
HAL Id: hal-03617759
https://hal.science/hal-03617759

Preprint submitted on 23 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FAST FUSION OF HYPERSPECTRAL AND
MULTISPECTRAL IMAGES : A TUCKER

APPROXIMATION APPROACH
Clémence Prévost, Pierre Chainais, Remy Boyer

To cite this version:
Clémence Prévost, Pierre Chainais, Remy Boyer. FAST FUSION OF HYPERSPECTRAL AND
MULTISPECTRAL IMAGES : A TUCKER APPROXIMATION APPROACH. 2022. �hal-03617759�

https://hal.science/hal-03617759
https://hal.archives-ouvertes.fr


FAST FUSION OF HYPERSPECTRAL AND MULTISPECTRAL IMAGES : A TUCKER
APPROXIMATION APPROACH
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ABSTRACT
Hyperspectral super-resolution based on coupled Tucker decomposi-
tion has been recently considered in the remote sensing community.
The state-of-the-art approaches did not fully exploit the coupling in-
formation contained in hyperspectral and multispectral images of the
same scene. In this paper, we propose a new algorithm that over-
comes this limitation. It accounts for both the high-resolution and
the low-resolution information in the model, by solving a set of least-
squares problems. In addition, we provide exact recovery conditions
for the super-resolution image in the noiseless case. Our simulations
show that the proposed algorithm achieves good reconstruction with
low complexity.

Index Terms— hyperspectral super-resolution, data fusion,
low-rank tensor factorizations, recovery, least-squares problem

1. INTRODUCTION

Hyperspectral devices produce hyperspectral images (HSI) with high
spectral resolution. The compromise between signal-to-noise ratio,
spatial and spectral resolutions force the HSIs to have low spatial
resolution [1]. On the other hand, multispectral images (MSI) have
high spatial resolution, but a restricted number of spectral bands.
The hyperspectral super-resolution (HSR) problem [2] recovers a
super-resolution image (SRI) with both high spatial and high spectral
resolutions from co-registered HSI and MSI of the same scene.

Matrix-based approaches to HSR [3, 4, 5, 6] performed a cou-
pled low-rank factorization of the matricized HSI and MSI. More
recently, tensor approaches were envisioned, motivated by the 3-
dimensional structure of the observations, and possible uniqueness
guarantees offered by tensor low-rank factorizations. The works of
[7, 8] were the first to consider tensor-based HSR and paved the way
for various works, see, e.g., [9, 10, 11, 12].

The Tucker decomposition was steadily considered [13, 9, 12]
for HSR. In [9], two algorithms based on the Singular Value
Decomposition (SVD) were proposed [9]. The first one, named
Super-resolution based on COupled Tucker Tensor approximation
(SCOTT), recovered the Tucker factors based on the SVD followed
by solving a least-squares problem. The second one assumed that
degradation between the HSI and SRI was unknown, therefore it
was referred to as BSCOTT (Blind-SCOTT). The Tucker model in
[9] was extended to account for localized changes in [12].

These algorithms had a major limitation: they did not fully ex-
ploit the coupling information between the observations. The blind
algorithm BSCOTT only accounted for a portion of the degradation.
In contrast, SCOTT was non-blind but was highly sub-optimal. In-
deed, the SVD step only extracted high-resolution information from
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one single observation. Hence the low-resolution information avail-
able from the observation model was totally ignored. Since no iter-
ations were performed, the solution to the least squares problem did
not incorporate the coupling information to the Tucker factors.

In this paper, we propose a new Tucker-based algorithm that
overcomes the limitations of SCOTT and BSCOTT. It fully accounts
for the coupling constraints in the HSR model. We propose a simple
way to incorporate additional information to the Tucker factors. The
SVD is performed on both observations and is followed by solving
a least-squared problem. We prove that exact recovery of the SRI
is still achievable with the proposed approach. Our experiments on
real datasets show that the proposed approach achieves good recon-
struction performance with low complexity.

