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Abstract

The Leidenfrost effect is a phenomenon in which a liquid, poured
onto a surface significantly hotter than the liquid’s boiling point, pro-
duces a layer of vapor that prevents the liquid from rapid evaporation.
Rather than making physical contact, a puddle of water levitates above
the surface.

The temperature above which the phenomenon occurs is called
Leidenfrost’s temperature. The reason for the existence of Leiden-
frost’s temperature, which is much higher than the boiling point of
the liquid, is not theoretically understood. Here we prove that Lei-
denfrost’s temperature corresponds to a bifurcation in the solutions
of equations describing evaporation of a non-equilibrium liquid–vapor
interface. For water, the theoretical values of obtained Leidenfrost’s
temperature, and that of the liquid bulk which is smaller than the
boiling point of liquid, fit the experimental results found in the liter-
ature.
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1 Introduction

When water is projected onto a moderately heated metal plate, it spreads out,
starts to boil and evaporates very quickly. Things are quite different when
the metal is incandescent: the water temperature remains below the boiling
temperature, divides into numerous droplets that roll, and are thrown around
without boiling [1, 2, 3, 4, 5, 6]. Observations show that the droplets perform
translational and rotational motions. These movements lead to geometrically
beautiful patterns. Photographic and stroboscopic tools were then used to
describe the experiments, but the effect can be seen with the naked eye. Such
a phenomenon is qualitatively very well described in [7, 8]. An analytical
model of these figures and movements has been proposed in [9].
This Leidenfrost effect, called also film boiling, was carefully observed in 1756
by the German physician J. G. Leidenfrost. Leidenfrost had well understood
the cause of the film boiling phenomenon: there is no contact between the
burning solid and water, the liquid evaporates in the vicinity of the solid and
levitates on a cushion of steam [10].

In 1844, M. Boutigny had also experimented on himself some curious facts
related to the phenomenon like plunging his hand in a bath of molten iron
without burning himself [11]. Fiery coal can reach about 550 degrees Celsius;
candidates for walking on hot coals must moisten their feet to benefit from
the Leidenfrost effect.

Today, it is no longer these curiosities that are the subject of in-depth
studies, but importance of this phenomenon in all industrial sectors where
high temperatures are handled [12, 13, 14]. The boiling crisis is often the first
step in an explosive process that is generated by the contact of a hot surface
and a liquid. If it is well dominated by metallurgists for the hardening of
metals, it is not yet the case in other fields where it is the cause of important
accidents. For example, in the oil industry, at the bottom of the distillation
towers is oil at a temperature of about 400 degrees Celsius. In these tow-
ers, very dry steam is injected at the same temperature. When, due to a
malfunction in the installation, liquid water is injected, the explosion that
occurs is so violent that it destroys most of the distillation plates [15]. In nu-
clear industry, several accidents were initiated by the phenomenon. In 1961,
for the American SL–1 reactor at Idaho State Laboratory, an unexpected
lifting of a control bar caused water to be projected over the core onto the
vessel which, despite its weight of 13 tons, sheared the pipes to which it was
connected and rose about 3 meters. In 1986, the film boiling phenomenon
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occurred in Chernobyl, and in 2011 in Fukushima, creating major nuclear
accidents. The largest terrestrial explosion ever recorded, that of Krakatoa
volcano (in 1883) corresponding to 200 megatons of TNT, is also due to the
contact of lava at high temperature with sea water.

These events have given rise to a large number of studies [1, 2, 3, 4, 5, 6,
16, 17, 18]. However, it cannot be said that a satisfactory theory has been
developed. Indeed, the Leidenfrost effect still retains an essential mystery
about the reason for a temperature above which there is the creation of the
vapor film. One may wonder why, under normal atmospheric pressure, the
creation of the film does not occur at a temperature close to 100 degrees
Celsius, the boiling temperature of water, which creates a large quantity of
vapor. Not being the case, the existence of the Leidenfrost temperature has,
to our knowledge, never been explained in a satisfactory way.

In order to treat the problem as simply as possible, we consider a thin
layer of liquid water on a flat, infinite and horizontal solid surface W . Since
the layer is thin, we can neglect the gravitational forces. The liquid water
layer is assumed to be separated from a water vapor layer by a liquid–vapor
interface. We will assume that the liquid water layer is under atmospheric
pressure p0, and that the interface and liquid bulk are at the same tem-
perature Ti. The vapor layer between the liquid–vapor interface and the
horizontal surface is decomposed into three parts: a very thin upper part in
contact with the interface being at the temperature Ti; a second intermediate
part where the temperature varies from Ti to Tw, and finally the last part of
the vapor layer at temperature Tw where the vapor is evacuated along the
solid surface W . The fluid flows through the liquid–vapor layers perpendic-
ular to W (Figure 1 shows the considered schematization).
Then, we propose a thermo-mechanical model justifying a bifurcation tem-
perature below which the existence of the vapor film is impossible and above
which the existence of the vapor film is possible. Without pretending that
our model will solve all problems posed by the film boiling phenomenon, we
think that it can provide an understanding of the phenomenon by explaining
the origin of Leidenfrost’s temperature.

