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Analyzing concrete microscopic images is difficult because of its highly heterogeneous composition and the different scales involved. This article presents an open-source deep learning-based algorithm dedicated to air-void detection in concrete microscopic images. The model, whose strategy is presented alongside concrete compositions information, is built using the Mask R-CNN model. Model performances are then discussed and compared to the manual air-void enhancement technique. Finally, the selected open-source strategy is exposed. Overall, the model shows a good precision (mAP=0.6452), and the predicted air void percentage agrees with experimental measurements highlighting the model's potential to assess concrete durability in the future.

Introduction

Concrete, the most consumed manufactured material globally, is mainly used in the construction field, because of its low cost and good mechanical and durability properties.

During their life service, concrete constructions are exposed to a variety of harmful environments, in particular, to freeze and thaw cycles in frost regions. Concrete heterogeneous and multi-scale natures are both responsible for its remarkable resistance and its complex behavior against potential degradation. Therefore, characterizing and modeling the multi-scale spatial properties of concrete has attracted attention during the past decades.

For example, air-entrainment using air-entraining agents (AEA) was found to be an effective way to improve freeze-thaw resistance, and the parameters of the entrained air-voids network are to be determined in order to assess its quality. In fact, total air content does not ensure the good protection of concrete alone, and Powers' spacing factor 1 L ̅ better, representing the maximal distance from any point in the cement paste to the edge of the nearest air-void, matters most. Currently, the most widely used method for the purpose of evaluating this spacing factor is the stereomicroscope-based one described in both ASTM C457 / C457M-16 [START_REF]Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete[END_REF] and EN 480-11 3 standards. This manual method is tedious, time-consuming (nearly 3 hours for each slice), and depends on the operator's judgment. In addition, this method may not be representative of the real air-void structure since the measurements are one-dimensional. Other techniques have been used to overcome some of the limitations of the standard methods. For example, X-ray micro-computed tomography can give the spatial 3D air-void structure [START_REF] Kim | Determination of air-void parameters of hardened cement-based materials using X-ray computed tomography[END_REF] . The manual segmentation technique of 2D enhanced contrast images, either between aggregates and paste by using phenolphthalein or between air-voids and the rest of the constituents by black inking the surface and filling the air voids with white powder can also be used [START_REF] Peterson | Hardened Concrete Air Void Analysis with a Flatbed Scanner[END_REF][START_REF] Peterson | Methods for threshold optimization for images collected from contrast enhanced concrete surfaces for air-void system characterization[END_REF] . The automated airvoid analyzer RapidAir 457 can also help inspect black inked surfaces [START_REF] Jakobsen | Automated air void analysis of hardened concrete -a Round Robin study[END_REF] . Nonetheless, all these methods are not entirely automatized and the uncertainties brought by operator interference and subjectivity may be a source of significant errors.

Due to the complex heterogeneous nature of concrete, phase separation remains a challenging task. The last advances in machine learning led to a better understanding of concrete properties, from strength 8 to shrinkage [START_REF] Hilloulin | Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials[END_REF] or micro-mechanical properties [START_REF] Hilloulin | ε-greedy automated indentation of cementitious materials for phase mechanical properties determination[END_REF] , and, more specifically, deep learning segmentation techniques have been fruitful in different fields [START_REF] Minaee | Image Segmentation Using Deep Learning: A Survey[END_REF] . For visual imagery, a convolutional neural network (CNN) might be used, combined with other techniques, to increase observation precision classifying or detecting objects of low contrast with a completely automated procedure. In terms of concrete petrographic analysis, the outcomes are not yet well studied because of the lack of information for validation steps. Yet, it recently showed a promising potential for crack damage detection and monitoring [START_REF] Cha | Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks[END_REF][START_REF] Choi | SDDNet: Real-Time Crack Segmentation[END_REF][START_REF] Kim | Image-based concrete crack assessment using mask and regionbased convolutional neural network[END_REF] in concrete, some defaults in different structures [START_REF] Amhaz | Automatic Road Crack Detection Based on a Shortest-Path Algorithm[END_REF][START_REF] Xue | An optimization strategy to improve the deep learning-based recognition model of leakage in shield tunnels[END_REF] and air voids detection [START_REF] Song | Deep learning-based automated image segmentation for concrete petrographic analysis[END_REF] .