Notation. We follow the notations of [14, 15]. We use
the symbols � and � for the Kronecker and the Khatri-Rao
products. We use vec{·} for the standard column-major vector-
ization of a tensor or a matrix. Operation •p denotes contrac-
tion on the pth index of a tensor; for instance, for a tensor A
and a matrix M, [A •1 M]`jk =

∑
`AijkMi`. For a tensor

Y ∈ RI×J×K , its unfoldings are Y(1) ∈ RJK×I , Y(2) ∈ RIK×J

and Y(3) ∈ RIJ×K . We use shorthand notation for the multilinear
product: [[G; U,V,W]] = G •1 U •2 V •3 W. It can be ob-
tained from the Higher-Order SVD (HOSVD). If R1 = rank(Y(1)),
R2 = rank(Y(2)) and R3 = rank(Y(3)), then the multilinear
product is called Tucker decomposition of Y ∈ RI×J×K and
(R1, R2, R3) < (I, J,K) are the multilinear ranks.

2. HYPERSPECTRAL SUPER-RESOLUTION

2.1. Problem statement and observation model

We consider an MSI YM ∈ RI×J×KM and HSI YH ∈ RIH×JH×K

acquired from sensors (for instance, LANDSAT or QuickBird). The
MSI has higher spatial resolution than the HSI (IH < I, JH < J),
but lower spectral resolution (KM < K). The YM and YH are
viewed as two degraded versions of a single SRI Y ∈ RI×J×K .
The HSR problem consists in recovering Y from YM and YH .
As commonly adopted in the literature [7, 9, 10], we consider the
following degradation model:{

YH = Y •1 P1 •2 P2 + EH ,
YM = Y •3 P3 + EM ,

(1)

where EM and EH are noise terms with independent and iden-
tically distributed entries, having zero mean and variances σ2

H and
σ2
M , respectively. The matrix P3 ∈ RKM×K is the spectral degra-

dation matrix, and P1 ∈ RIH×I , P2 ∈ RJH×J are the spatial
degradation matrices, i.e., we assume (for simplicity) that the spa-
tial degradation is separable. This assumption is reasonable thanks
to the commonly accepted Wald’s protocol [16], that uses isotropic
Gaussian blurring and downsampling.



Similarly to [9], we utilize a Tucker-based coupled model. As-
sume that the SRI Y admits a Tucker decomposition with given mul-
tilinear ranks (R1, R2, R3) as

Y = [[G; U,V,W]], (2)

where U ∈ RI×R1 , V ∈ RJ×R2 and W ∈ RK×R3 are the fac-
tor matrices and G ∈ RR1×R2×R3 is the core tensor. Model (1)
becomes {

YH = [[G; P1U,P2V,W]] + EH ,
YM = [[G; U,V,P3W]] + EM .

(3)

The aim of HSR is to recover the factors U, V, W and G from (3).

2.2. Tucker-based HSR: state-of-the-art and its limitations

In [9], a Tucker-based algorithm called SCOTT was proposed. It
consisted in three simple steps. First, Û, V̂, Ŵ were recovered
as the dominant right singular vectors of the unfoldings Y

(1)
M , Y

(2)
M

and Y
(3)
H , respectively. Then, the tensor Ĝ was reconstructed as:

argmin
G

fT (G, Û, V̂,Ŵ) = λ‖YH − [[G; P1Û,P2V̂,Ŵ]]‖2F

+ ‖YM − [[G; Û, V̂,P3Ŵ]]‖2F , (4)

where λ =
σ2
M

σ2
H

. This step consisted in minimizing the quadradic
cost function:∥∥∥∥∥∥∥∥∥∥

[√
λŴ�P2V̂�P1Û

PMŴ� V̂� Û

]
︸ ︷︷ ︸

X

vec{Ĝ} −
[√

λ vec{YH}
vec{YM}

]
︸ ︷︷ ︸

z

∥∥∥∥∥∥∥∥∥∥

2

F

,

which could be solved through normal equations and yielded

vec{Ĝ} =
(
XTX

)−1

XTz, (5)

see [9] for more details. Finally, the low-rank approximation of the
SRI was reconstructed using (2). In [9], experiments showed the
good performance of SCOTT with a low computational complexity.

