera: 10–15 grams of sediment were disaggregated in a warm solution of 
sodium carbonate (Na2CO3); the residue was sieved at 50 µm, 150 µm and 250 µm, 
and all the material was analyzed and identified following Iaccarino and Premoli 
Silva (2007); 

- dinoflagellate cysts: acid treatments using HCl, HF, and again HCl on 10 to15 grams 
of sediment followed by concentration in ZnCl2 (density 2.0) and sieving at 10 µm; a 
50 µl volume of residue was mounted in glycerol and examined under a light 
microscope (magnification: 1000×). Identification was based on the database of 
Williams et al. (2017). 

Tables 2–4 list the results for calcareous nannofossils, planktonic foraminifera and dinoflagellate 
cysts, respectively.   
 
Calcareous nannofossils 
The samples from Unit 3 yielded a diversified calcareous nannofossil assemblage, evidence for an 
open marine environment (samples G3-1–3, G5-1–2, A2-1, A4-1, C4-1–6, Careri-1; Figs. 5–6). 
Table 2 lists the occurrence of some species of biostratigraphic significance: Discoaster 
quinqueramus, Orthorhabdus (ex Triquetrorhabdulus) rugosus, and Ceratolithus acutus (Fig. 9). 
The highest occurrence (HO) of D. quinqueramus is suggested at about 5.53 Ma (Zeeden et al. 
2013), but its extinction age in the Mediterranean has not been defined precisely. The lowest 
occurrence (LO) of C. acutus is indicated between 5.35 Ma (Raffi et al. 2006; Anthonissen and 
Ogg 2012) and 5.368 Ma (Zeeden et al. 2013). The two species were not recorded in the same 
samples, suggesting an age between 5.53 and 5.35 Ma for Unit 3. This is in agreement with the 
occurrence of O. rugosus (HO at 5.28 Ma: Raffi et al. 2006; Anthonissen and Ogg 2012). It should 
be noted that Nicklithus amplificus was recorded in a few samples from Unit 3 (Table 2) but must 
be considered as reworked because its HO is dated at about 5.94 Ma (Raffi et al. 2006; 
Anthonissen and Ogg 2012). The samples from the Trubi Formation (samples A2-2–3, Careri-2; 
Figs. 5–6) yielded a somewhat less diversified calcareous nannofossil assemblage, showing the 
occurrence of O. rugosus at location A2 (Table 2), consistent with the astronomical age of 5.30 Ma 
ascribed to the top of the first carbonate-marl precession cycle in the nearby Singa section in 
agreement with the base of the Sphaeroidinellopsis Acme (Van Couvering et al. 2000; Lirer et al. 
2019). Figure 10 summarizes the calcareous nannofossil biostratigraphy and the inferred 
chronostratigraphy of Unit 3. 

 
Planktonic foraminifera 
Only three samples from the Trubi Formation from the location A2 and Careri (Fig. 6) yielded 
planktonic foraminifera that are on the whole, abundant (Table 3). This planktonic microfauna is 
evidence of normal marine conditions. Combined with the occurrence of Sphaeroidinellopsis 
seminulina and the absence of typical individuals of Globorotalia margaritae, its composition is 
consistent with the location of the samples in the lowermost Zanclean, i.e., before the base of the 
Sphaeroidinellopsis Acme Zone (5.30 Ma; Lirer et al. 2019). 

 
Dinoflagellate cysts 
Six samples from Unit 3 (samples A4-1, C4-1–2, C4-4–6; Fig. 6) yielded a dinoflagellate cyst flora 
(Table 4). The assemblage in sample A4-1 is dominated by Lingulodinium machaerophorum and 
Homotryblium sp., thus indicating coastal to lagoonal conditions. The assemblage from location C4 
shows an interesting progression, from very poor (samples 1–2) to very rich (sample 6) in terms of 
diversity and the number of specimens. The latter, characterized by abundant cysts of 
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Impagidinium patulum and I. sphaericum (Fig. 9), is evidence for full open marine conditions 
while the underlying sample C4-4 rather points to a coastal environment. No dinoflagellate cyst 
originating from the Paratethys, constituting the Lago Mare biofacies as described by Popescu et 
al. (2015), was recorded in the samples studied here. 
Overall, the clayey thin microfossiliferous beds of Unit 3 (Figs. 5–6) may illustrate several 
successive minor sea-level rises, especially the uppermost one and its darker termination that 
immediately precedes the Trubi Formation.   
 