To simplify the presentation of the article, we have separate the paper
into six sections and three appendices. In Section 2, we present the classical
van der Waals equation of state. Section 3 studies the thermo-mechanical van
der Waals–Korteweg model across the liquid-vapor interface and in the vapor
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Figure 1: Sketch of a quasi-one-dimensional transverse fluid flow. Domain (a)
is a thin liquid layer of temperature Ti; (i) is the liquid-vapor discontinuity
interface which is a very thin region of few nanometers thickness of vapor
having the same temperature Ti as in the liquid bulk (a); domain (b) is the
non-isothermal part of the vapor flow; the temperature increases from Ti to
Tw. Region (c) is the part of the vapor region where the flow is not one-
dimensional: the vapor escapes along the solid surface. The arrows represent
the flow direction.

part of the flow. Sections 4 and 5 study the dimensionless governing equations
of one-dimensional flows. In Section 6 the numerical calculations of the
governing equations are performed related to experimental data to obtain the
Leidenfrost temperature value. A conclusion ends this presentation. Some
technical details are shown in Appendices A, B and C.

2 The van der Waals equation of state

We adapt to our problem the simplest model for the description of equilib-
rium liquid–vapor interfaces: the van der Waals equation of state. Experi-
mental values of physical quantities at the boiling temperature T0 = 373.15◦

Kelvin (corresponding to 100◦ Celsius) are presented in International System
of Units (SI) (see [19]):

p0 ≈ 101325 Pa, vg ≈ 1.673 m3/kg, vl ≈ 0.001043 m3/kg,
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where p0 is the atmospheric pressure, vg and vl are specific volumes of va-
por and liquid water at phase equilibrium, respectively. The van der Waals
equation of state is:

p =
RT

v − b
− a

v2
, (2.1)

where a, b and R are constant. At a given temperature T , one obtains the
chemical potential µ (defined up to an additive constant), where dµ = v dp
and v = 1/ρ is the specific volume:

µ(v, T ) = −RT Log(v − b) +
RT b

v − b
− 2a

v
. (2.2)

The equilibrium Maxwell conditions of liquid-vapor interface are:
RT0
vg − b

− a

v2g
=

RT0
vl − b

− a

v2l
= p0,

µ(vg, T0) = µ(vl, T0).

(2.3)

At T0 = 373.15◦ Kelvin, we obtain:

a ≈ 1.52×103 m5 s−2, b ≈ 9.2×10−4 m3 kg−1, R ≈ 456 m2 s−2 K−1. (2.4)

When v is large, the van der Waals equation (2.1) yields the equation of state
of perfect gas p v = RT where R is the ideal gas constant at 100◦ Celsius.
We define a characteristic specific volume v0 of the vapor phase as:

p0 v0 = RT0,

which gives:
v0 ≈ 1.68 m3 kg−1.

Van der Waals’ model is a qualitatively realistic equilibrium model even far
from the boiling point. Indeed, when we consider vapor and liquid water
near 160◦ Celsius, we obtain from system (2.3) other values of coefficients a,
b and R:

a ≈ 1.40×103 m5 s−2, b ≈ 9.3×10−4 m3 kg−1, R ≈ 447 m2 s−2 K−1. (2.5)

Even the values of a, b vary with the temperature, their effect on the pressure
variation is smaller than 0.5%. The variation of R gives an error in the
pressure value smaller than 2%.
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3 A continuous theory of capillarity

The second gradient theory [20], conceptually more straightforward than the
Laplace theory, can be used to construct a continuous theory for fluid inter-
faces [21]. Rowlinson and Widom wrote in [22]: the view that the interfacial
region may be treated as matter in bulk, with a local free-energy density that
is that of hypothetically uniform fluid of composition equal to the local compo-
sition, with an additional term arising from the non-uniformity, and that the
latter may be approximated by a gradient expansion typically truncated in sec-
ond order, is then most likely to be successful and perhaps even quantitatively
accurate. The essential difference compared to classical compressible fluids
is that the specific internal energy depends not only on the density ρ = 1/v,
specific entropy η, but also of ∇ρ. The specific internal energy α character-
izes both the compressibility and capillarity properties of the fluid. Due to
fluid isotropy, this energy depends only on the norm of density gradient. The
simplest expression of the specific energy is [22]:

α = ε(ρ, η) +
λ

2ρ
|∇ρ|2, λ = const. (3.6)

Here ε(ρ, η) is the classical specific energy and λ is a capillary coefficient.
Such a gradient density dependent energy appears not only in the vicinity
of the thermodynamic critical point, but also in the case of large velocity
fluctuations. This is the case for vapor created by the boiling of a film [6].

3.1 Conservative motions

For conservative motions, the van der Waals–Korteweg equations of non-
homogeneous capillary fluids can be derived from the Hamilton principle of
stationary action by using the well-known Lagrangian [23, 24, 25, 26]:

L = ρ

(
|u|2

2
− α− Ω

)
,

where u is the velocity, Ω is the specific potential of external forces, and α is
given by (3.6). The usual constraints are the mass and entropy conservation
laws:

∂ρ

∂t
+ div(ρu) = 0, (3.7)
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and
∂ρη

∂t
+ div(ρηu) = 0. (3.8)

We refer to calculations in [20, 21, 27] to directly write the governing equa-
tions in the form:

∂ρu

∂t
+ div (ρu⊗ u− σ) + ρ∇Ω = 0, (3.9)

where

σ = −
(
p− λ

2
|∇ρ|2 − λ ρ∆ρ

)
I − λ∇ ρ⊗∇ ρ, p = ρ2

∂ε(ρ, η)

∂ρ
.