However, SCOTT suffered from major limitations. First, the es-
timation of the factor matrices was sub-optimal. For instance, Û was
recovered only from YM , hence the low-resolution spatial informa-
tion contained in YH was totally ignored. Recovery of V̂ and Ŵ
suffered from the same drawbacks. In other words, the second step
of SCOTT did not incorporate at all the low-resolution information.
Hence SCOTT did not consider all the information from (3).

2.3. Proposed approach

In this paper, we propose an improved Tucker-based algorithm that
overcomes the limitations of SCOTT. The new estimation strategy
accounts for both the high-resolution and the low-resolution infor-
mation available in model (1). This strategy was considered in [8]
for estimation of W only.

In model (1), high-resolution information is always directly
available in at least one observation. While YH contains high-
resolution spectral information, YM contains high-resolution spa-
tial information. Therefore, one observation can always be used as
reference for recovery of Û, V̂, Ŵ. The proposed approach will

be applied for separate recovery of these matrices. First, we will
utilize the reference observation to obtain a subspace describing the
high-resolution information. We will also extract information from
the other tensor even if its content has been degraded by the obser-
vation model. Finally, we will reconstruct the low-rank factor as a
tradeoff between the two sources of information. For each matrix,
we will consider tensor unfoldings corresponding to the dimension
of interest. In the following, we will explain how to obtain Ŵ. The
same strategy holds accordingly for Û and V̂.

We wish to recover a low-rank estimate Ŷ of the SRI such that

Ŷ(3) = DŴT, (6)

where D ∈ RIJ×R3 and Ŵ ∈ RK×R3 is the factor matrix contain-
ing high-resolution spectral information.

In practice, high-resolution spectral information is directly avail-
able from HSI YH . It can be obtained from the SVD with rank
R3 < K, which gives the solution to the low-rank approximation
problem of Y

(3)
H in the least-squared sense [17]. This operation pro-

duces a tensor ZH ∈ RIH×JH×K such that

Z
(3)
H = LHΣHWT

H , (7)

where WH ∈ RK×R3 contains the dominant right singular vec-
tors of Z

(3)
H . Its columns describe the subspace containing high-

resolution information [18]. We want to ensure the coherence be-
tween WH and Ŵ. In other words, Ŵ needs to satisfy

ŴT = argmin
ŴT
‖ŴT −WT

H‖2F . (8)

In our approach, we also want to exploit the degraded spectral
information contained in YM . Under the assumption that R3 ≤
KM , this information can be obtained similarly to (7) by denoising
of Y

(3)
M and yields a tensor ZM ∈ RI×J×KM such that

Z
(3)
M = LMΣMWT

M , (9)

where WM ∈ RKM×R3 describes the subspace containing spectral
information degraded by P3.

Coherence between degraded information and high-resolution
information projected onto the span of WH leads Ŵ to satisfy

ŴT = argmin
ŴT
‖ŴTWHWT

HPT
3 −WT

M‖2F . (10)

Finally, we wish to recover Ŵ as a tradeoff between the two
sources of information. By combining (8) and (10), we want that

ŴT = argmin
ŴT
‖ŴT WHWT

HPT
3︸ ︷︷ ︸

A

−WT
M‖2F + λ‖ŴT −WT

H‖2F ,

(11)

which can be obtained as

ŴT =
(
WT

MAT + λWT
H

)(
AAT + λI

)−1

. (12)

The matrices Û and V̂ can be recovered similarly as

ÛT =
(
λUT

HBT + UT
M

)(
λBBT + I

)−1

, (13)

