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The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1 2 . In 2011, Solé and and Planat stated that the Riemann Hypothesis is true if and only if the inequality q≤q n 1 + 1 q > e γ ζ(2) × log θ(q n ) is satisfied for all primes q n > 3, where θ(x) is the Chebyshev function, γ ≈ 0.57721 is the Euler-Mascheroni constant and ζ(x) is the Riemann zeta function. Using this result, we create a new criterion for the Riemann Hypothesis. We prove the Riemann Hypothesis is true using this new criterion.

Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part [START_REF] Ghosh | An asymptotic formula for the Chebyshev theta function[END_REF] 2 . In mathematics, the Chebyshev function θ(x) is given by θ(x) = p≤x log p with the sum extending over all prime numbers p that are less than or equal to x, where log is the natural logarithm. We denote the nth prime number as q n . We know the following property for the Chebyshev function and the nth prime number:

Proposition 1.1. For n ≥ 2 [1, Theorem 1.1]:

θ(q n ) log q n+1 ≥ n × (1 - 1 log n + log log n 4 × log 2 n ). Proposition 1.2. For n ≥ 8602 [2, Theorem B (1.11)]: q n ≤ n × (log n + log log n -0.9385).
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In mathematics, Ψ(n) = n × q|n 1 + 1 q is called the Dedekind Ψ function, where q | n means the prime q divides n. Say Dedekind(q n ) holds provided

q≤q n 1 + 1 q > e γ ζ(2) × log θ(q n ).
The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and ζ(x) is the Riemann zeta function. The importance of this inequality is:

Proposition 1.3. Dedekind(q n ) holds for all prime numbers q n > 3 if and only if the Riemann Hypothesis is true [3, Theorem 4.2].

We define H = γ -B such that B ≈ 0.2614972128 is the Meissel-Mertens constant. We know the following formula: Proposition 1.4. We have that [4, Lemma 2.1 (1)]:

∞ k=1 log( q k q k -1 ) - 1 q k = γ -B = H.
In addition, we know this value of the Riemann zeta function:

Proposition 1.5. It is known that:

ζ(2) = ∞ k=1 q 2 k q 2 k -1 = π 2 6 .
Putting all together yields a proof for the Riemann Hypothesis using the Chebyshev function.

2. What if the Riemann Hypothesis were false?

Theorem 2.1. If the Riemann Hypothesis is false, then there are infinitely many prime numbers q n for which Dedekind(q n ) does not hold.

Proof. The Riemann Hypothesis is false, if there exists some natural number x 0 ≥ 5 such that g(x 0 ) > 1 or equivalent log g(x 0 ) > 0:

g(x) = e γ ζ(2) × log θ(x) × q≤x 1 + 1 q -1
.

We know the bound [3, Theorem 4.2]:

log g(x) ≥ log f (x) - 2 
x
where f is introduced in the Nicolas paper [5, Theorem 3]:

f (x) = e γ × log θ(x) × q≤x 1 - 1 q .
When the Riemann Hypothesis is false, then there exists a real number b < 1 2 for which there are infinitely many natural numbers x such that log f (x) = Ω + (x -b ) [5, Theorem 3 (c)]. According to the Hardy and Littlewood definition, this would mean that

∃k > 0, ∀y 0 ∈ N, ∃y ∈ N > y 0 : log f (y) ≥ k × y -b . That inequality is equivalent to log f (y) ≥ k × y -b × √ y × 1 √ y , but we note that lim y→∞ k × y -b × √ y = ∞
for every possible positive value of k when b < 1 2 . In this way, this implies that

∀y 0 ∈ N, ∃y ∈ N > y 0 : log f (y) ≥ 1 √ y .
Hence, if the Riemann Hypothesis is false, then there are infinitely many natural numbers x such that log f

(x) ≥ 1 √ x . Since 2 x = o( 1 √ 
x ), then it would be infinitely many natural numbers x 0 such that log g(x 0 ) > 0. In addition, if log g(x 0 ) > 0 for some natural number x 0 ≥ 5, then log g(x 0 ) = log g(q n ) where q n is the greatest prime number such that q n ≤ x 0 . Actually,

q≤x 0 1 + 1 q -1 = q≤q n 1 + 1 q -1 and θ(x 0 ) = θ(q n )
according to the definition of the Chebyshev function.

A Key Theorem

Theorem 3.1.

∞ k=1 1 q k -log(1 + 1 q k ) = log(ζ(2)) -H. Proof. We obtain that log(ζ(2)) -H = log( ∞ k=1 q 2 k q 2 k -1 ) -H = ∞ k=1       log( q 2 k (q 2 k -1) )       -H = ∞ k=1       log( q 2 k (q k -1) × (q k + 1) )       -H = ∞ k=1 log( q k q k -1 ) + log( q k q k + 1 ) -H where = ∞ k=1 log( q k q k -1 ) -log( q k + 1 q k ) -H = ∞ k=1 log( q k q k -1 ) -log(1 + 1 q k ) - ∞ k=1 log( q k q k -1 ) - 1 q k = ∞ k=1 log( q k q k -1 ) -log(1 + 1 q k ) -log( q k q k -1 ) + 1 q k = ∞ k=1 1 q k -log(1 + 1 q k )
and the proof is done.