Discussion 
Previous studies have shown that the Messinian succession in southeastern Calabria was deposited 
in response to complex interactions between eustacy and tectonics (DeCelles and Cavazza 1995; 
Cavazza and DeCelles 1998). The abrupt vertical compositional change and angular unconformity 
between the evaporites of Unit 1 and the coarse-grained siliciclastic fanglomerates of Unit 2 were 
produced by intra-Messinian thrusting in the upper part of the Calabrian orogenic prism. Reworking 
of these clastics during the marine reflooding of the Mediterranean Basin produced the uppermost 
Messinian deposits of Unit 3, a costal prism that was deposited by episodically prograding sandy 
shoreface systems (DeCelles and Cavazza 1992; Cavazza and DeCelles 1998). The subsequent 
general onlap of the pelagic oozes of the Trubi Formation at the Miocene–Pliocene boundary 
resulted from an additional sea-level rise, that drowned all pre-existing sedimentary deposits, 
somewhat reducing the land area and the terrigenous input to the basin, thereby promoting 
carbonate sedimentation in the basin (Butler et al. 1995; Bache et al. 2012).  
Considering the large vertical distribution of samples containing marine microplankton (Figs. 5–6), 
the micropaleontological dataset presented in this paper confirms that Unit 3 was deposited in open 
marine conditions, as previously suggested by Cavazza and DeCelles (1998) based on purely 
stratigraphic and sedimentologic grounds. Our results concerning the Calabrian Unit 3, the novelty 
of which is the evidence of marine microplankton including robust biostratigraphic markers (such 
as Ceratolithus acutus and Orthorhabdus rugosus), support the hypothesis that the marine 
reflooding that put an end to the MSC in the Mediterranean occurred significantly before the 
beginning of the Zanclean Stage corresponding formally to the base of the Trubi Formation.  
The stratigraphy described by Karakitsios et al. (2017) in their Kalamaki East section on Zakynthos 
Island is particularly relevant to this discussion. In that area, a thin dark shale bed overlies a 
laminated greenish marly interval referred to as the Lago Mare biofacies above the Messinian 
Erosional Surface. Several samples from these two layers contain Ceratolithus acutus among other 
species of calcareous nannofossils and planktonic foraminifera. The dark shale bed is immediately 
overlain by the first carbonate layer of the Trubi Formation well dated by both micropaleontological 
and magnetostratigraphic means (Karakitsios et al. 2017: sample KAL 134 – fig. 16, table S1–S2). 
This context closely resembles the succession described by Bache et al. (2012) and Popescu et al. 
(2015) at the Zanclean GSSP (Eraclea Minoa, S Sicily) comprising, from bottom to top: (i) the 
Messinian Discontinuity (the surface is considered to be due to marine reflooding), (ii) the 
onlapping Arenazzolo silty Unit (both including Paratethyan and marine dinoflagellate cysts) 
topped by a thin dark clayey bed, and finally (iii) the Trubi Formation. Accordingly, a comparison 
of the latest Messinian–earliest Zanclean succession of the classic locations in southern Calabria 
and southern Sicily is needed because they probably both belong to a similar paleogeographic 
context along the front of the Calabrian accretionary wedge corresponding to relatively coastal 
conditions (Fig. 12).  
 