Due to a small thickness of a fluid layer, gravitational forces will be neglected.
As a consequence of (3.7), (3.8) and (3.9), one obtains the energy equation :

∂e

∂t
+ div

(
eu− σu− λ dρ

dt
∇ ρ
)

= 0, e = ρ

(
|u|2

2
+ α

)
. (3.10)

In the one-dimensional case, the x–axis is drawn perpendicular to the
heated surface (see Figure 1). The governing equation (3.9) is written as:

∂

∂t
(ρ u) +

∂

∂x

(
ρ u2 + P

)
= 0, (3.11)

where

P = p+ k, and k =
λ

2

(
∂ρ

∂x

)2

− λ ρ ∂
2ρ

∂x2
. (3.12)

Here t denotes the time, x the space variable orthogonal to the solid surface,
u is the corresponding scalar velocity. At a given temperature T , Eq. (3.11)
admits the conservation law:

∂u

∂t
+

∂

∂x

(
u2

2
+ µ(ρ, T )− λ ∂

2ρ

∂x2

)
= 0, (3.13)

associated with chemical potential µ (a particular case (2.2) of µ is calculated
for the van der Waals equation of state).

Depending on other additional constraints (isothermal or isobaric pro-
cesses), we consider the chemical potential or the specific enthalpy instead of
the specific internal energy (the details are further explained).
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3.2 One-dimensional stationary vapor motions

In rest of the paper, the liquid thin layer is assumed to be fed by an auxiliary
device that allows the motion to be steady. We consider domains (a), (b),
(c) and interface (i) separating domains of liquid (a) and vapor (b) (Figure 1).

In the one-dimensional stationary case, Eq. (3.7) yields:

ρ u = q, q = const, (3.14)

where q represents the constant flow rate of the fluid.

Equation (3.11) writes:

d

dx

(
ρu2 + P

)
= 0, (3.15)

• Through the liquid–vapor interface, Eq. (3.11) implies the jump con-
dition:

[P + q2v] = 0,

i.e.
Pi − p0 + q2(vgi − vli) = 0, (3.16)

where we denote by vli = 1/ρli (vgi = 1/ρgi) the liquid (vapor) specific vol-
ume at interface (i), and the square brackets mean the difference of values
across interface (i). Since the liquid layer is thin, the gravity is not taken
into account, thus the pressure is atmospheric pressure p0 in the liquid bulk.

• In domains (b), we obtain from (3.15):

Pi − pw + q2(vgi − vw) = 0,

The vapor on the boundary between (b) and in domain (c) is assumed to be
at temperature Tw and homogeneous; pw is its corresponding pressure and
vw is its specific volume. The difference with Eq. (3.16) yields:

pw − p0 + q2(vw − vli) = 0. (3.17)
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• The motion in the bulk (a) and the jump through the interface is
assumed to be isothermal. Consequently, we have to use the conservation
law (3.13). The corresponding jump relation is:[

u2

2
+ µ(ρ, Ti)− λ

d2ρ

dx2

]
= 0, (3.18)

where µ(ρ, Ti) is defined by (2.2). Equation (3.18) can be considered as a
dynamical Maxwell rule (see also Appendix (B.1)).

• The vapor motion in domain (b) is not isothermal. The viscosity of the
vapor phase is negligible, so the equation of motion (3.15) is unchanged. The
equation of the energy balance (3.10) in the vapor phase must take account
of the heat exchange in the vapor region. Such a balance equation is in the
form:{

(e+ P )u− λ
(
dρ

dx

)2

u

}
|ρgi ,Ti

−

{
(e+ P )u− λ

(
dρ

dx

)2

u

}
|ρw,Tw

= Q̇w−Q̇i.

(3.19)
Compared to (3.10), we added in the total energy the balance of heat fluxes
Q̇w − Q̇i. Also, since the flow volume is fixed, it changes the expression of e
(for proof, see Appendix B.2):

e = ρ(u2/2 +H) with H = α +
p0
ρ

= ε+
λ

2ρ

(
dρ

dx

)2

+
p0
ρ
.

The expression of P is given by (3.12). In the domain (c) near the surface
W the density becomes homogeneous and the balance law (3.19) becomes:{

(e+ P )u− λ
(
dρ

dx

)2

u

}
|ρgi ,Ti

− {(e+ P )u}|ρw,Tw = Q̇w − Q̇i. (3.20)

The vapor density strongly varies near and through the interface.

At the interface, considered as a discontinuity, an extra condition must
be added on both sides of the interfacial discontinuity:

dρ

dx
= 0. (3.21)
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This additional condition (3.21) is fundamental in the rest of our paper. It
is recalled and explained in Appendix A. Also, condition (3.21) is obtained
and analyzed in [25, 28, 29]. Physically, it means the absence of microenergy
concentration at the surface of discontinuity. Such a condition also appears
when a capillary fluid is in contact with a surface when the surface is neither
attractive or repulsive [30, 31, 32].

The density jump implies d2ρ/dx2 < 0, and consequently, due to (3.12),
k > 0 (this property is analyzed in Fig. 8 (left diagram) of Appendix C).