The aim of the current study is to address the challenge of fast and accurate air-void analysis of concrete with the minimum amount of sample preparation and human bias-prone preparation and interpretation. To this end, an open-source deep learning-based air-voids detection algorithm for concrete microscopic images is introduced. The principle of the model is first presented and then some of its advantages are given and finally the open-source code architecture is presented.

Materials and methods

Concrete formulations

Several concrete samples were employed in this study, divided into two sets. The first one was used for the model training and involved concrete samples of different air void structures and a wide variety of aggregates nature (calcareous/siliceous) and size distributions; in order to get the model well trained. . The other set of samples was used for the validation of the analysis method: different dosages of AEA were used ranging from 0.05% to 0.13% of cement weight in order to get concretes with different air-voids structures. Some of these mix proportions were used to formulate different concretes changing just the cement type. Table 1 summarizes the composition of this second set of concrete samples. The nature of superplasticizers 1 and 2 cannot be revealed for confidentiality purposes.

Experimental testing and microscopic measurements

For this validation set of concrete samples, the amount of entrained air was measured on fresh concrete samples according to NF EN 12350-7 standard.

Prior to microscopic analysis, special care was given to the sample preparation step in order to get good quality images for microscopic analyses and clearly distinguish phases for the manual method. For each formulation, two 10x10x2 cm 3 slices were cut from 15x15x15 cm 3 cubic concrete samples, in a way that keeps parallel the two faces of the slice; and then they were polished using different SiC papers of decreasing grit sizes to minimize surface defects. The quality of the surface is checked after each polishing step. On each prepared surface, the spacing factor L ̅ has been evaluated using the point-count method of the manual petrography test method described in ASTM C457 / C457M-16 standard.

Concrete microscopic images were obtained using a Hirox RH-2000 3D microscope. A magnification of x50 was used in the image acquisition, which is the same as the required one in the ASTM C457 / C457M-16 standard in order to allow proper comparison; this led to 3.13 µm pixel size. Several 768 (H) ×480 (V) pix images, approx.. 7000 to 8000 in total, have been acquired and merged with a 1/2 relative overlap to reconstruct an 8x8 cm² image with a 3.13 µm resolution.

Manual contrast enhancement of sections and model comparison.

The classic black and white contrast enhancement method has been used for some sections after the raw image acquisition for comparison purposes of the proposed CNN-based method to standard methods. Contrast enhancement was achieved by drawing slightly overlapping parallel lines with a wide-tipped black permanent marker. This was done in three coats, changing the orientation by 90° between coats. After the ink dried, a few tablespoons of thin-sized white powder were worked into the samples using the flat face of a glass slide. A razor blade was used to scrape excess powder, leaving powder pressed into voids. The residual powder was removed by wiping with a clean and lightly oiled fingertip. A fine-tipped black marker was used to darken voids in aggregates and cracks.

Instance segmentation algorithm

An instance segmentation algorithm was built in order to perform segmentation based on Mask R-CNN as illustrated in Fig. 1 to detect air voids in high definition microscopic concrete images. To train the model, 1470 images with equivalent magnifications ranging from × 10 to × 100 and a 608 pix × 608 pix size were selected from various cement paste, mortar and concrete samples. This dataset was divided into training, validation, and test sets given the following proportions: 78%, 13%, 9%. All the images were annotated using VGG Image Annotation software. The training was performed during 600 epochs (250 steps/epoch) on a commercial GPU (Nvidia RTX 2080 Ti, 11 Go GDDR6) using initial weights from COCO dataset. Bitmap images were then built using the predictions from the high and the reduced definition image by selecting the minimum intensity for each pixel as explained in Fig. 1 b).