Calabria vs. Sicily latest Messinian–earliest Zanclean succession 
The comparison focuses mainly on Calabrian Unit 3 (Cavazza and DeCelles 1998) and the Sicilian 
Arenazzolo Unit (Ogniben 1957; Bache et al. 2012; Popescu et al. 2015), i.e., the units located 
stratigraphically between the Messinian evaporites at the bottom and the Trubi Formation at the top. 
In Calabria, the contact between Unit 3 and Unit 2 (fanglomerate) is sharp (Fig. 7) and can be 
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interpreted as a ravinement surface delimiting the base of the sedimentary prism of Unit 3 (Figs. 5–
6; Cavazza and DeCelles 1998). In several places (Fig. 6), a clayey dark bed of variable thickness 
ends Unit 3, the uppermost 3–5 centimeters of which are darker and are in sharp colour contrast 
with the whitish first carbonate bed of the Trubi Formation (Figs. 10, 13). As argued above, this 
dark layer, observed in the Caulonia region (locations A4 and C4) and at Careri (Figs. 6, 8, 10), rich 
in marine microplankton (Tables 2, 4), results from a sea-level rise and represents maximum 
flooding. At Eraclea Minoa in Sicily, the Arenazzolo and Trubi formations can be traced for quite a 
distance. Here, a well-marked discontinuity was evidenced at the base of the Arenazzolo Unit, 
called the ‘Messinian Discontinuity’ by Popescu et al. (2009, 2015) and Bache et al. (2012). In 
southern Calabria, this discontinuity marks a clear separation between units 2 and 3. Its smooth 
morphology and wide regional extent lead us to interpret this surface as resulting from transgressive 
ravinement (i.e. a wave-cut surface; see modern and past examples in Bache et al. 2012). At Eraclea 
Minoa, this surface marks the base of an assemblage of inner-to-outer-shelf dinoflagellate cysts also 
containing Paratethyan species (Bache et al. 2012). The sedimentary gap has been interpreted as 
corresponding to the second, paroxysmal, step of the MSC (Clauzon et al. 1996; Bache et al. 2012). 
In this paper, we therefore call this discontinuity ‘transgressive ravinement surface’ (TRS) (Fig. 13) 
as defined by Catuneanu and Zecchin (2013). The overlying Arenazzolo Unit is thus suggested as 
marking the marine reflooding of the Mediterranean Basin, as also shown by a marine, although 
relatively poor, calcareous nannofossil assemblage (Bache et al. 2012), in line with earlier 
suggestions (Brolsma 1975, 1976). Bache et al. (2012) proposed that marine reflooding occurred at 
5.46 Ma, based on a tentative cyclostratigraphy. This age is consistent with the LO of Discoaster 
quinqueramus and the FO of Ceratolithus acutus (Fig. 10) for the reflooding event recorded in 
Calabria. This event must be regarded as a sudden marked rise of the Mediterranean Sea level, 
which was estimated at ca. 500 m by Bache et al. (2012) (Fig. 13). In addition, the Arenazzolo Unit 
corresponds to the third Lago Mare episode (LM3: high sea-level Paratethys–Mediterranean 
exchanges; Clauzon et al. 2005) closely linked to marine reflooding (see for details: Popescu et al. 
2015). Like the Calabrian Unit 3, Arenazzolo ends with a 50 cm-thick clayey layer, the uppermost 
centimeters of which are darker (Fig. 13), that we interpret as a condensed interval representing a 
maximum flooding event.  