V̂T =
(
λVT

HCT + VT
M

)(
λCCT + I

)−1

, (14)



Algorithm 1: Proposed approach
input : YM , YH , R1, R2, R3

output: Ŷ ∈ RI×J×K
1. UH ,VH ,WH ←HOSVD(YH),
UM ,VM ,WM ←HOSVD(YM );

2. ÛT ← (13), V̂T ← (14), ŴT ← (12);
3. Ĝ ← argmin

G
fT (G, Û, V̂,Ŵ);

4. Ŷ = [[Ĝ; Û, V̂,Ŵ]].

by setting B = UMUT
MPT

1 and C = VMVT
MPT

2 , respectively.
The proposed approach is summarized in Algorithm 1.
The ranks (R1, R2, R3) cannot exceed (IH , JH ,KM ).As sug-

gested in [8], we circumvent this limitation by applying Algorithm 1
to corresponding non-overlapping subblocks of the MSI and the HSI.
This is based on the hypothesis that smaller blocks in the observa-
tions are more likely to contain a small number of materials and spa-
tial features [19]. Thus, YH and YM are divided into corresponding
L× L subblocks of spatial dimensions IH

L
× JH

L
and I

L
× J

L
. This

strategy is summarized in Algorithm 2.

Algorithm 2: Block version of Algorithm 1
input : YM , YH , R1, R2, R3

Split YH and YM into corresponding subblocks;
for ` = 1, . . . , L do

Apply Algorithm 1 to the pair of blocks of YH and
YM , and reconstruct the corresponding block of Ŷ .

end

The total computational complexity of Algorithm 1 is

• O(min(R1, R2, R3)(IJKM + IHJHK)) flops for the trun-
cated SVDs;

• O(min(R3
3 + (R1R2)

3;R3
1 + (R2R3)

3)) flops for solving
the Sylvester equation in Step 4;

and it is dominated by the cost of the truncated SVD. It is smaller
than that of SCOTT, which required O(min(R1, R2)IJKM +
R3IHJHK) flops for recovery of the factor matrices.

3. RECOVERABILITY OF THE COUPLED MODEL

In this subsection, we give uniqueness results for the SRI tensor re-
covery by the approach of Algorithm 2.

3.1. Deterministic recovery

Theorem 3.1. Let a Tucker decomposition of Y with multilin-
ear ranks (R1, R2, R3) be Y = [[G; U,V,W]], where G ∈
RR1×R2×R3 , U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 have
full column rank. We also assume that there is no noise, i.e.,
EH ,EM = 0 in (1). If

rank
(
Y

(1)
M

)
=R1, rank

(
Y

(2)
M

)
=R2, rank

(
Y

(3)
H

)
=R3, (15)

and if

rank (P1U) = R1, rank (P2V) = R2, rank (P3W) = R3, (16)

then Algorithm 1 recovers Y correctly, i.e., there exists only one
Ŷ with multilinear ranks (R1, R2, R3) such that Ŷ •1 P1 •2 P2 =

YH and Ŷ •3 P3 = YM .

Conversely, if

rank(P1U)rank(P2U) < R1R2 and rank(P3W) < R3 (17)

then there exists infinitely many Ŷ of the form Ŷ = [[Ĝ; Û, V̂,Ŵ]]

such that Ŷ •1 P1 •2 P2 = YH and Ŷ •3 P3 = YM .

3.2. Generic recovery

Now, we formulate recovery guarantees in the generic case, i.e., that
hold for a random tensors with multilinear ranks (R1, R2, R3).

Theorem 3.2. Assume that P1 ∈ RIH×I , P2 ∈ RJH×J , and P3 ∈
RKM×K are fixed full row-rank matrices. Let

Y = [[G; U,V,W]],

where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K, and
U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random matrices,
distributed according to an absolutely continuous probability distri-
bution. We also assume that EM ,EH = 0 in (1).

