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Abstract

We construct solutions to the Gardner equation in terms of trigono-
metric and hyperbolic functions, depending on several real parameters.
Using a passage to the limit when one of these parameters goes to 0, we
get, for each positive integer N , rational solutions as a quotient of poly-
nomials in x and t depending on 2N parameters. We construct explicit
expressions of these rational solutions for orders N = 1 until N = 3.
We easily deduce solutions to the mKdV equation in terms of wronskians
as well as rational solutions depending on 2N real parameters.
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1 Introduction

We consider the Gardner equation in the following normalization

ut − 6u(1 + u)ux + uxxx = 0, (1)

where the subscripts x and t denote partial derivatives.
The introduction of this equation is attributed to Gardner [1] in 1968. It was
first considered [1] as an auxiliary mathematical tool in the derivation of the
infinite set of local conservation laws of the Korteweg de Vries equation. This
equation is a fundamental mathematical model for the description of weakly
nonlinear dispersive waves. It can describe nonlinear wave effects in several
physical contexts: for example, in plasma physics [2, 3], fluid flows [4], quan-
tum fluid dynamics [5], in dusty plasmas [6], in ocean and atmosphere [7]. It
is fundamental tool to describe large-amplitude internal waves [4, 8, 9]. These
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waves are such that their vertical amplitudes underwater can exceed 170 meters
as described in [10].
Many methods have been used to solve this equation, as for example the Hirota
method [11], the series expansion method [12], the mapping method [13] or the
method of leading-order analysis [14].
Recently published work on this equation can also be mentioned, such as [?, ?,
?, ?, ?]

Here, we used the Darboux transformation to construct different type of solu-
tions. We give a representation of solutions in terms of a quotient of a wronskian
of order N + 1 by a wronskian of order N . We get what we will call N -order
solutions which depend on 2N real parameters in terms of trigonometric or
hyperbolic functions. Then we construct rational solutions in performing a pas-
sage to the limit when one of these parameters goes to 0. We obtain rational
solutions as a quotient of polynomials in x and t, depending on 2N parameters.
We give explicit solutions in the simplest cases N = 1, 2, 3.
We easily deduce solutions to the mKdV equation and their corresponding ra-
tional solutions depending on 2N real parameters.

2 Nth-order solutions to the Gardner equation

in terms of wronskians

2.1 First type of solutions

2.1.1 Nth-order solutions in terms of wronskians of sine functions

We consider the Gardner equation

ut − 6u(1 + u)ux + uxxx = 0.

In the following, we will use the wronskian of order N of the functions f1, . . . , fN
which is the determinant denotedW (f1, . . . , fN ), defined by det(∂i−1

x fj)1≤i≤N, 1≤j≤N ,
∂ix being the partial derivative of order i with respect to x and ∂0xfj being the
function fj .
We consider aj , bj , arbitrary real numbers 1 ≤ j ≤ N . Then, we have the
following statement :

Theorem 2.1 Let fj, f be the functions defined by

fj(x, t) = sin

(

1

2
ajx+

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N,

f(x, t) = exp

(

1

2
(x− t)

) (2)

then the function u defined by

u(x, t) = ∂x ln

(

W (f1, . . . , fN , f)

W (f1, . . . , fN )

)

−
1

2
(3)
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is a solution to the Gardner equation (1) depending on 2N real parameters aj,
bj, 1 ≤ j ≤ N .

Remark 2.1 This result looks like to this given in [17], but with another similar
normalization of the Gardner equation

ut + 6u(1− u)ux + uxxx = 0. (4)

In this paper [17], the generating functions are hyperbolic and the choice of the
general solution f(x, t) gives another types of solutions to the Gardner equation.
Only solutions of orders 1 and 2 have been explicitly presented.

2.1.2 Some examples of solutions to the Gardner equation

To shortened the paper, we only give the solutions of order 1, 2 and 3 in the
case of generating trigonometric sinus functions.
Solution of order 1

Proposition 2.1 The function u defined by

u(x, t) = 1/2
a1

2

sin(1/2 a1x+ 1/2 a1
3t+ b1)(sin(1/2 a1x+ 1/2 a1

3t+ b1)− cos(1/2 a1x+ 1/2 a1
3t+ b1)a1)

.

is a solution to the Gardner equation (1) with a1, b1 arbitrarily real parameters.

