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Résumé

This paper addresses di�erence �atness for structured LTI discrete-time systems. Two forms of necessary and su�cient
conditions for an output to be a structural �at output are given. First, a preliminary result algebraically de�nes a �at output
in terms of invariant zeros regardless whether an LTI system is structured or not. Next, the conditions are expressed in terms
of graphical conditions to de�ne a structural �at output. Checking for the graphical conditions calls for algorithms that have
polynomial-time complexity and that are commonly used for digraphs. The tractability of the conditions is illustrated on
several examples.
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1 Introduction

This paper is concerned with �atness of discrete-time
structured dynamical systems. Flatness of discrete-time
systems is usually called di�erence �atness. It has been
�rst reported in (Sira-Ramirez and Agrawal, 2004; Fliess
and Marquez, 2000). It acts as the discrete-time coun-
terpart of di�erential �atness, introduced in (Fliess et
al., 1995), that applies for continuous-time systems. Let
us recall that for a �at continuous-time system, �atness
gives a complete parametrization of all system variables
(inputs and states) in terms of a �nite number of inde-
pendent variables and a �nite number of their time deri-
vatives. Those variables are called �at outputs. For a �at
discrete-time system, the state variables as well as the
input can be written as a function of the �at output and
its backward/forward shifts. This being the case, �atness
is interesting for both control and state reconstruction
perspectives. For control purposes, the parametrization
of the input in terms of outputs of the system provides
in a straightforward manner a constructive way to de-
sign a feedforward control to track a prescribed trajec-
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tory of the plant output. The reader may consult (Yong
et al., 2015) or Chapter 5 in the book (Sira-Ramirez
and Agrawal, 2004) for illustrative examples in the case
of LTI discrete-time systems. As for state reconstruc-
tion, the parametrization of the state in terms of out-
puts of the system provides in a straightforward manner
a constructive way to design an unknown input state
observer. Such an issue has been discussed in (Daafouz
et al., 2006) in a general statement or for example in
(Shoukry et al., 2015) in the context of cybersecurity
where the state reconstruction allows for detecting sen-
sor attacks.

Most of the de�nitions, including the ones given in (Sira-
Ramirez and Agrawal, 2004; Yong et al., 2015) dealing
with LTI systems, call for backward �atness or forward
�atness, i.e., backward or forward shifts exclusively are
involved in the expressions of the state and the input.
However, more general de�nitions involving both back-
ward and forward shifts have been recently proposed and
motivated in (Guillot andMillérioux, 2020; Diwold et al.,
2021) for both linear and nonlinear systems. Di�erence
�atness is motivated by the fact that some systems are
intrinsically discrete (models of population growth, eco-
nomy, biology, �nance, discrete automata,. . . ). Besides,
it must be stressed that the property of �atness may
not be preserved when a �at continuous-time system
is discretized, even in the linear case. Hence, di�erence



�atness for sampled-data systems should preferably be
addressed directly within the discrete-time framework.
Speci�c characterizations of �atness have been provided
in the literature according to distinct classes of discrete-
time systems as LTI systems (Sira-Ramirez and Agra-
wal, 2004; Yong et al., 2015), switched linear systems
(Millérioux and Daafouz, 2009), LPV systems (Parriaux
and Millérioux, 2013), or more general classes of non-
linear systems (Guillot and Millérioux, 2020; Kaldmäe
and Kotta, 2013; Sato, 2012; Kolar et al., 2016a; Kolar
et al., 2016b).

As it turns out, a general framework based on structu-
ral and graph-oriented approaches has never been pro-
posed so far to deal with di�erence �atness of structu-
red LTI systems. And yet, those approaches have been
used with success over the years to characterize many
structural properties of dynamical systems like control-
lability, observability (including with unknown inputs),
and identi�ability. The reader may refer to the survey
(Ramos et al., 2020) that gives a exhaustive overview of
the works and applications of structural analysis from
the seminal paper (Dion et al., 2003) to most recent ones.
We can also mention extension of results to other classes
of systems like descriptor systems (Clark et al. , 2017),
bilinear systems (Boukhobza and Hamelin, 2007), swit-
ching systems (Boukhobza, 2012) or complex nonlinear
networks (Kawano and Cao, 2019) to mention a few. An
attempt to establish results on �atness had been pro-
posed in (Boukhobza and Millérioux, 2016) but it was
restricted to SISO systems and the approach was not
suitable to tackle general LTI systems. Structural ana-
lysis allows to characterize properties independently of
the exact values of the parameters and thus, to deal with
systems of which the model equations are not known
exactly. Furthermore, structural models usually involve
equations derived from physical laws where the states
are variables that get a physical meaning. Hence, struc-
tural properties are easily interpreted in terms of physi-
cal ones. In this respect, the applicability of the graph-
oriented approaches is large and can also be e�cient
for sensor placements, reachability problems, reliability
analysis, security in Cyber Physical Systems as in (Dakil
et al., 2015; Gracy et al., 2020) but also in life sciences
as biology (Liu and Linqiang, 2015) for example.