If (R1, R2, R3) ≤ (IH , JH ,KM ), and

R1 ≤ R2R3, R2 ≤ R1R3 and R3 ≤ R1R2, (18)

then with probability 1 there exists a unique tensor Ŷ such that
ŶM = YM and ŶH = YH that can be recovered by Algorithm 1.

Proof. First, without loss of generality, we can replace P1, P2, P3

with the following of same size (see [9, Section V.B]):

P̃1 =

[
IIH
0

]T
, P̃2 =

[
IJH
0

]T
, P̃3 =

[
IKM

0

]T
. (19)

Therefore, under the assumptions on distribution of U, V, W
the following implications hold with probability 1,

R1 ≤ IH ⇒ rank(U1:IH ,:) = R1,

R2 ≤ JH ⇒ rank(V1:JH ,:) = R2,

R3 ≤ KM ⇒ rank(W1:KM ,:) = R3.

Next, we are going to show how (18) imply (15). We will prove it
only for the first condition (the others are analogous). Note that the
first unfolding can be written as

Y
(1)
M = (W1:KM ,: �V)G(1)UT. (20)

Due to the dimensions of the terms in the product, this matrix in
(20) is at most rank R1. Due to semicontinuity of the rank function,
Y

(1)
M will be generically of rank R1 if we can provide just a single

example of U, V, W, G, achieving the condition rank(Y(1)
M ) =

rank(U) = R1. Due to the dimension in (20), such an example can
be found under the conditionR1 ≤ min(R3,KM )R2. It is given by

U =

[
IR1

0

]
,V =

[
IR2

0

]
,W =

[
IR3

0

]
,G(1) =

[
IR1

0

]
,

which completes the proof.

Remark 3.3. Our conditions for exact recovery are formulated in
the noiseless case. This assumption can be justified by the fact that
real hyperspectral and multispectral images tend to have a high
signal-to-noise ratio. In practice, Theorem 3.2 guarantees exact re-
construction under some small additive noise, hence the ranks must
be chosen accordingly, as it will be discussed in Section 4.1.



4. EXPERIMENTS

The performance was evaluated using metrics used in [20], including
Reconstruction Signal-to-Noise Ratio (R-SNR), Cross-Correlation
(CC), Spectral Angle Mapper (SAM) and Relative dimensionless
Global Error in Synthesis (ERGAS). The runtime was evaluated us-
ing the tic and toc functions of MATLAB.

The matrices P1, P2 were generated following Wald’s protocol
[16] with a downsampling ratio d = 2 and a Gaussian kernel of size
q = 9. The matrix P3 contained the spectral response functions of
the Sentinel-2 instrument1. The HSI YH was obtained by degrada-
tion of the true SRI by P1 and P2 and the MSI YM was obtained by
spectral degradation by P3. The spectral bands of YH and YM were
normalized and the true SRI was denoised [21]. We compared our
algorithm to matrix-based approaches: HySure [5], CNMF [3] and
FUSE [23]. We also considered tensor methods: STEREO [7] for
CP decomposition, SCOTT [9] for Tucker and CB-STAR for block-
term decomposition [12]. We chose the ranks according to [12].

4.1. Choice of the ranks

We considered a portion of the Lockwood dataset with Y ∈
R88×88×173. We studied the impact of the multilinear ranks on
the performance of Algorithm 2. We considered a [2, 2]-block pat-
tern and a [4, 4]-block pattern. For each scenario, we computed
the R-SNR as a function of R1 = R2 and R3 for ranks satisfying
Theorem 3.2. The results were displayed in Figure 1.
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Fig. 1. R-SNR as a function of R1 = R2 and R3, [4, 4] (left) and
[2, 2]-block pattern (right), Lockwood.