 
Paleoenvironmental and paleogeographic inferences 
The proposed chronostratigraphic correlation of the Sicilian Arenazzolo Unit with the Calabrian 
Unit 3 (Fig. 13) and their comparison leads us to paleoenvironmental interpretations that can be 
integrated in up-to-date knowledge of paleogeography. 
The latest Messinian pre-Trubi siliciclastic units of Sicily and Calabria have a consistent 
stratigraphic position but vary in thickness and sedimentary facies. For example, Calabrian Unit 3 
comprises paleoenvironments ranging from fully marine to continental (DeCelles and Cavazza 
1992, 1995; Cavazza and DeCelles 1998) and varies in thickness from 0 to 52 meters (Figs. 5–6). 
The extensive outcrops of Unit 3 three-dimensionally delineate a ribbon-shaped sedimentary body, 
elongated along the strike of the Messinian depositional system, virtually parallel to the present-day 
coastline. This depositional system developed over a rugged paleotopography (hence the lateral 
variations in facies, thickness, and stacking pattern) and prograded into a deep body of water (hence 
a wide accommodation space). Conversely, the Arenazzolo appears to be rather uniformly 
characterized by brackish to marine paleoenvironments (Bache et al. 2012) and its thickness is 
limited and somewhat more uniform over the entire Sicilian Caltanissetta Basin (Decima and Wezel 
1973). This suggests a limited accommodation space, i.e., shallower water than in Calabria. The 
calcareous nannofossil assemblage leads to the same conclusion, being more abundant and 
diversified in Unit 3 than in the Arenazzolo (Bache et al. 2012). Deeper conditions offshore South 
Calabria are supported by paleogeographic reconstructions showing the proximity of the Ionian 
Basin where evaporites were deposited during the 2nd step of the MSC (Fig. 12; Jolivet et al. 2006; 
Haq et al. 2020; Manzi et al. 2020). Evaporites of the Caltanissetta Basin have long been 
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considered to belong to the deep central Mediterranean basins (i.e., deposited during the 2nd step of 
the MSC). Clauzon et al. (1996) and Bertini et al. (1998) placed them in the 1st step of the MSC. 
Today, there is a wide consensus for ascribing them to a peripheral basin, probably deeper than the 
more internal peri-Mediterranean basins such as Sorbas (Clauzon et al. 1996; CIESM 2008; Roveri 
et al. 2014). An onshore–offshore study in Tunisia supports the two-step MSC scenario (Clauzon et 
al. 1996): peripheral evaporites of the 1st step show a gypsum-anhydrite-halite succession (borehole 
Carthage 1; Fig. 12) similar in both thickness and structure to that of Sicily (borehole Porto 
Empedocle 38; Fig. 12), cut by the deep fluvial canyon of the Medjerda River (Fig. 12) 
demonstrating the 2nd step of the MSC (El Euch-El Koundi et al. 2009). This evidence implies that, 
at that time, the Sicily–Tunisia marine domain should be considered a peripheral basin including 
some deeper parts (El Euch-El Koundi et al. 2009). A similar conclusion was proposed by Micallef 
et al. (2019) for the Sicily–Tunisia domain which, during the 2nd step of the MSC, was separated 
from the Ionian Basin by the eroded Malta Escarpment. The peripheral status of the Sicilian Basin 
is also supported by the erosional cutting caused by the Salso River at the northern edge of the basin 
(Fig. 12; El Euch-El Koundi et al. 2009; Maniscalco et al. 2019). We conclude that the latest 
Messinian successions of southern Calabria and Sicily, although deposited in bathymetrically rather 
different conditions, likewise recorded the pre-Zanclean reflooding of the Mediterranean Basin. 
 
Revisited significance of some geological formations 
Three Lago Mare episodes, mainly characterized by the influx of Paratethyan dinoflagellates (i.e., 
transported by surface waters), have been identified during the latest Messinian–earliest Zanclean 
time interval (Clauzon et al. 2005; Popescu et al. 2009, 2015; Do Couto et al. 2014). The first and 
the third episodes (LM1–LM3) -recorded both in peripheral and central basins- occurred 
respectively, at the end of the first MSC step and during the post-crisis marine reflooding and were 
caused by high sea-level exchanges between the Mediterranean and Paratethys. The second episode 
(LM2) -recorded only in the central basins, in both of the western and eastern Mediterranean- 
occurred right after the peak of the MSC and is interpreted as resulting from an overflow from the 
perched Aegean realm that pooled Paratethyan waters (Popescu et al. 2015). The Eraclea Minoa 
stratigraphic section records the LM1 and LM3 episodes (Fig. 13; see for details: Popescu et al. 
2009, 2015; Bache et al. 2012), the latter being located within the Arenazzolo. As a consequence, 
we expected to find Paratethyan dinoflagellate cysts in the Calabrian Unit 3, but our search was 
unsuccessful. The absence of Paratethyan dinoflagellate cysts in the south Calabria Unit 3 could be 
explained by the high energy sediment input from the continent resulting in thinner clayey deposits 
compared to thick coarser clastics (Figs. 5–6). 
The integration of preexisting stratigraphic, sedimentologic, and paleontological data from the latest 
Messinian Unit 3 of southeastern Calabria and the correlative Arenazzolo Unit in Sicily confirm 
that fully marine conditions were reestablished in the Mediterranean Basin well before the initial 
deposition of the Trubi Formation, traditionally considered as the first marine unit after the end of 
the MSC (e.g. Van Couvering et al. 2000, and references therein). Earlier reports of the occurrence 
of pre-Trubi marine microplankton (Brolsma 1975, 1976; Londeix et al. 2007) were dismissed, 
possibly because they challenged the widely accepted scenario of the ‘Zanclean deluge’, i.e., a 
virtually synchronous flooding of the Mediterranean Basin that gained acceptance within the 
scientific community. This ‘deluge’ is thought to be marked by the base of the Trubi Formation, 
providing a convenient datum for the formal establishment of the base of the Pliocene. However, in 
the last few years, a growing body of evidence points to a more complex sequence of events, with at 
least two stages in the refilling of the Mediterranean Basin (Bache et al. 2012). Based on 
micropaleontological data, the present study validates the hypothesis that the uppermost Messinian 
marine deposits below the Trubi Formation represent complete reflooding of the Mediterranean 
Basin followed by further sea-level rise recorded by the Trubi Formation driven by glacioeustacy 
(Miller et al. 2011; Gorini et al. 2014). 
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Conclusion 
In southern Calabria, a coastal sedimentary prism (Unit 3) characterizes the latest Messinian and is 
overlain by the Zanclean Trubi Formation, traditionally considered as the reestablishment of fully 
marine conditions in the Mediterranean Basin following the Messinian Salinity Crisis. Analyses of 
physical stratigraphy and sedimentary facies previously evidenced that Unit 3 marks a 
transgressive event ending with a maximum flooding condensed interval just below the highstand 
recorded by the Trubi Formation. Calcareous nannofossils and dinoflagellate cysts found in the 
present study show that this unit is fully marine. We thus conclude that the marine reflooding of the 
Mediterranean Basin that ended the MSC occurred significantly before the beginning of the 
Zanclean Stage. The Sicilian Arenazzolo is time equivalent of the Calabrian Unit 3. Sharp 
lithological breaks do not correspond to the most important environmental changes, such as the 
passage from a terrigenous succession to carbonate sedimentation probably promoted by 
continuous sea-level rise. The Trubi Formation is not the expression of the post-MSC marine 
reflooding but denotes only a glacio-eustatic rise in sea level. The marine reflooding significantly 
predates the Zanclean GSSP. An age of 5.46 Ma is thus conceivable for the end of the Messinian 
Salinity Crisis, more than 100 kyrs before the beginning of the Zanclean.    
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Table 1. Information on the six sampled locations 