The aim of this paper is to propose a graph-oriented
approach to address �atness for the class of structured
LTI discrete-time systems. More speci�cally, necessary
and su�cient graphical conditions for an output to be
a structural �at output are given. These conditions can
be checked by resorting to well-known algorithms, com-
monly used for �nding successors and predecessors of
vertex subsets, or for computing maximal linkings and
essential vertices in a digraph. As a result, the propo-
sed solution is simple to implement and has polynomial
complexity.

The paper is organized as follows. Section 2 is devoted

to the problem statement. The de�nitions of a di�erence
�at output and a di�erence �at system are recalled and
a preliminary result (Theorem 1) is established. It gives
an algebraic characterization of a �at output in terms
of invariant zeros. The result is quite general since it
does not exclusively apply to structural systems. In Sec-
tion 3, structured systems and the notion of structural
�atness are introduced. Necessary background on graph-
theoretic tools and recalls on digraph representation of
LTI structured discrete-time systems are provided. In
Section 4, the main result is established. It gives a ne-
cessary and su�cient condition (Theorem 2) for an out-
put of an LTI system to be structurally �at. An equi-
valent characterization (Theorem 3) is also provided. In
Section 5, the conditions are illustrated with some basic
examples. Section 6 ends this paper with some conclu-
ding remarks and possible further work.

Standard notation : Ik, (k ∈ IN) stands for the
k−dimensional identity matrix. For a vector z of dimen-
sion n (n ∈ IN), zi with i ∈ {1, . . . , n} denotes its ith
component. For a m × l-dimensional matrix M (being
m and l natural integers), M(i, j) with i ∈ {1, . . . ,m}
and j ∈ {1, . . . , l} denotes the entry of M located at
row i and column j.

2 Problem statement

2.1 Di�erence �atness

Let us consider the discrete-time LTI system which ad-
mits the state space representation

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) ∈ Rn is the state vector and u(k) ∈ Rm is the
control input, with n andm being positive integers. The
matrices A ∈ Rn×n and B ∈ Rn×m are the dynamical
matrix and the input matrix, respectively.
Besides, let us consider for any integer k ∈ N, the output
of system (1) as the m-dimensional vector de�ned as

y(k) = Cx(k) +Du(k), (2)

with suitable matrices C ∈ Rm×n and D ∈ Rm×m.
The system (1) with output y(k) is square, which means
that the number of control inputsm (dimension of u(k))
is equal to the number of outputs (dimension of y(k)).
Whenever useful in the sequel, to get more compact
notation, we introduce the forward shift operator ξ as
ξy(k) := y(k + 1), and similarly for ξx(k) and ξu(k).
Then, for instance, the double shift forward and the ba-
ckward shift can be described by ξ2y(k) = y(k + 2) and
ξ−1y(k) = y(k − 1), respectively.

De�nition 1 (�at output) The output y in (2) is said
to be a �at output for the dynamical system (1) if there
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exists a non negative integer k0 such that every variable
of the system, i.e., the state x(k) and the input u(k), can
be expressed as a function of y(k), and a �nite number
of its backward and/or forward iterates, for k ≥ k0. In
particular, there exist integers r0, r1, s0 and s1 such that
r0 ≤ r1 and s0 ≤ s1, and matrices Fr ∈ Rn×m, r0 ≤ r ≤
r1, and Gs ∈ Rm×m, s0 ≤ s ≤ s1, such that for k ≥ k0,

x(k) =

r1∑
r=r0

Fry(k + r) and u(k) =

s1∑
s=s0

Gsy(k + s),

where x(k) and u(k) satisfy (1), or in more compact no-
tation

x(k) = F (ξ)y(k) and u(k) = G(ξ)y(k), (3)

where F (z) =

r1∑
r=r0

Frz
r and G(z) =

s1∑
s=s0

Gsz
s are poly-

nomial matrices with entries in the ringR[z, z−1], consis-
ting of polynomials with �nitely many positive and/or
negative powers of z.

De�nition 2 (�at system) The dynamical system (1)
is di�erence �at if it admits a �at output.

2.2 Some remarks on di�erence �atness and a basic
example

The following remarks are in order.

Remark 1 The term di�erence �at is used for
discrete-time systems and must be distinguished from the
term di�erentially �at that applies for continuous-time
systems. However, since only discrete-time systems are
under concern in this paper, we will hereafter without
ambiguity leave out the adjective di�erence, and shortly
use the notions �at output or �at system.

Remark 2 Flatness is equivalent to controllabi-
lity for LTI systems (see (Sira-Ramirez and Agra-
wal, 2004; Fliess and Marquez, 2000)). Let us note that
such an equivalence includes the particular class of non
reversible LTI systems provided that we accept a state
space transformation as pointed out in (Fliess, 1992)
and is thereby also in accordance with the result given in
(Guillot and Millérioux, 2020).

Remark 3 When only past or, respectively, future out-
puts are involved in (3), the �atness is called backward or
forward �atness, respectively. Involving altogether back-
ward and forward shifts (see (Diwold et al., 2021; Guillot
and Millérioux, 2020)) allows the consideration of out-
puts of any relative degree for SISO systems, or any in-
herent delay for MIMO systems.