The vapor at temperature Tw is assumed homogeneous. Using the relation
(3.20) complemented by (3.21), we get:

1

2

q3

ρ2i
+ pi vgi q − λ

d2ρgi
dx2

q +Hi q + Q̇i =
1

2

q3

ρ2w
+ pw vw q +Hw q + Q̇w,

with H = ε + p0 v. Here indices “i ” and “w ” mean values of variables
at the interface and surface, respectively. In the above relation the second
derivative of the density ρgi is - à priori - non-vanishing.
The heat flux can be written Q̇ = Λ q where Λ is an associated heat per unit
mass.

Since k = −λρgi
dρ2gi
dx2

and Pi = pi + k, we get:

1

2
q2v2gi +Hi + Pivgi + Λi =

1

2
q2v2w +Hw + pwvw + Λw. (3.22)

Let us underline that:

pi = p(vgi , Ti), pw = p(vw, Tw).

From Eq. (2.1), we have [33]:

ε =

∫
cv(T ) dT − a

v
,

where cv(T ) is the specific heat of water vapor at constant volume. Equation
(3.22) implies:

1

2
q2
(
v2gi − v

2
w

)
+

∫ Ti

Tw

cv(T )dT + 2 k vgi+

2

(
RTivgi
vgi − b

− RTwvw
vw − b

)
− a

vgi
+

a

vw
+ Λi − Λw = 0.

(3.23)
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We approximate the vapor equation of state by pivgi ≈ RTi, pwvw ≈ RTw,
and introduce

cp(T ) = cv(T ) +R,

corresponding to the specific heat at constant pressure which depends only
on temperature T . We obtain from (3.23):

1

2
q2
(
v2gi − v

2
w

)
+

∫ Ti

Tw

cp(T )dT + 2 k vgi +R (Ti − Tw) + Λi −Λw = 0, (3.24)

To transform a liquid into saturated vapor, we need to supply latent heat
L. At a given temperature, and for the van der Waals equation of state, the
energy of a saturated vapor is approximately independent on the pressure.
Indeed, for a given temperature T , the energy variation is:

ε(vg, T )− ε(vgs , T ) = a

(
1

vsg
− 1

vg

)
≈ 0,

where vsg is the specific volume of saturated vapor at pressure ps (index
s means saturated), and vg is the specific volume of vapor at pressure p0.
Compared to the latent heat value, this variation is small even for large
variation of the specific volume of the vapor.
Since L = ε+ p v, one has:

Li − Lw =
(
ε(vsgi , Ti) + psivsgi

)
−
(
ε(vsgw , Tw) + pswvsgw

)
.

The saturated vapor equation of state being approximated as a perfect gas :

psivsgi ≈ RTi, and pswvsgw ≈ RTw.

Hence,
Li − Lw ≈ ε(vsgi , Ti)− ε(vsgw , Tw) +R(Ti − Tw).

At atmospheric pressure, the water vapor equation of state can also be ap-
proximated as a perfect gas:

p0vgi ≈ RTi, and p0vgw ≈ RTw,

and as in [6], we assume that:

Λi − Λw ≈ L(Ti)− L(Tw).

Thus, Eq. (3.24) yields:

1

2
q2
(
v2gi − v

2
w

)
+

∫ Ti

Tw

cp(T )dT + 2 k vgi +R (Ti − Tw) + L(Ti)− L(Tw) = 0,

(3.25)
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4 Dimensionless equations of motion

We now consider the dimensionless form of the governing equations. The
dimensionless variables are denoted by the same letters but with an additive
tilde sign. In particular, van der Waals equation of state (2.1) in dimension-
less form is:

p̃ =
T̃

ṽ − b̃
− ã

ṽ2
. (4.26)

with

ã =
a

p0 v20
, b̃ =

b

v0
, T̃ =

T

T0
, p̃ =

p

p0
, ṽ =

v

v0
, (4.27)

where p0, T0 are defined in Section 2 and v0 is defined from p0 v0 = RT0. We
also introduce the dimensionless variables associated with capillary pressure
term, specific volumes and flow rate:

P̃i =
Pi
p0
, k̃ =

k

p0
, ṽgi =

vgi
v0
, ṽli =

vli
v0
, q̃ =

q

q0
with q0 =

√
p0
v0
.

The equation (3.16) takes the following form:

P̃i − 1 + q̃2 (ṽgi − ṽli) = 0,

The dimensionless flow rate q̃ is very small. Indeed, when the solid surface
temperature is close to the Leidenfrost temperature, the lifetime of liquid dra-
matically increases, typically by a factor of 500 associated with the existence
of a vapor layer isolating the liquid bulk. For example, a millimeter liquid
layer on a duralumin surface at 200◦ Celsius is observed to float for more than
a whole minute [6, 34]. So, the fluid velocity due to the liquid evaporation
is about 1.7 × 10−5 m s−1, and the flow rate q ≈ 1.7 × 10−2 kg m s−1. For

q0 =

√
p0
v0
≈ 245 kg m s−1, one has q̃ ≈ 7× 10−5 � 1. Consequently, we can

neglect q̃2 in the dimensionless governing equations.

The water vapor at pressure p0 can be considered as a perfect gas and we
obtain from Eqs. (3.16)–(3.17):

pw ≈ Pi ≈ p0, p0 vw ≈ RTw.