Region Location Latitude N Longitude E Altitude (m) Number of samples 
Guardavalle G3 38°30’28.97” 16°30’09.42” 265 3 
  G5 38°28’38.79” 16°30’47.08” 110 2 
Caulonia A2 38°23’52.95” 16°26’07.12” 266 3 
  A4 38°23’11.50” 16°26’11.70” 167 1 
  C4 38°22’20.10” 16°25’18.60” 167 6 

Careri   38°10’56.30” 16°06’56.00” 400 2 
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Table 2. Occurrence of the calcareous nannofossils by location and sample. 
Region	 Guardavalle		 Caulonia		

Careri	
Location	 	G3	 	G5	 A2	 	A4	 C4	
Samples	 1	 2	 3	 1	 2	 1	 2	 3	 1	 1	 2	 3	 4	 5	 6	 1	 2	

Amaurolithus delicatus x	 		 x	 		 		 		 		 		 		 		 		 x	 		 		 		 x	 x	
Amaurolithus primus x	 x	 		 x	 x	 x	 		 		 x	 		 x	 		 		 		 		 x	 		
Calcidiscus leptoporus x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Calcidiscus macintyrei x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Ceratolithus acutus 		 		 		 x	 x	 		 		 		 		 		 x	 x	 		 		 		 		 		
Coccolithus pelagicus x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Discoaster asymmetricus 		 		 		 x	 x	 		 		 		 		 		 x	 x	 		 x	 x	 		 x	
Discoaster berggrenii x	 x	 x	 		 x	 x	 		 		 		 		 x	 x	 		 x	 x	 x	 x	
Discoaster brouweri x	 x	 x	 x	 x	 x	 		 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Discoaster quinqueramus x	 x	 x	 		 		 x	 		 		 		 		 		 		 		 		 		 x	 		
Discoaster surculus x	 x	 x	 		 		 x	 		 		 x	 		 		 		 		 		 		 x	 x	
Helicosphaera carteri x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Helicosphaera sellii 		 		 		 x	 x	 		 		 x	 		 x	 x	 x	 x	 x	 x	 		 x	
Nicklithus amplificus 		 		 x	 		 		 		 		 		 		 		 		 		 		 		 		 x	 		
Orthorhabdus rugosus x	 x	 		 		 		 x	 x	 		 		 		 		 		 		 		 		 x	 		
Pontosphaera japonica x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Pontosphaera multipora 		 		 		 		 x	 		 x	 		 		 		 x	 x	 		 x	 x	 		 		
Reticulofenestra haquii x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Reticulofenestra minuta x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Reticulofenestra minutula x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Reticulofenestra pseudoumbilicus x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	
Rhabdosphaera clavigera x	 x	 x	 		 		 x	 		 		 		 		 		 		 		 		 		 x	 		
Scyphosphaera spp. 		 		 		 		 		 x	 		 		 		 		 		 		 		 		 		 x	 		
Sphenolithus abies x	 x	 x	 		 		 		 x	 x	 		 x	 		 		 x	 		 		 		 		
Syracosphaera spp. 		 x	 x	 		 		 x	 		 		 		 		 		 		 		 		 		 x	 		
Thoracosphaera spp. 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 		 x	
Reworked specimens x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	x	=	present	 1	
	