Example : Let us consider an LTI discrete-time system
like (1) de�ned by :{

x1(k + 1) = ax1(k) + bu(k)

x2(k + 1) = cu(k),
(4)

where a, b and c are constant real parameters and b 6= 0.
Case 1.1 : Consider the output de�ned as y(k) = x1(k).
Such an output is �at because Equations (3) are
ful�lled. Indeed, it holds that x1(k) = y(k) and
x2(k) = cb−1y(k) − acb−1y(k − 1) that de�ne the po-
lynomial matrix F and u(k) = b−1y(k + 1) − b−1ay(k)
that de�nes G. Let us notice that backward and forward
shifts in the output are involved. That corroborates
Remark 3. Indeed, as it turns out, the relative degree of
(4) with respect to y(k) is equal to 1.

Case 1.2 : Consider the output de�ned as y(k) =
ax1(k) + bu(k). Again, such an output is �at be-
cause Equations (3) are ful�lled. Indeed, we obtain
x1(k) = y(k−1) and x2(k) = cb−1y(k−1)−acb−1y(k−2)
that de�ne the polynomial matrix F and u(k) =
b−1y(k) − b−1ay(k − 1) that de�nes G. For such an
output, only backward shifts are involved, the relative
degree of (4) with respect to y(k) is equal to zero.

Case 1.3 : Consider the output y(k) = x2(k). Such an
output is not �at because, clearly, x1(k) cannot be ex-
clusively expressed in terms of shifts in the output y(k).

Remark 4 This simple example illustrates that the pa-
rametrization of the state in terms of a �nite number of
shifted outputs is especially interesting for state recons-
truction. Indeed, it is clear from this example that the
state vector can be reconstructed despite unknown inputs.
It also illustrates that the parametrization of the input
gives explicitly the feedforward control that allows the tra-
cking of a prescribed output trajectory.

2.3 Algebraic characterization of a �at output

System (1) together with the output (2) de�nes an input-
output system

Σ :

{
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k) +Du(k).
(5)

De�ne the matrix

M(z) :=

(
A− zI B
C D

)
. (6)

MatrixM(z) can be seen as a square matrix with entries
in the ring R[z, z−1]. Further, note that detM(z) is a
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polynomial in R[z, z−1]. Let us give the central result
from which the graph-based conditions will be derived
later on.

Theorem 1 System (1) has a �at output in the form of
(2) if and only if the combined system Σ, de�ned in (5),
has no invariant zeros outside z = 0, i.e., detM(z) =
γzν with real γ 6= 0 and ν ∈ N, whereM(z) is de�ned in
(6).

Proof 1 The proof is given in Appendix. It is construc-
tive since from Equation (16), the explicit expression of
F and G involved in (3) are obtained in a straightfor-
ward manner. It extends the result established in (Yong
et al., 2015) that was restricted to backward and forward
�atness. No speci�c assumption is required on system (1),
in particular neither controllability, nor submersivity.

3 Structural �atness and graph-theoretic tools

This section is devoted to the de�nition of structural
�atness, that is �atness when system (5) is structured as
detailed in next subsection. The proposed methodology
to check whether an output is structurally �at, that is
the main objective of this paper, will be jointly based on
the algebraic result proved in Theorem 1 and a graph-
oriented approach to derive structural conditions from
this result (see Section 4). Thus, necessary background
on graph-theoretic tools is also provided in this section.

3.1 Structured systems and �at outputs

A structural property, also said generic property, is a
property that applies for a structured system, see (Dion
et al., 2003). More speci�cally, structural properties of
system (5) are properties which are true for almost any
value of the non-zero entries of the matrices A, B, C
andD. System (5) is structured when its matrices of the
state space representation are de�ned by their sparsity
pattern. In other words, no speci�c values in A, B, C
and D are considered but one must merely distinguish
between the entries of A, B, C and D that are �xed
zeros and the other ones. Null entries A(i, j) (resp., null
entries B(i, j), null entries C(i, j), null entries D(i, j))
means that there is no relation (dynamical interaction)
between the state xi(k + 1) at time k + 1 and the state
xj(k) at time k (resp. the state xi(k + 1) at time k + 1
and the input uj(k) at time k, the output yi(k) at time
k and the state xj(k) at time k, the output yi(k) at time
k and the input uj(k) at time k). A given output of (5)
in the form y = Cx + Du is structurally �at, also said
generically �at, if it is �at for the structured system (5),
that is for almost any values of the non-zero entries of
the matrices A, B, C and D. If such an output exists,
the structured system (2) is said to be structurally �at.
The objective of the paper is to provide conditions to
check whether a given output in the form y = Cx+Du
is generically �at or not.

Illustration :
Let us consider again the LTI discrete-time system de�-
ned by (4). The output y(k) = x1(k) is a structured �at
output. Indeed, detM(z) = bλ and Theorem 1 is ful�lled
for any constant real parameters a, b and c and b 6= 0.
On the other hand, for real numbers λ1 and λ2, the out-
put y(k) = λ1x1(k)+λ2x2(k) is not structurally �at. In-
deed, it follows that generically λ2 6= 0 and λ1b+λ2c 6= 0
and detM(z) = λ(bλ1 + cλ2)− acλ2. Thus, Theorem 1
implies that the output y(k) is not structurally �at.