In dimensionless form we get:

ṽw ≈ T̃w and P̃i ≈ p̃w ≈ 1.
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The pressure in vapor at temperature Tw is also the atmospheric pressure p0.

From pi vgi = RTi, we obtain as a consequence of motion equation in
domain (i):

T̃i = p̃i ṽgi = (P̃i − k̃) ṽgi and P̃i ≈ 1. (4.28)

Property:
Since k > 0 (see Appendix C), we must have T̃i/ṽgi < 1. The limit case

corresponds to:
T̃i = ṽgi . (4.29)

We hypothesize that the condition (4.29) defines the value of the Leidenfrost
temperature. In the following we will show that this hypothesis fits with
experimental observations.

5 Dimensionless equations of energy

5.1 Liquid–vapor interface (i)

The condition (3.18) across the liquid–vapor interface writes:

1

2
q2 v2gi + µ(vgi , Ti) + k vgi =

1

2
q2 v2li + µ(vli , Ti),

and Eq. (2.2) yields:

1

2
q2v2gi+kvgi−RTi

{
Log

(
vgi − b
vli − b

)
− b
(

1

vgi − b
− 1

vli − b

)}
+2a

(
1

vli
− 1

vgi

)
= 0.

As proved in Section 4 we can neglect q̃2 and one obtains:

k̃ ṽgi − T̃i

{
Log

(
ṽgi − b̃
ṽli − b̃

)
− b̃

(
1

ṽgi − b̃
− 1

ṽli − b̃

)}
+ 2ã

(
1

ṽli
− 1

ṽgi

)
= 0.

(5.30)

5.2 Non-isothermal vapor-layer (b)

For the specific heat at constant pressure cp, we choose a quadratic model in
temperature (see Figure 2):

cp(T ) = H1 + 2H2 T + 3H3 T
2. (5.31)
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By integration, we obtain:∫ Ti

Tw

cp(T )dT = H1 (Ti − Tw) +H2

(
T 2
i − T 2

w

)
+H3

(
T 3
i − T 3

w

)
.

This is the custom to consider locally a linear approximation for L(T ) [35]:

L(T ) = L0 + L1 T where L1 < 0. (5.32)

With (5.31) and (5.32), Eq. (3.25) becomes:

1
2
q2
(
v2gi − v

2
w

)
+ 2 k vgi +H1 (Ti − Tw) +H2 (T 2

i − T 2
w) +H3 (T 3

i − T 3
w)

+R (Ti − Tw) + L1 (Ti − Tw) = 0.
(5.33)

Neglecting terms associated with q̃2, dimensionless form of (5.33) writes:

2 k̃ ṽgi + H̃1

(
T̃i − T̃w

)
+ H̃2

(
T̃ 2
i − T̃ 2

w

)
+ H̃3

(
T̃ 3
i − T̃ 3

w

)
+
(
T̃i − T̃w

)
+ L̃1

(
T̃i − T̃w

)
= 0,

(5.34)

where, H̃1 =
H1

R
, H̃2 =

H2 T0
R

H̃3 =
H3 T

2
0

R
, L̃1 =

L1

R
.

5.3 Consequences

In dimensionless form, Eq. (4.26) writes:(
ṽli − b̃

)
ṽ2li − T̃i ṽ

2
li

+
(
ṽli − b̃

)
ã = 0. (5.35)

Using (4.28), one obtains:

k̃ ṽgi = ṽgi − T̃i. (5.36)

Taking account of Eqs. (5.30), (5.34) and (5.35), and by using relation (5.36),
the system allowing to solve our problem is:
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ṽgi − T̃i − T̃i

{
Log

(
ṽgi − b̃
ṽli − b̃

)
− b̃

(
1

ṽgi − b̃
− 1

ṽli − b̃

)}

+ 2 ã

(
1

ṽli
− 1

ṽgi

)
= 0,

2
(
ṽgi − T̃i

)
+ H̃1

(
T̃i − T̃w

)
+ H̃2

(
T̃ 2
i − T̃ 2

w

)
+ H̃3

(
T̃ 3
i − T̃ 3

w

)
+
(
T̃i − T̃w

)
+ L̃1

(
T̃i − T̃w

)
= 0,

T̃i −
(
ṽli − b̃

) ( ã

ṽ2li
− 1

)
= 0.

(5.37)

System (5.37) is a system of three equations relatively to unknowns ṽgi , ṽli , T̃i.

6 Numerical study

6.1 Values of specific isobaric capacities of water vapor

The table, giving the values of specific isobaric capacities for water vapor, is
taken from [19, 35].

T oC 90 ◦C 100 ◦C 120 ◦C 140 ◦C 160 ◦C 180 ◦C 200 ◦C
T oK 363 ◦K 373 ◦K 393 ◦K 413 ◦K 433 ◦K 453 ◦K 473 ◦K
cp 2042.9 2080 2177 2310.9 2488.3 2712.9 2989.5

Table 1: Isobaric heat capacity of water vapor is expressed in J kg−1 K−1.
The different temperature values are given together in degrees Celsius and
Kelvin.

The following quadratic relation is used linking the heat capacity at constant
pressure (in J kg−1 K−1) as a function of the temperature T expressed in
degrees Kelvin:

cp(T ) = 8329 + 37.13T − 0.05460T 2. (6.38)
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Figure 2: Graph associated with experimental Table 1 and Relation (6.38).
The x-axis indicates the Kelvin temperature, and the y-axis indicates the
corresponding isobaric heat capacity cp expressed in J kg−1 K−1. The dots
represent cp values coming from experimental Table 1.