Finally, an air-voids map has been generated and can be compared to images obtained through manual contrast enhancement as described in the previous sub-section. The comparison procedure between the numerical and the experimental air voids maps is illustrated in Fig. 1 b).

Model performance has been validated the mean average precision and the intersection over union (IoU) indicators. mAP can be defined as follows:

𝑚𝐴𝑃 = ∑ 𝐴𝑣𝑒𝑃(𝑞) 𝑄 𝑞=1 𝑄 ( 1 
)
where Q is the number of queries in the set and 𝐴𝑣𝑒𝑃(𝑞) is the average precision (AP) for a given query, q.

Results and discussion

Model performance

The mean average precision (mAP) of the model was found to be 0.6452 and the IoU ranged from 0.810 to 0.890 on test images. Thus, the very high precision of the air void detection model is comparable to the precision obtained on large datasets in international competitions for common objects detection [START_REF] He | Mask R-CNN[END_REF] .

The model has then been applied on completely unknown large-scale high-definition images of concretes whose formulations are given in Table 1. The comparison between the predicted and the manual air-void structure analysis can be analyzed as illustrated in Fig. 2. The algorithm successfully detected air voids and air void maps can be obtained as illustrated in Fig. 2 a). The air content associated with the model prediction equaled 7.76 % (1706 air voids) which is close to the fresh state measured air void content (7.4 %) and the air content measured using ASTM C457 / C457M-16 method which is 7.94 %. However, the manually calculated air void content of the concrete based on Fig. 2 b) image is around 12.8 % (1327 detected air voids) which is higher than the predicted air void content and the measured fresh state air void content.

Therefore, the model results are closer to the experimentally measured values than the classically manually colored image analysis technique which constitutes a very promising feature regarding its industrial application. The difference between these values can be attributed to several phenomena: first, the preparation of slices is a critical step and often leads to the overestimation of the actual air void content as some powder particles may be stuck in non perfectly flat regions such as asperities on aggregates, second, the CNN model is less errorprone, and its results are reproducible, which is not the case in experimental samples preparation.

Open-source code availability and website deployment

Source code is available on a GitLab instance [START_REF] Hilloulin | Concrete Deep Segmentation[END_REF] . Code has been divided between the training procedure and the files related to detection on concrete images (image split, model inference and final image merge). Once public, all the contributions to the source code will be allowed.

The open-source strategy of the model is given in Fig. 3. The user can run the source code using its own image and a Python interpreter (Option A). In the future, a dedicated website might be implemented to facilitate the inference (Option B).

Conclusions

In The principle of the model has been presented, and its performance has been quantified. The main results can be summarized as follows:

-The adapted Mask R-CNN model has then been trained using various concrete and mortar training images on a commercial GPU -Thousands of air voids can be easily detected with the model in some minutes and clear boundaries can be drawn between the instances -The detection of pores on large-scale concrete sections has been performed with good precision (mAP=0.6452) using a novel strategy combining the model results on fullsize images and reduced-size images -The model predictions agree with the experimentally measured fresh-state air content, while air void content can be overestimated using the manual contrast enhancement method. 

  this article, an open-source deep learning instance segmentation model has been developed to detect air voids in cementitious materials using uncolored slices and without any other human intervention (except during the polishing step). Based on the state-of-the-art Mask R-CNN model with a Resnet-101 backbone architecture, the model has been trained to accurately detect air voids with a circular or an irregular shape within a wide range of cementitious materials.
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Table 1 .

 1 Mix proportion of concrete validation set (kg/m 3 )

	Cement Sand	Gravel	Gravel	Water Admixture 1 Admixture 2	AEA	w/c
		0/4	4/10	10/20					
	385	795	244	701	171	3.08	0.963	0.501	0.42
	385	795	244	701	171	3.08	0.963	0.193	0.42
	385	795	245	701	181	3.08	0.963	0.231	0.42
	350	880	918	-	162	2.275	0.350	0.420	0.44
	385	850	289	640	169	1.925	-	0.270	0.45