Before proceeding further, the next subsection aims at
recalling necessary background on digraphs.

3.2 Graph-theoretic tools

Digraph G(Σ)
A digraph G(Σ) describing the structured linear sys-
tem Σ is the combination of a vertex set V and an
edge set E . The vertices represent the state, input and
output components of Σ, while the edges describe the
relations between these variables. One has V = X ∪
U ∪ Y, where X is the set of state vertices de�ned
as X = {x1, . . . , xn}, U is the set of input vertices
U = {u1, . . . , um}, and Y is the set of output ver-
tices Y = {y1, y2, . . . , ym}. The edge set is E = EA ∪
EB ∪ EC ∪ ED, with EA = {(xi,xj) |A(i, j) 6= 0}, EB =
{(xi,uj) |B(i, j) 6= 0}, EC = {(yi,xj) |C(i, j) 6= 0} and
ED = {(yi,uj) |D(i, j) 6= 0}.

Path and related de�nitions
In the sequel, wewill denote byv orvj a vertex of digraph
G(Σ), regardless whether it is an input, state or output
vertex. Useful de�nitions are given below.

A directed path P is a sequence of successive edges di-
rected in the same direction which connect a sequence
of vertices. It is said that the path P covers a vertex if
this vertex is the begin or the end vertex of one of the
edges of P. Two paths are disjoint if they have no com-
mon vertex. The length of a directed path P is equal
to the number of edges involved in P. We denote by
`(vi,vj) the minimal length of a path connecting vi to
vj. A simple path is a directed path where every vertex
occurs only once in the path. A cycle is a simple path
linking a vertex vi to vi having length `(vi,vi) > 0.

Linkings
The following de�nitions apply for two sets of vertices
V1 and V2. A simple path P is said to be a V1-V2 path if
its begin vertex belongs to V1 and its end vertex belongs
to V2. If the only vertices of P belonging to V1 ∪ V2 are
its begin and its end vertices, then P is a direct V1-V2
path. A V1-V2 linking is a set of disjoint V1-V2 paths. The
number of these paths is called the cardinality, or the
size of the linking. Note that there are possibly several
maximum linkings, but by de�nition they all have the
same size η (V1,V2). The number of maximum linkings is

4



denoted by nmax (V1,V2). The length of a maximal V1-
V2 linking is the sum of the length of each of its disjoint
V1-V2 paths. µ (V1,V2) is the minimal number of vertices
covered by a maximum V1-V2 linking.

The vertices that are covered by all maximum V1-
V2 linkings are called the essential vertices of the
V1-V2 linkings. These vertices constitute a speci-
�c subset denoted, Vess(V1,V2), which is de�ned as

Vess(V1,V2)
def
= {v ∈ V |v is covered by any maximum

V1-V2 linking}.
Otherwise characterized, if V imax(V1,V2) denotes
the set of vertices of the i-th V1-V2 maximum lin-
king (i = 1, . . . , nmax (V1,V2)), then Vess(V1,V2) =
nmax(V1,V2)⋂

i=1

V imax(V1,V2).
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Figure 1. Example of digraph

The previous de�nitions are illustrated by means of the
digraph depicted in Figure 1. We consider the sets of
vertices V1 = {v1,v2} and V2 = {v6,v7}. The simple
paths v1 → v3 → v4 → v7 and v1 → v3 → v6 → v7

are V1-V2 paths, but only the �rst path is a direct one.
v1 → v3 → v4 → v7, or v2 → v5 → v7 are V1-V2
linkings with cardinality equal to 1. An example of V1-
V2 linking with cardinality equal to 2 is {v1 → v3 →
v6,v2 → v4 → v7}. The set {v1 → v3 → v6, v2 →
v3 → v6} is not a V1-V2 linking because its paths are
not disjoint. The maximum number of disjoint V1-V2
paths is equal to 2. Hence, the maximum linkings are of
size η (V1,V2) = 2. The number of V1-V2 maximum lin-
kings is 3. They are {v1 → v3 → v6,v2 → v4 → v7},
{v1 → v3 → v6,v2 → v5 → v7}, {v1 → v3 → v4 →
v6,v2 → v5 → v7}. The respective lengths are 4,4 and
5. The maximum V1-V2 linkings with the minimal num-
ber of vertices µ (V1,V2) = 6 are {v1 → v3 → v6,v2 →
v4 → v7} and {v1 → v3 → v6,v2 → v5 → v7}. In the
graph used here, Vess(V1,V2) = {v1,v2,v3,v6,v7}

4 Necessary and su�cient conditions for an out-
put to be generically �at

4.1 Structural �atness based on invariant zeros

The algebraic characterization of �atness has been given
in Theorem 1 does not exclusively apply for structured
systems. From this characterization and using a set of
known results relating the graph of a structured system
with its generic structure (rank, �nite and in�nite zeros)
(Dion et al., 2003; van der Woude et al., 2003), we are
able to give a necessary and su�cient graph condition
for an output to be generically �at.