A New Criterion

Theorem 4.1. Dedekind(q n ) holds if and only if the inequality

∞ k=1 1 q k -(χ {x: x>q n } (q k )) × log(1 + 1 q k ) > B + log log θ(q n )
is satisfied for the prime number q n , where the set S = {x : x > q n } contains all the real numbers greater than q n and χ S is the characteristic function of the set S (This is the function defined by χ S (x) = 1 when x ∈ S and χ S (x) = 0 otherwise).

Proof. When Dedekind(q n ) holds, we apply the logarithm to the both sides of the inequality:

log(ζ(2)) + q≤q n log(1 + 1 q ) > γ + log log θ(q n ) log(ζ(2)) -H + q≤q n log(1 + 1 q ) > B + log log θ(q n ) ∞ k=1 1 q k -log(1 + 1 q k ) + q≤q n log(1 + 1 q ) > B + log log θ(q n )
after of using the Theorem 3.1. Let's distribute the elements of the inequality to obtain that

∞ k=1 1 q k -(χ {x: x>q n } (q k )) × log(1 + 1 q k ) > B + log log θ(q n )
when Dedekind(q n ) holds. The same happens in the reverse implication.

θ(q n ) 1 qn ≥ 1 + log(q n+1 ) θ(q n )
after dividing the both sides of the inequality by θ(q n ). We would only need to prove that

1 + log θ(q n ) q n ≥ 1 + 1 n × (1 -1 log n + log log n 4×log 2 n ) because of θ(q n ) log q n+1 ≥ n × (1 - 1 log n + log log n 4 × log 2 n ) θ(q n ) 1 qn = e log θ(qn ) qn ≥ 1 + log θ(q n ) q n .
That is equivalent to

n × (1 - 1 log n + log log n 4 × log 2 n ) × log θ(q n ) ≥ q n . Therefore, n × (1 - 1 log n + log log n 4 × log 2 n ) × log θ(q n ) ≥ n × (log n + log log n -0.9385) which is 1 - 1 log n + log log n 4 × log 2 n × log θ(q n ) + 0.9385 ≥ log n + log log n θ(q n ) 1-1 log n + log log n 4×log 2 n × e 0.9385 ≥ n × log n e 0.9385 ≥ n × log n θ(q n ) 1-1 log n + log log n 4×log 2 n
.

However, we know that

lim n→∞ n × log n θ(q n ) 1-1 log n + log log n 4×log 2 n = lim n→∞ n × log n θ(q n ) 1-1 log n + log log n 4×log 2 n = 1 since lim n→∞ 1 - 1 log n + log log n 4 × log 2 n = 1 θ(q n ) ∼ q n , (n → ∞) q n ∼ n × log n, (n → ∞).
Certainly, a sequence of real numbers (

x n ) in [-∞, ∞] converges if and only if lim n→∞ x n = lim n→∞ x n
in which case lim n→∞ x n is equal to their common value, where -∞ or ∞ is not considered as convergence. By definition, the limit superior of a sequence of real numbers x n is the smallest 7

real number b such that, for any positive real number ε, there exists a natural number m such that x n < b + ε for all n > m. Hence, for any positive real number ε, there exists a natural number m such that n × log n θ(q n ) 1-1 log n + log log n 4×log 2 n < 1 + ε for all n > m, because of the definition of limit superior. Moreover, we can see that e 0.9385 > 2.5561. Consequently, it is enough to take any positive real number ε ≤ 1.5561. Putting all together yields the proof of the Riemann Hypothesis.
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The Main Insight

Theorem 5.1. The Riemann Hypothesis is true if the inequality

is satisfied for all sufficiently large prime numbers q n .

Proof. The inequality

is also satisfied, where the set S = {x : x ≥ q n } contains all the real numbers greater than or equal to q n . In the inequality

only change the values of log(1 + 1 q n ) + log log θ(q n ) and log log θ(q n+1 ) between the consecutive primes q n and q n+1 . It is enough to show that log(1

for all sufficiently large prime numbers q n . Indeed, the inequality

is the same as

where q n and q n+1 are consecutive primes. From the previous inequality, we note that if

is also satisfied which means that Dedekind(q n+1 ) holds according to the Theorem 4.1. Therefore, if the inequality

is always satisfied starting for some natural number n 0 , (i.e. it is always satisfied for n ≥ n 0 ), then we obtain that Dedekind(q n+1 ) always holds for n ≥ n 0 . However, this contradicts the fact that if the Riemann Hypothesis is false, then there are infinitely many prime numbers q n+1 for which Dedekind(q n+1 ) does not hold when n ≥ n 0 . We obtain this contradiction as a consequence of the Theorem 2.1. By contraposition (or reductio ad absurdum), we have that the Riemann Hypothesis is true when

is always satisfied starting for some natural number n 0 . This last statement would be the same as the result that log(1

is satisfied for all sufficiently large prime numbers q n . This is log (1 + 1 q n ) × log θ(q n ) ≥ log log θ(q n+1 ).

That is equivalent to log log θ(q n ) 1+ 1 qn ≥ log log θ(q n+1 ).

To sum up, the Riemann Hypothesis is true when

is satisfied for all sufficiently large prime numbers q n .

The Main Theorem

Theorem 6.1. The Riemann Hypothesis is true.

Proof. The Riemann Hypothesis is true when

is satisfied for all sufficiently large prime numbers q n because of the Theorem 5.1. That is the same as θ(q n ) 1+ 1 qn ≥ θ(q n ) + log(q n+1 )