High R-SNR was achieved even if the rank conditions were
very restrictive. The best R-SNR was obtained for R3 = 3 (resp.
R3 = 4), and large R1 = R2 . A drop of performance could be
observed for larger R3. Indeed, selecting high R3 would extract
least significant singular values, leading the reconstruction to be cor-
rupted by noise. In the following, the ranks were chosen according
to Figure 1 so that they maximized the R-SNR.

4.2. Reconstruction performance

The first dataset was Isabella Lake with Y ∈ R88×120×173. White
Gaussian noise was added to the HSI and MSI to yield 30dB SNR
each, thus λ = 1. For Algorithm 2, we considered ranks (11, 11, 5)
and (22, 22, 5) for the [4, 4] and [2, 2] splitting scenarios, respec-
tively. The results were available in Table 1 and the two best results
of each columns were shown in bold2. In Figure 2, we showed false
color plots of the reconstructed images. The RGB color space of the
reference SRI was used.

The CP-based algorithm STEREO and Algorithm 2 yielded the
best metrics. Our proposed approach performed slightly better than
SCOTT. Algorithm 2 with [4, 4] blocks had the lowest run time.

We then considered the Lockwood dataset. White Gaussian
noise was added to the HSI and MSI to yield 40dB and 10dB SNR,

1Available for download online.
2The numbers between brackets for Algorithm 2 denoted the number of

blocks.

Algorithm R-SNR CC SAM ERGAS Time (s)
SCOTT 25.360 0.9842 3.5026 9.3365 2.6874

Alg. 3 [4, 4] 27.318 0.9891 2.4733 6.6369 0.4384
Alg. 3 [2, 2] 27.373 0.9895 2.7335 6.9332 1.5724
STEREO [7] 27.870 0.9885 3.0376 9.5818 2.2347

CB-STAR [12] 26.787 0.9881 2.9085 7.7640 13.671
CNMF [3] 24.975 0.9882 2.5072 8.3609 6.6395
HySure [5] 22.073 0.9697 5.3823 18.208 13.353
FUSE [23] 24.505 0.9846 3.0626 7.6932 0.4650

Table 1. Reconstruction metrics, Isabella Lake.

Ref. STEREO HySure

SCOTTFUSE Alg. 3

Fig. 2. False color plots of reconstructed SRI, Isabella Lake.

respectively, thus we had λ = 1 · 10−6. We took [4, 4] and [2, 2]-
block patterns and we chose the ranks (11, 11, 3) and (22, 22, 4),
respectively. The results were shown in Table 2 and Figure 3.

Algorithm R-SNR CC SAM ERGAS Time (s)
SCOTT 1.1814 0.4432 32.640 170.89 0.5112

Alg. 3 [4, 4] 17.722 0.8641 4.8926 13.614 0.1834
Alg. 3 [2, 2] 16.321 0.8016 6.6554 19.108 0.7048
STEREO [7] 10.531 0.6456 15.635 50.665 2.0948

CB-STAR [12] 13.664 0.7528 10.052 26.174 44.966
CNMF [3] 16.617 0.8252 4.6671 27.234 2.5084
HySure [5] 17.565 0.8472 4.5703 12.735 7.3825
FUSE [23] 17.610 0.8716 3.2267 10.388 0.3455

Table 2. Reconstruction metrics, Lockwood.

Ref. STEREO HySure

SCOTTFUSE Alg. 3

Fig. 3. False color plots of reconstructed SRI, Lockwood.
The best metrics were provided by FUSE and Algorithm 2.

SCOTT had the worst performance since it relied only on the (very
noisy) MSI observation for estimation of Û and V̂. Algorithm 2
had runtime comparable to that of SCOTT.

5. CONCLUSION
We proposed a new Tucked-based algorithm for HSR. It is able
to fully exploit both high-resolution and low-resolution information
contained in the model. We showed that it reaches good performance
at a low complexity. In particular, it performs better than state-of-
the-art in scenarios when one observation is very noisy, with a com-
petitive runtime. Its good performance naturally raises the question
of its statistical efficiency: this matter will be addressed in future
works.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library
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