Theorem 2 Consider the structured linear discrete-
time system Σ described by (5). The output denoted by
y(k) ∈ Rm associated to a speci�c vertex set Y is a
structural �at output if and only if, in the associated
digraph G(Σ), the following both conditions hold :

(1) η(U,Y)=m, i.e., the size of a maximal (U,Y) lin-
king in G(Σ) is the number of inputs.

(2) α = β, where α is the minimal number of vertices in
X contained in a size m linking from U to Y, and
β is the maximal number of vertices in X contained
in the disjoint union of a size m linking from U to
Y and a cycle family in X.

Proof 2 In the digraph G(Σ), decompose the state vertex
set X in four non-intersecting subsets X1,X2,X3,X4

as follows :
� X1 is the set of state vertices xi such that there is

no path from U to xi, and there is no path from
xi to Y.

� X2 is the set of state vertices xi such that there is
no path from U to xi, but there is path from xi to
Y.

� X3 is the set of state vertices xi such that there is
a path from U to xi, and there is no path from xi

to Y.
� X4 is the set of state vertices xi such that there is

path from U to xi, and there is a path from xi to
Y, i.e.,X4 is composed of the state vertices which
belong to an input-output path.

After a possible renumbering of the states with respect
to the previous Kalman-like decomposition, the matrix
M(z) has the following form.

M(z) =



A11 − zI1 A12 0 0 0

0 A22 − zI2 0 0 0

A31 A32 A33 − zI3 A34 B3

0 A42 0 A44 − zI4 B4

0 C2 0 C4 D


,

(7)
where Ii is the identity matrix of size ni, ni being the
cardinality of the set Xi, for i = 1, . . . , 4. The graph of
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the matrix Aii, for i = 1, . . . , 3, is made of the nodes of
Xi and edges between nodes of Xi in G(Σ).
From the particular form of M(z), it can be seen that

detM(z) =

det(A11 − zI1) det(A22 − zI2) det(A33 − zI3) det(M̄(z))

where M̄(z) =

(
A44 − zI4 B4

C4 D

)
.

The condition of Theorem 1 can then be considered se-
parately in Equation (7). For i = 1, . . . , 3, det(Aii− zIi)
is the characteristic polynomial of matrix Aii. It is then
a non-zero polynomial of which roots are the eigenva-
lues of Aii. It is known that there are eigenvalues of
a structured square matrix that are generically nonzero
if and only if the corresponding graph contains cycles
(Reinschke, 1988).
It remains to study det(M̄(z)). Notice that M̄(z) is a
system matrix associated with the input set U, output
set Y, and state set X4, containing all state vertices
which belong to an input-output path. Hence, the corres-
ponding system Σ̄ is a square system for which all state
vertices belong to an input-output path. This type of sys-
tem has been extensively studied in the literature. First,
the generic rank of M̄(z) is n4 plus the size of a maxi-
mal linking betweenU andY in the graph G ¯(Σ) (van der
Woude, 1991). Since the vertices of Xi, for i = 1, . . . , 3,
do not belong to an input-output path, it is equivalent to
say that det(M̄(z)) 6= 0, and therefore det(M(z)) 6= 0, if
and only if the size of a maximal (U,Y) linking in G(Σ)
is equal to the number of inputs, i.e., is equal to m. The
system is then a square and invertible.
FromTheorem 5.1 in (van derWoude, 2000), for a square
invertible system as Σ̄, for which all state vertices belong
to an input-output path, the generic number of invariant
zeros is equal to n4 minus the minimal number of vertices
in X4 contained in a size m linking from U to Y. Un-
der the same conditions, from proposition 3.5, (van der
Woude et al., 2003), the generic number of invariant ze-
ros at z = 0 is equal to n4 minus the maximal number of
vertices in X4 contained in the disjoint union of a size
m linking from U to Y and a cycle family in X4.
Assume that the two conditions of Theorem 2 are satis-
�ed. Since the input-output paths are the same in G(Σ)
and in G( ¯(Σ), from the previous observations, det(M̄(z))
is a nonzero polynomial with roots in zero. Moreover,
since α = β, no cycle may exist in the set of state vertices
out of an input-output path. Therefore, for i = 1, . . . , 3,
det(Aii − zIi) is a nonzero polynomial with only roots,
i.e., eigenvalues, in zero. In conclusion, detM(z) is a
nonzero polynomial with roots in zero, and from Theo-
rem 1, the system Σ is generically �at.
These arguments may be reversed to prove that conditions
(1) and (2) of Theorem 2 are necessary for an output to
be �at.

4.2 Equivalent characterization

Wepropose now an equivalent formulation of the �atness
conditions of Theorem 2.

Theorem 3 Consider the structured linear discrete-
time system Σ described by Equation (5). The output
denoted by y(k) ∈ Rm, associated to set of vertices Y, is
generically a �at output if and only if, in the associated
digraph G(Σ), the following three conditions hold :

(1) η(U,Y) = m.

(2) All the maximum U-Y linkings have the same
length.

(3) Every cycle in the digraph G(Σ) covers at least an
element of Vess(U,Y).