Sample	from	the	Trubi	Formation	
	 	 	

	 	 	 	 	 	
	 	 	

	 	 	 	 	 	 	 	 	
	

1	
	

Sample	from	Unit	3	
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Table 3. Occurrence of the planktonic foraminifera by location and sample. 
The three samples come from the Trubi Formation. 

Region	 Caulonia	
Careri	

Location	 A2	
Samples	 2	 3	 2	

Globigerina bulloides x	 x	 x	
Globigerina falconensis 		 		 x	
Globigerinella obesa x	 		 x	
Globigerinella siphonifera 		 		 x	
Globigerinita glutinata 		 		 x	
Globigerinita uvula 		 		 x	
Globigerinoides bollii 		 		 x	
Globigerinoides extremus x	 x	 x	
Globigerinoides quadrilobatus 		 		 x	
Globigerinoides sacculifer 		 		 x	
Globigerinoides trilobus x	 		 x	
Globorotalia aff. margaritae 		 		 x	
Globorotalia scitula x	 		 x	
Globoturborotalita apertura 		 x	 		
Globoturborotalita decoraperta x	 x	 x	
Neogloboquadrina acostaensis sinistral x	 		 		
Neogloboquadrina acostaensis dextral 		 		 x	
Orbulina universa x	 x	 x	
Sphaeroidinellopsis seminulina x	 		 x	

	 	 	 	x	=	present	
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Table 4. Results of the dinoflagellate cyst analyses detailed by location and sample, including the 
suggested paleoenvironment.  
Environment: coastal to lagoonal species are written in a light grey box; coastal species in a dark 
grey box; open marine species in a black box. 

Region	 Caulonia	
Location C4 A4 

Samples 1 2 4 5 6 1 
Achomosphaera andalousiensis           1 
Brigantedinium sp.   1         
Cyst of Pentapharsodinium dalei     1   1   
Edwardsiella sexispinosa     1       
Homotryblium sp.     7   4 22 
Hystrichokolpoma sp.     1       
Hystrichokolpoma rigaudiae     1     1 
Impagidinium aculeatum         7 1 
Impagidinium patulum 2   13 9 80 2 
Impagidinium sp.     1 2 6 2 
Impagidinium sphaericum       1 20   
Impagidinium strialatum           1 
Invertocysta tabulata     1 1   1 
Lingulodinium machaerophorum 1   12 2 10 67 
Melitasphaeridium choanophorum     3   2 3 
Nematosphaeropsis labyrinthus       1 2   
Nematosphaeropsis lattivitatus         6   
Operculodinium centrocarpum   1 4 1 2 7 
Operculodinium janduchenei     3 1 8 6 
Polysphaeridium zoharyi     1     2 
Quinquecuspis concreta           1 
Reticulatosphaera actinocoronata         1 1 
Selenopemphix nephroides           7 
Spiniferites bulloideus           1 
Spiniferites falcipedius     1       
Spiniferites hyperacanthus      1     1 
Spiniferites mirabilis 1   1       
Spiniferites ramosus     1 1   3 
Spiniferites sp. (marine)     2 2   7 
Reworked individuals     5 3   11 

	
	 	 	 	 	 	

	
1  Sample from Unit 3  	 	 
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Fig. 1. (A) Simplified geologic map of the study area (after Cavazza and DeCelles 1998). 