Then ∫ Ti

Tw

cp(T )dT = H1 (Ti − Tw) +H2

(
T 2
i − T 2

w

)
+H3

(
T 3
i − T 3

w

)
,

with
H1 = 8329, H2 = 18.56, H3 = −0.01820.

Here and in the following, we do not indicate SI – dimensions of Hi coeffi-
cients. The experimental values of cp are given in Table 1. The corresponding
approximation (6.38) is shown in Fig. 2. We see that Relation (6.38) fits
perfectly with experiment values.

6.2 Values of latent heat of vaporization for water

The table giving the values of latent heat of vaporization for water as a
function of temperature is taken from [19, 35]. Usually, a local linear ap-
proximation of the latent heat L(T ) in kJ kg−1 (kilojoule per kilogram) is
used as a function of temperature T expressed in degrees Kelvin. Below, we
consider two very close approximations of L(T ) to understand how the results
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T ◦C 90 ◦C 100 ◦ C 110 ◦C 120 ◦C 130 ◦C 140 ◦C 150 ◦C 160 ◦C 170 ◦C 180 ◦C 190 ◦C 200 ◦C
T ◦K 363 ◦K 373 ◦ K 383 ◦K 393 ◦K 403 ◦K 413 ◦K 423 ◦K 433 ◦K 443 ◦K 453 ◦K 463 ◦K 473 ◦K
L 2283.3 2256.4 2229.6 2202.1 2173.7 2144.3 2113.7 2082.0 2048.8 2014.2 1977.9 1939.7

Table 2: The latent heat of liquid water to be transformed into vapor is
expressed in kJ kg−1. The different temperature values are given both in
degrees Celsius and Kelvin.

obtained are sensible to experimental errors in measuring of the latent heats.
Indeed, the data shown in Table 6.2 correspond to static measurements. In
dynamics, the static latent heat is only a rough approximation: we do not
take account of the heat radiation, physico-chemical state and geometry of
the heating surface, non-equilibrium process of evaporation, etc.

• First linear approximation:

L(T ) = 3295− 2800T (6.39)

• Second linear approximation:

L(T ) = 3385− 2900T (6.40)

These two close approximations are shown in Fig. 3.
What matters is the difference of the latent heats L(Ti) and L(Tw). Hence,
only the slope in T is relevant. As we will see, the variation of 3% of slopes
between (6.39) and (6.40), implies a sensible variation of the Leidenfrost
temperature.

6.3 Calculations of Leidenfrost’s temperature

We solve the system (5.37) by using the software MathematicaTM . As a and
b have a little variation with temperature, we take:

a ≈ 1.488× 103 m5 s−2 and b ≈ 9.212× 10−4 m3 kg−1,

as intermediate values associated with (2.4) and (2.5). Thus, (4.27) yields:

ã = 5.19685× 10−3 and b̃ = 5.48001× 10−4.
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Figure 3: The linear approximations of the latent heat in kJ kg−1 expressed
by (6.39) (in yellow) and (6.40) (in blue) are shown as functions of the Kelvin
temperature. The dots represent the values of L(T ) from Table 2.
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Figure 4: Graphs associated with the k values in the first linear approxima-
tion (6.39). The x-axis is associated with the Celsius temperature and the
y-axis with the pressure k expressed in Pascal. The dots represented k values
calculated with the sofware MathematicaTM .
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Tw ◦C 93.5 ◦C 100 ◦C 119 ◦ 137 ◦C 156 ◦C 175 ◦C 193 ◦C 212 ◦C
T̃w 0.983 1 1.05 1.10 1.15 1.20 1.25 1.30
ṽgi 0.983 0.977 0.965 0.958 0.960 0.971 0.994 1.032
T̃i 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
ṽli 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621

Table 3: Calculations of ṽgi , T̃i, ṽli as a function of Tw by using the first
linear approximation (6.39).

For the first linear approximation (6.39) the corresponding Table 3 is
formed. The condition ṽgi = T̃i corresponds to the fact that k changes its
sign. The value of Tw associated with bifurcation (4.29) is our definition of
the Leidenfrost temperature which will be denoted by TL. From the Table
3 one can see that T̃i > ṽgi at T̃w = 1.20 but T̃i < ṽgi at T̃w = 1.25. At
T̃w = T̃L ≈ 1.23 one has T̃w = ṽgi . This critical value is the Leidenfrost
temperature T̃L. In this case, TL ≈ 185 ◦C.

For Tw < TL (k < 0) the liquid film sticks to the solid surface by causing
the nucleate boiling. For Tw > TL (k > 0) the vapor film exists. In Fig. 4,
we represent the value of k as a function of Tw in degrees Celsius.

Tw ◦C 93.5 ◦C 100 ◦C 119 ◦ 137 ◦C 156 ◦C 175 ◦C 193 ◦C 212 ◦C
T̃w 0.983 1 1.05 1.10 1.15 1.20 1.25 1.30

ṽgi 0.983 0.975 0.958 0.946 0.941 0.947 965 997
T̃i 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
ṽli 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621 0.000621

Table 4: Calculations of ṽgi , T̃i, ṽli as a function of Tw by using the second
linear approximation (6.40) .