Proof 3 Condition (1) is the same for both Theorem 2
and Theorem 3. It guarantees a generic invertibility pro-
perty. Next, consider a disjoint union of a size m linking
from U to Y and a cycle family in X. If the conditions
(2) and (3) of Theorem 3 hold, the linking cannot contain
a cycle because of condition (3), and the number of state
vertices in it is the same as for the minimal length linking
by condition (2). Therefore, α = β. Conversely, α = β
clearly implies conditions (2) and (3) of Theorem 3.

Remark 5 An intuitive explanation of those conditions
is the following. First, the characterization of �at outputs
of a system in terms of invariant zeros that should not be
distinct from zero is equivalent to state that the left in-
verse system has a trivial dynamics. In other words, the
left inverse system has a �nite memory which in turn, ex-
plains why, for a �at system, the state and the input are
expressed in terms of a �nite number of shifted outputs.
To obtain such a �nite memory property, the location of
the cycles in the graph plays a central role. A �bad� loca-
tion of cycles would induce an in�nite memory for the left
inverse system. That's why Condition (2) compare two
sets of vertices with and without considering the cycles.
Condition (1) is equivalent to the left invertibility of the
system that guarantees the existence of the left inverse
system, a necessary condition for an output to be �at.

4.3 Practical consideration and complexity

Checking the conditions of Theorem 2, in order to know
if a speci�c set of vertices Y, is a structural �at output,
implies the computation of :

� The size of a maximal (U,Y) linking in G(Σ),
� The minimal number α of vertices inX contained

in a size m linking from U to Y,
� Themaximal number β of vertices inX contained

in the disjoint union of a size m linking from U
to Y and a cycle family in X.

Several papers dealt with these computational aspects,
using �ow techniques as in (Yamado, 1988) or linear
programming. In (Commault et al., 2002), the authors
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proposed a unifying approach to these problems while
reducing them to maximum matching problems with
maximal cost on a bipartite graph associated with the
graph G(Σ). The complexity of the maximum matching
problems with maximal cost is O(N3), where N is the
number of nodes in the bipartite graph (Edmonds and
Karp, 1972). Since the number of nodes in the bipar-
tite graph associated with G(Σ) is N = 2(n + m), and
m ≤ n, it follows that the conditions of Theorem 2 can
be checked in O(n3).

5 Examples

Examples 1 aim at illustrating the structural �atness
property based on the state space representation of a
system and on its digraph counterpart. In particular,
they show how, after having characterized a �at output,
the parametrization in terms of shifted outputs de�ned
by Equations (3) can be obtained. Examples 2 only focus
on the digraph characterization and address the case
where a �at output results from a linear combination of
states.

5.1 Examples 1

5.1.1 Examples 1.1 : basic example

Let us consider again the simple example described
by Equation (4). The corresponding digraph G is de-
picted on Figure 2. From this digraph, it holds that

u -�
�
�
�
�
�

�
�
��

u ux1

u
x2

-

Figure 2. Digraph of Example 1.1

y(k) = x1(k) is a �at output since condition (1) and
condition (2) of Theorem 2 are ful�lled with m = 1,
α = β = 1. The explicit expression of F and G given
in Section 2.2 can be recovered by taking into account
Equation (16) in Appendix that reads :

(
x

u

)
= M−1(ξ) = (bξ)−1


0 0 bξ

c −b −c(a− ξ)
ξ 0 −(a− ξ)ξ


(

0

y

)

(8)

with M(ξ), as de�ned in Equation (6)

M(ξ) =


a− ξ 0 b

0 −ξ c
1 0 0


Indeed, from (8) , we have that x1(k) = y(k) and x2(k) =
cb−1y(k) − acb−1y(k − 1) that de�ne F and u(k) =
b−1y(k + 1) − b−1ay(k) that de�nes G. Finally, let us
notice that detM(z) = z. It corroborates that y(k) is a
�at output according to Theorem 1.

5.1.2 Examples 1.2 : practical example

First, let us consider the structured system of the form
(1) described by

x(k + 1) =


λ1 λ2 0

λ3 λ4 λ5

0 λ6 λ7

x(k) +


λ8 0

0 0

0 λ9


(
u1(k)

u2(k)

)

(9)
where λi ∈ R (i ∈ {1, . . . , 9}) are possibly non-zero
parameters.
Let us consider an output of the form (2) reading

y(k) =

(
0 λ10 0

0 0 λ11

)
x(k) (10)

where λ10 and λ11 are possibly non-zero real parame-
ters. The digraph associated to this system is given in
Figure 3. After inspection, it turns out that m = 2,

uu1 - ux1

-

�
�
�
�
�
�

�
�
��

uu2 - ux3
@
@
@
@
@
@

@
@
@R-

- uy2

u x2

-
�

]

- uy1

Figure 3. Digraph of Example 1.2

α = 3, β = 3 and thus, according to Theorem 2, the
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output (10) is generically �at.