Explanation of symbols: 1 = strike and dip of beds; 2 = faults; 3 = crystalline basement 
complex; 4 = Mesozoic carbonate rocks; 5 = latest Chattian–middle Burdigalian; 6 = 
“Varicoloured clays” mélange; 7 = Serravallian–early Messinian; 8 = late Messinian post-
evaporitic rocks (units 2 and 3; Fig. 2); 9 = Pliocene–Pleistocene (cyclic whitish-grey 
calcilutites), 10 = Holocene (pebbles in fluvial terraces, sandstones on beaches). Labels 
indicate location of stratigraphic sections shown in Figures 5 and 6. (B) Present-day 
geodynamic sketch of the central Mediterranean region. (C) Structural cross-section across 
the Calabrian orogenic wedge and forearc basin (from Van Dijk 1992, modified). See (B) for 
location of cross-section. 

 
 
 
 
 
 
 
 
 
 
 
 
 

A

A’

Crystalline basement complex

2
1
0
1
2
3
4
5
6

Tyrrhenian Sea

NW SE

V.E. = 10x

Calabrian
forearc basin Ionian Sea

Pliocene-Quaternary
Messinian

Pre-Messinian

Oceanic and thinned
continental crust

Study area

A1

C4

A2

A3

A4

G1

G4

G3
G2

G5

Placanica
Stignano

Caulonia

Stilo

Guardavalle

Monasterace
Marina

Mt. Singa

- 38° 25’ 00’’

Holocene

25° Strike and dip of beds

Late Messinian post-evaporitic rocks

“Varicoloured clays” mélange
Serravallian-early Messinian

Pliocene-Pleistocene

Mesozoic carbonate rocks
Latest Chattian - mid Burdigalian

Fault

5°

5°

40°

40°

30°

10°

35°

30°

5°

10°
5°

B

C

A4 km

A A’

A

A’

N



 22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Chronolithostratigraphy of the Ionian forearc-basin fill in southeastern Calabria. Sources: 

DeCelles and Cavazza (1992, 1995); Cavazza and DeCelles (1993, 1998); Patterson et al. 
(1995); Cavazza et al. (1997); Bonardi et al. (2001), Cavazza and Barone (2010) and 
unpublished data. Time scale after Cohen et al. (2020). 
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Fig. 3. Overall geometric relationships among the various lithostratigraphic units cropping out in 

the study area. The sketch is not to be intended as an actual geological section across any 
given area but as a broad depiction of the geometric relationships valid over the entire region. 
Note the sharp intra-Messinian angular unconformity between the early Messinian evaporites 
(Unit 1) and the overlying late Messinian post-evaporitic fanglomerates (Unit 2) and 
sandstone-dominated coastal deposits (Unit 3). Messinian Unit 3 pinches out both toward the 
continent and the Ionian Basin, thus defining a sedimentary prism (see text for further 
details), and it is overlain by the Early Pliocene Trubi Formation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The intra-Messinian unconformity at Careri. Messinian evaporite beds of Unit 1 (dashed 

lines) are unconformably overlain by subhorizontal fanglomerate beds of upper Messinian 
Unit 2. 
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Fig. 5. Stratigraphic diagram of the upper Messinian post-evaporitic units of the Guardavalle 

region. G1 to G5 are the studied sections with the number and place of the analysed samples 
indicated by black dots (see Figure 1 for location). Evaporites (Unit 1 of Figures 2 and 3) are 
absent in this region. Coarse-grained upper Messinian fanglomerates (Unit 2) overlie 
unconformably either the crystalline basement complex (columns G1 and G2) or sedimentary 
deposits of Serravallian-Tortonian age (columns G3 and G4). Upper Messinian shallow 
marine to transitional deposits of Unit 3 define a sedimentary prism pinching out toward the 
southeast. Columns G1-4 after Cavazza and DeCelles (1998). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Stratigraphic diagram of the upper Messinian post-evaporitic units of the Caulonia region. 

A1 to A4 and C4 are the studied sections with the number and place of the analysed samples 
indicated by black and white dots (see Figure 1 for location). Same legend as Figure 5. 
Evaporites (Unit 1 of Figures 2 and 3) are absent in this region. Coarse-grained upper 
Messinian fanglomerates (Unit 2) overlie erosively the pelitic mélange of the Varicoloured 
clays (see Fig. 3) Upper Messinian shallow marine to transitional deposits of Unit 3 define a 
sedimentary prism pinching out toward the northwest. Columns A1-3 after Cavazza and 
DeCelles (1998). 
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Fig. 7. Photograph of the upper part of section A4 (see Figures 1 and 5 for location) showing the 