For the second linear approximation (6.40) the corresponding Table 4 is
formed. The results are similar but the associated temperature corresponds
to T̃L ≈ 1.28 i.e. TL ≈ 204 ◦C. On Fig. 5, we represent the value of k as a
function of Tw.

When T̃i is eliminated from the third equation of (5.37), only two equa-
tions for vli and vgi have to be solved. We show in Fig. 6 the intersection
of the two corresponding curves for the the first linear approximation (6.39)
and for the value of T̃w = 1.23 corresponding to Tw = 185◦ Celsius. The
intersection point is not sensitive to the choice of parameters ã and b̃.
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Figure 5: Graphs associated with the k values in the second linear approx-
imation (6.40). The x-axis is associated with the Celsius temperature and
the y-axis with the pressure k expressed in Pascal. The dots represented k
values calculated with the software MathematicaTM .

In the literature, a wide range of values of Leidenfrost’s temperature were
measured depending on the surface characteristics [12]. It is the main rea-
son we give two close approximations for the latent heat of vaporisation.
These two approximations are very close but the two temperatures TL are
noticeably different. Such quite wide dispersion of values of the Leidenfrost
temperature was experimentally observed [6, 11]. We recall that one of the
possible reason of this dispersion is the surface physico-chemical character-
istics. The temperature TL ≈ 150 ◦ Celsius corresponds to the lowest value
obtained experimentally, but depending on the characteristics of the surface,
the Leidenfrost temperature can be much higher than TL ≈ 204 ◦Celsius [12].

Another important observation results in the computation of temperature
Ti of the liquid bulk. The temperature of the liquid was first measured
in the 19th century by Boutigny [11] who discovered that temperature Ti
is lower than 100 ◦ Celsius. Precise measurements give the temperature of
liquid bulk between 92◦ and 94◦ Celsius [36]. In our model, the temperature
of interface is Ti ≈ 93.5 ◦ Celsius corresponding to T̃i ≈ 0.983. For both
approximations (6.39) and (6.40) the Ti values are the same. This result is
another confirmation of the consistency of our model.

Based on the variation of k one can simply explain the Leidenfrost phe-
nomenon as follows. If k > 0, the thermodynamic pressure p is lower in the
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Figure 6: Contour–graphs associated with the two first equations of system
(5.37) are shown in the case T̃w = 1.23, when T̃i is eliminated from the third
equation. The Z − shape curve corresponds to the equation (5.37)2, the
second curve corresponds to (5.37)1. The horizontal (vertical) axis indicates
dimensionless vapor and liquid specific volumes, respectively. The curves
intersect transversally in a unique point. These graphs prove that solution
is little sensitive to the approximation of physical parameters.
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vapor phase just near the liquid-vapor interface compared to the pressure
p0 near the surface. This results to a detachment of the liquid film from
the surface. On the contrary, if k < 0, the thermodynamic pressure p is
higher, and liquid film wets the surface causing a violent boiling. In fact
the whole process is highly non-stationary and cannot be described by the
stationary equations. However, our approach gives a reasonable estimation
of the Leidenfrost temperature.

7 Conclusion

We study the film boiling phenomenon in the framework of the internal cap-
illarity model. The capillary pressure term k allows us to understand the
phenomenon and to determine the Leidenfrost temperature. The boiling cri-
sis corresponds to k > 0, and Leidenfrost’s temperature to k = 0. The model
predicts the Leidenfrost temperature which fits with experimental results.
A second important result is the estimation of the temperature of the liquid
bulk. It is proved that its value is below the boiling temperature at atmo-
spheric pressure. This result is also compatible with the experimental data
on the liquid bulk temperature.
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A Extra-condition at dynamical liquid-vapor

interfaces

Extra–condition (3.21) does not come from conservation laws. It is a natural
boundary condition coming from Lagrangian formulation of the problem. It
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already appeared in the study of discontinuous solutions of dispersive equa-
tions [25, 28, 29]. To give a proof in one-dimensional case, we consider a
general action functional:

a{y} =

∫
I

L(y, y′)dx,

y(x) is an unknown function, and the integral is taken over a finite interval
I. The values of y(x) are fixed at the ends of interval I. We are looking for
y(x) on which the functional is extremal and we do not assume that y(x) is
smooth. The variation of a can be written as:

δa =

∫
I

{
δL
δy

δy +
d

dx

(
∂L
∂y′

δy

)}
dx, with

δL
δy

=
∂L
∂y
− d

dx

(
∂L
∂y′

)
.

In the case of non-smooth (or ”broken”) extremal curves, the same Euler–
Lagrange equation should be satisfied for each smooth part of the extremal
curve:

δL
δy

= 0. (A.41)

Together with (A.41) an additional condition should also be satisfied at the
”broken” point: [

∂L
∂y′

]
= 0. (A.42)

In the case of capillary fluids, L is quadratic with respect to y′ because λ
is constant. It implies that y′ is continuous at the broken point. Condition
(A.42) is usually called Weierstrass-Erdmann condition, or corner condition.
In particular, if a piecewise C2–solution y(x) is constant on some interval of
x, but is not constant on a neighboring interval, this solution should have a
zero slope at the broken point.