The practical model considered below and studied in
(Sira-Ramirez and Agrawal, 2004) is an instantiation
of the structured system (9). The model describes a
thin slab homogeneous material subject to two exter-
nal temperature control sources u1 and u2 at the left
and right boundaries. The dynamic model of the tem-
perature in three points of a spatial discretization of the
slab of material involve three state variables c(k), b(k)
and a(k). The state space description, with state vector
x(k) = (c(k) b(k) a(k))T reads :

x(k+1) =


1− 2p p 0

p 1− 2p p

0 p 1− 2p

x(k)+


p 0

0 0

0 p


 u1(k)

u2(k)


(11)

with p a real parameter.
Since it is an instantiation of a structured system, al-
though the parameters λi, i = 1, · · · , 9 are not free (they
dependent one another through parameter p), the out-
put

y(k) = (b(k) a(k))T =

(
0 1 0

0 0 1

)
x(k),

is a �at output.
The explicit expressions of F and G in (3) can be ob-
tained taking into account Equation (16) in Appendix.
They respectively read

x(k) =


−a(k) +

1

p
b(k + 1) +

2p− 1

p
b(k)

b(k)

a(k)

 (12)

u(k) =



1

p2

(
b(k + 2)− pa(k + 1)− p(2p− 1)a(k)+

2(2p− 1)b(k + 1)− (p2 − (2p− 1)2)b(k)
)

1

p

(
a(k + 1) + (2p− 1)a(k)− pb(k)

)


(13)

5.2 Example 2

Let us consider a structural system associated to the
digraph depicted in Figure 4.

Let us consider U = {u1,u2}. It can be noticed that
according to condition (1) of Theorem 2, the cardinality

r
Q
Q
QQ

QQs
�
�
��

��3u2

r������3
Q
Q
QQ

QQs
u1

r������3

x5

- r y4

r
Q
Q
QQ

QQs
�
�
��

��3
x4 - r y1PPPPPPP

PPPPq

r
Q
Q
QQ

QQs

x3 - r y3

r
x2

- r y5

r x1- r y2

-

Figure 4. Digraph of Example 2

of U being 2, only sets Y of two vertices are admissible.
Also notice that y5 is a generic linear combination of
x2 and x4. Generic linear combination of any number of
state components or inputs can be addressed in a similar
way because the pattern of the structured matrices C or
D is totally free.

Table 1 collects the values of m, α and β for all pairs of
output vertices.

{y1,y2} {y1,y3} {y1,y4} {y1,y5} {y2,y3}

m 2 2 2 2 2

α 3 2 2 3 3

β 3 2 2 3 3

{y2,y4} {y2,y5} {y3,y4} {y3,y5} {y4,y5}

m 2 2 2 2 2

α 3 3 2 3 2

β 4 5 3 4 3

Table 1: α and β with respect to distinct pairs of output
vertices for the system associated to the digraph depicted
in Figure 4.

Let us inspect Table 1 and apply Theorem 2. First, let
us notice that for all the pairs, Condition (1) is ful-
�lled. Condition (2) is ful�lled for the pairs {y1,y2},
{y1,y3}, {y1,y4}, {y1,y5} and {y2,y3} that are,
consequently, �at output. The remaining pairs are not
�at outputs. Indeed, for example, for the pair {y2,y5},
α = 3 because there are twoU-{y2, y5} linkings, which
are {u1 → x3 → x1 → y2, u2 → x4 → y5} and
{u1 → x3 → x1 → y2, u2 → x5 → x2 → y5}. The �rst
one involves threeX vertices and the second one involves
fourX vertices. So the minimal number of state vertices
is equal to 3. On the other hand, β = 5 because there is
one cycle covering x4 and this cycle is disjoint from the
linking {u1 → x3 → x1 → y2, u2 → x5 → x2 → y5}
that involves four X vertices. Let us notice that even
without the cycle, the pair {y2,y5} would not be �at
because in such a case, β = 4 6= α.
The same reasoning applies for the other pairs
({y2, y4},{y3, y5} and {y4, y5}) for which α < β.

Remark 6 The following remark is devoted to Theo-
rem 3.
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The set {y1,y2} de�nes a �at output y(k) = (x1(k), x2(k)).
Indeed, let us consider Y = {y1,y2} and recall that
card(U) = 2. First, there is only oneU−Ymaximum lin-
kings. It is {u1 → x3 → x1 → y2,u2 → x4 → y1}. The
size of the U−Y maximum linking is η(U,Y) = 2 and
consequently Condition (1) is ful�lled. Next, the length of
theU−Y maximum linking is 5. Since theU−Y maxi-
mum linking is unique, it is clear that Condition (2) is ful-
�lled. Finally, the set Vess(U,Y) = {u1,u2,x1,x3,x4}.
There is one cycle which covers x4, which is an element
of Vess(U,Y), as it is the element x4. Hence, Condi-
tion (3) is ful�lled.

6 Conclusion

Necessary and su�cient conditions for an output of a LTI
structured system to be a �at output have been propo-
sed. They are �rst expressed in terms of algebraic condi-
tions involving the notion of invariant zeros. Then, the
conditions have been recast in terms of graphical condi-
tions. They can be checked by resorting to well-known
algorithms of polynomial time complexity. To go further,
a more challenging task will be an exact and exhaustive
characterization or construction of all the possible sets
of �at outputs. Indeed, the presented result clearly de-
pends on the chosen outputs. From this perspective, it
can be suspected that the result presented in this paper
is a relevant starting point.