topmost Unit 2, the entire Unit 3 and the lowermost Trubi Formation. White dot: studied 
sample. Upper Messinian Unit 3 forms a progradational parasequence from horizontally 
bedded shelfs deposits (very coarse sandstone with microconglomerate stringers) through 
trough cross-bedded shoreface deposits (coarse to very coarse sandstones) to foreshore 
deposits (laminated, well-sorted coarse-to-medium sandstones).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Outcrop about 500 m north of the village of Careri exhibiting at its lower-half part a 

prograding braid-delta sequence. SE-dipping fluvial conglomerate foreset beds (delta-front 
deposits) of late Messinian Unit 2 are erosively overlain by channel-fill conglomerates (delta-
plain deposits). The latters are in turn overlain by a thin claystone horizon closing the Unit 3 
and by the cyclic whitish-grey calcilutites of the Zanclean Trubi Formation, which cover in 
onlap all older lithostratigraphic units in the region 

 White dots: studied samples. 
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Fig. 9. Photographs of some specimens of calcareous nannofossils and dinoflagellate cysts. 
 a–f, Calcareous nannofossils in polarized light (scale bar = 5 µm).  

a, Ceratolithus acutus Gartner and Bukry 1974, crossed nicols, location C4 – sample 2; b, 
Reticulofenestra pseudoumbilicus (Gartner 1967) Gartner 1969, crossed nicols, location G3 – 
sample 1; c, Discoaster brouweri (Tan Sin Hok 1927) Bramlette and Riedel 1954, parallel 
nicols, location C4 – sample 1; d, Amaurolithus delicatus Gartner and Bukry 1975, parallel 
nicols, location G3 – sample 1; e, Amaurolithus primus (Bukry and Percival 1971) Gartner 
and Bukry 1975, parallel nicols, location C4 – sample 2; f, Orthorhabdus (ex. 
Triquetrorhabdulus) rugosus (Bramlette and Wilcoxon 1967) Young and Brown 2014, 
parallel nicols, location G3 – sample 1. 

 g–m, Dinoflagellate cysts in natural light from location C4 – sample 6 (scale bar = 10 µm). 
g–h, Impagidinium patulum (Wall 1967) Stover and Evitt 1978: g, dorsal view of ventral 
surface; h, ventral view. 
i, Lingulodinium machaerophorum (Deflandre and Cookson 1955) Wall 1967, ventral view 
of ventral surface, mid focus. 
j, Operculodinium janduchenei Head et al. 1989, dorsal view of dorsal surface, mid focus. 
k–l, Impagidinium sphaericum (Wall 1967) Lentin and Williams 1981: k, dorsal view of 
ventral surface; l, ventral view. 
m, Homotryblium sp. Davey and Williams 1966, right lateral view, mid focus.   
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Fig. 10. Chrono-biostratigraphic chart of key calcareous nannofossil species with reference to the 

two steps of the Messinian Salinity Crisis (Clauzon et al. 1996) and the Zanclean GSSP (Van 
Couvering et al. 2000). Involvement in the Calabria stratigraphy. Polarity Chron is from 
Hilgen et al. (2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. View of the claystone horizon ending the Unit 3 covered by the Trubi Formation in 

locality C4 (see Figs. 1, 6 for location). White dots: studied samples. 
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Fig. 12. Paleogeographic sketch at time of deposition of Calabrian Unit 3 and Sicilian Arenazzolo 

at 5.46 Ma, based on maps published by Bache et al. (2012), Henriquet et al. (2020), and 
Manzi et al. (2020).  

 Shifting of the considered locations from 5.46 Ma is arrowed by dotted black lines in the 
present geographic outline. 

 C, Calabria; S, Sicily; T, Tunisia.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Comparison of the latest Messinian–earliest Zanclean succession between Calabria and 

Sicily.  
(a), Lithological successions and chronostratigraphic relationships; (b), Transgressive 
ravinement surface (TRS) marking the contact of Unit 3 over Unit 2 in the Caulonia region 
(location A2; Fig. 6); (c), Eraclea Minoa, Sicily (section of the Zanclean GSSP): TRS 
marking the unconformable contact of Arenazzolo over the Lago Mare Formation; (d), Detail 
of the topmost Unit 3 in the Caulonia region (location C4; Fig. 6); (e), Topmost Arenazzolo at 
Eraclea Minoa. 
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