B Special cases of capillary fluid motions

B.1 Isothermal motions

In the case of isothermal stationnary motion, the whole entropy of domain
Dt corresponding to the bulk (a) and interface (i) is:∫

Dt

ρη dD = S0, (B.43)
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where S0 is constant (independent of time t), and dD is the elementary vol-
ume. Due to constraint (B.43), Hamilton’s action is modified into: there
exists a constant Lagrange multiplier T0 such that the new Lagrangian L is
associated with α−T0 η which is the specific free energy at constant temper-
ature. The application of the Hamilton principle yields the same equations
of motion where α has to be replaced by α− T0η. Consequently, the specific
enthalpy is replaced by the chemical potential µ. The variation of η implies
T − T0 = 0.

B.2 Motions at constant pressure

In the case of stationnary motions, if domainDt is an invariant control volume
through which the steam flows, it verifies:∫

Dt

dD = V0, (B.44)

where V0 is constant (independent of time t). Due to constraint (B.44),
Hamilton’s action is modified into: there exists a constant Lagrange multi-
plier p0 such that the new Lagrangian L is associated with H = α + p0/ρ,
which is the specific enthalpy at constant pressure p0. Consequently, in Sub-
section 3.1, in the energy equation, the specific energy should be replaced by
the specific enthalpy at constant pressure p0, and the equation of motion is
unchanged.

C Isothermic oscillations of the vapor density

near liquid-vapor interface (i)

We look for oscillating stationary vapor flow in the immediate vicinity of
interface (i) where the temperature is Ti. The governing equation of motions
in the vapor phase is deduced from Eqs (3.13)–(3.14), and writes in the form:

λ
d2ρ

dx2
= µ(ρ, Ti) +

q2

2ρ2
+ r, where r = const.

The vapor is considered as an ideal gas; we get the potential µ, defined up
to an additive constant which can be included in r:

µ(ρ, Ti) = c2Ti Log ρ, where c2Ti = RTi.
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Here cTi denotes the isothermal sound velocity of vapor at temperature Ti.
To obtain oscillatory solutions, we choose a special value of r replacing it by
a new constant ρ?? :

λ
d2ρ

dx2
= c2Ti Log

(
ρ

ρ??

)
+

q2

2ρ2
− q2

2ρ2??
. (C.45)

Integrating Eq. (C.45), one obtains:

λ

2

(
dρ

dx

)2

= F (ρ)− d, where d = const. (C.46)

with

F (ρ) = c2Ti

(
ρ Log

(
ρ

ρ??

)
− ρ+ ρ??

)
− q2

2ρ

(
1− ρ

ρ??

)2

.

By construction,

F (ρ??) = 0,
dF

dρ
(ρ??) = 0.

The variation of F for M2
i = q2/(ρgi cTi)

2 < 1 is shown in Figure 7 (1). It has
a unique maximum point ρ? such that 0 < ρ? < ρ??. Moreover, F → −∞
as ρ → +0. Hence, for any d such that 0 < d < F (ρ?) one has a solution of
(C.46) oscillating between ρimin and ρimax, where F (ρimin) = F (ρimax) = d
(see Figure 7). The solution of (C.46) is schematically shown in Figure 8
(on the left). The liquid–vapor interface is considered as a discontinuity.
So, the density jumps from ρli to the extreme value of the vapor density (see
the extra condition (3.21)). Since we have two possible values (minimum and
maximum values), the choice has to be done. Obviously, the jump from ρli to
ρimax has a smaller amplitude compared to that from ρl to ρimin, and hence
the smallest energy variation. Also, physically, only this choice allows us
to obtain ‘levitation’ of the liquid film. Such a stationary periodic solution
gives us just an idea about a strong density variation near the interface.
Indeed, due to the boundedness of vapor region and the fact that a real flow
is multi-dimensional, the vapor region represents rather a transition zone
from oscillatory regime to a constant solution near the surface (see the right
figure in Figure 8). However, this schematic picture does not influence the
choice of the jump relations.

1In liquid water ρl ' 103kg/m3. If boiling–evaporation time of a liquid film with
10−2 m thickness is about 100 s; then u ' 10−4m/s and for the liquid, the flow rate
q ' 10−1kg/m2. s. In the vapor ρl ' 1 kg/m3 and consequently u ' 10−1m/s, and
M2 ' 10−7 < 1.
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Figure 7: If M2
i < 1, the curve F (ρ) has a local maximum at ρ? ∈

] ρimin, ρimax[, and a local minimum at ρ?? ∈ ] ρimax,+∞[. We recall that
ρ = ρ?? is a formal value of ρ and that the physical part of the curve is only
the red part of F (ρ) corresponding to oscillations of density between ρimin
and ρimax.
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Figure 8: Left figure : The vapor density oscillates near the isothermal liquid-
vapor interface. At the interface the density jumps (and decreases) from
ρli = 1/vli to ρvi = 1/vgi . The vapor density ρvi being oscillating between two
extrema ρimin and ρimax where dρ/dx = 0, so we have to choose between these
two values. The jump from ρli to ρimax has a smaller amplitude compared
to that from ρl to ρimin, and hence a smaller energy decrease. Consequently,
d2ρ/dx2 < 0 when ρvi = ρimax and k = −λ ρ d2ρ/dx2 > 0. Right figure : case
of dissipative vapor flow. The oscillations of vapor density vanish near the
surface boundary layer.
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