Appendix : proof of Theorem 1

For convenience, let us notice that Equations (1) and (2)
can jointly be described by(

A− ξI B
C D

)(
x

u

)
=

(
0

y

)
, (14)

where ξ is the shift operator. Let us de�ne

M(ξ) :=

(
A− ξI B
C D

)
. (15)

Since in the problem of checking for �at outputs, both
types of shift are allowed, the goal is to �nd two linear
combinations of �nitely many shifts of y, in forward
and/or backward direction, that coincide with x and u,
respectively. Hence, the �at output checking problem
amounts to �nding polynomial matrices F (z) and G(z),
containing positive and/or negative powers of z, such
that x(k) = F (ξ)y(k), u(k) = G(ξ)y(k) for all k ∈ Z,
or, alternatively, such that x = F (ξ)y and u = G(ξ)y.
When existing, the matrices F (z) and G(z) can be ob-
tained by solving x and u in equation (14) from y.
For this, elementary operations involving powers of z

and z−1 can be used. These are operations in the ring
R[z, z−1], consisting of polynomials with �nitely many
positive and/or negative powers of z.
Note that for polynomials p(z), q(z) ∈ R[z, z−1], there
holds that p(z)q(z) = 1 for all z ∈ C if and only if
p(z) = γzν and q(z) = γ−1z−ν , with γ 6= 0 and ν ∈ Z.
Indeed, write p(z) = zν p̃(z) and q(z) = zµq̃(z), with
ν, µ ∈ Z and p̃(z), q̃(z) polynomials with non-negative
powers of z for which p̃(0) = γ 6= 0 and q̃(0) = ρ 6= 0.
Then p(z)q(z) = zν+µp̃(z)q̃(z) = 1 for all z ∈ C if and
only if ν + µ = 0, γρ = 1 and p̃(z)q̃(z) has no zeros at
all. The latter means that both p̃(z) and q̃(z) have no ze-
ros at all and are non-trivial polynomials of order zero,
i.e., are non-zero constants. Hence, p̃(z) = p̃(0) = γ and
q̃(z) = q̃(0) = ρ for all z ∈ C, so that p(z) = γzν and
q(z) = γ−1z−ν with γ 6= 0 and ν ∈ Z.
Next note that M(z) can be seen as a matrix with en-
tries in R[z, z−1].
Further, note that detM(z) is a polynomial in R[z, z−1].
Then it follows easily from the above observation and
Cramer's rule that, when M(z) is invertible, its inverse
has all entries in R[z, z−1] if and only if detM(z) = γzν

with γ 6= 0 and ν ∈ N.
IfM(z) is invertible in the above sense, i.e.,M−1(z) has
entries in R[z, z−1], the matrices F (z) and G(z) can be
obtained by the following observation.(
F (ξ)

G(ξ)

)
y =

(
x

u

)
= M−1(ξ)

(
0

y

)
= M−1(ξ)

(
0

I

)
y.

(16)
From this, it is clear that F (z) and G(z) follow from the
last block column of M−1(z).
Hence, considering system (1), the output given by (2)
is �at, whenever detM(z) = γzν , with real γ 6= 0 and
ν ∈ N. In other words, the system given by (1) has �at
outputs in the form of (2) if the combination of system
and outputs has no invariant zeros outside z = 0.
It turns out that the converse is true as well, i.e., if the
output (2) is �at output for system (1), then detM(z) =
γzν , with real γ 6= 0 and ν ∈ N. To prove this statement,
assume that detM(λ) = 0 for some λ 6= 0. (This can
happen when there are invariant zeros located outside
z = 0, or when detM(z) = 0 for all z ∈ C, in which
case it makes no sense to talk about invariant zeros.)
Then rankM(λ) < n+m, and there exists a (complex)

vector

(
x̄

ū

)
6=

(
0

0

)
such thatM(λ)

(
x̄

ū

)
=

(
0

0

)
. In

particular, it follows that λx̄ = Ax̄+Bū and Cx̄+Dū =
0. Now de�ne x̃(k) = λkx̄, ũ(k) = zkū for all k ∈ Z.
Note that at least one of the two x̃(k) or ũ(k) is nonzero
for all k ∈ Z. Further, it follows easily that x̃(k + 1) =
Ax̃(k) + Bũ(k), and ỹ(k) = Cx̃(k) + Dũ(k) = 0 for all
k ∈ Z. Hence, {(x̃(k), ũ(k))|k ∈ Z} forms a nontrivial
solution pair of system (14), but in (16) no matrices F (z)
andG(z) of suitable dimensions with entries in R[z, z−1]
exist such that x̃(k) = F (ξ)ỹ(k) and ũ(k) = G(ξ)ỹ(k),
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where ỹ(k) = Cx̃(k) +Dũ(k). This is because ỹ(k) = 0
for all k ∈ Z, whereas either x̃(k), ũ(k), or both, are
nonzero for all k ∈ Z. Hence, the output given by (2)
can not be a �at output for the system given by (1).
Conversely, if (2) is a �at output for system (1), then
it is necessary that detM(z) = γzν , with real γ 6= 0
and ν ∈ N. 2
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