Solution of order 2

Proposition 2.2 The function u defined by

u(x, t) =
n(x, t)

d(x, t)
, (5)

with
n(x, t) = −a2

4
−a1

4+a2
4(cos(1/2 a1x+1/2 a1

3t+b1))
2+a1

4(cos(1/2 a2x+1/2 a2
3t+

b2))
2
− a2

2a1
2(cos(1/2 a2x+1/2 a2

3t+ b2))
2
− a2

2a1
2(cos(1/2 a1x+1/2 a1

3t+ b1))
2 +

2 a2
2a1

2+a1
4 cos(1/2 a2x+1/2 a2

3t+b2)a2 sin(1/2 a2x+1/2 a2
3t+b2)−cos(1/2 a1x+

1/2 a1
3t+b1)a1

3a2
2 sin(1/2 a1x+1/2 a1

3t+b1)−a1
2 cos(1/2 a2x+1/2 a2

3t+b2)a2
3 sin(1/2 a2x+

1/2 a2
3t+ b2) + cos(1/2 a1x+ 1/2 a1

3t+ b1)a1a2
4 sin(1/2 a1x+ 1/2 a1

3t+ b1)

and,
d(x, t) = −2 (cos(1/2 a2x+1/2 a2

3t+b2))
2a2

2+2 (cos(1/2 a2x+1/2 a2
3t+b2))

2a2
2(cos(1/2 a1x+

1/2 a1
3t + b1))

2
− 2 sin(1/2 a2x + 1/2 a2

3t + b2) cos(1/2 a2x + 1/2 a2
3t + b2)a2

3 +

2 sin(1/2 a2x+ 1/2 a2
3t+ b2) cos(1/2 a2x+ 1/2 a2

3t+ b2)a2
3(cos(1/2 a1x+ 1/2 a1

3t+

b1))
2+4 sin(1/2 a1x+1/2 a1

3t+b1) cos(1/2 a2x+1/2 a2
3t+b2)a2 sin(1/2 a2x+1/2 a2

3t+

b2) cos(1/2 a1x+1/2 a1
3t+b1)a1+2 sin(1/2 a1x+1/2 a1

3t+b1) cos(1/2 a2x+1/2 a2
3t+

b2)a2
3 sin(1/2 a2x + 1/2 a2

3t + b2) cos(1/2 a1x + 1/2 a1
3t + b1)a1 + 2 sin(1/2 a2x +

1/2 a2
3t+b2)a1

2 cos(1/2 a2x+1/2 a2
3t+b2)a2−2 sin(1/2 a2x+1/2 a2

3t+b2)a1
2 cos(1/2 a2x+

1/2 a2
3t+b2)a2(cos(1/2 a1x+1/2 a1

3t+b1))
2
−2 a2

2a1
2(cos(1/2 a2x+1/2 a2

3t+b2))
2+

4 a2
2a1

2(cos(1/2 a1x+1/2 a1
3t+ b1))

2(cos(1/2 a2x+1/2 a2
3t+ b2))

2 +2 sin(1/2 a1x+
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1/2 a1
3t+b1) cos(1/2 a1x+1/2 a1

3t+b1)a1a2
2
−2 sin(1/2 a1x+1/2 a1

3t+b1) cos(1/2 a1x+

1/2 a1
3t+b1)a1a2

2(cos(1/2 a2x+1/2 a2
3t+b2))

2
−2 (cos(1/2 a1x+1/2 a1

3t+b1))
2a1

2+

2 (cos(1/2 a1x+1/2 a1
3t+b1))

2a1
2(cos(1/2 a2x+1/2 a2

3t+b2))
2
−2 a2

2a1
2(cos(1/2 a1x+

1/2 a1
3t + b1))

2
− 2 sin(1/2 a1x + 1/2 a1

3t + b1) cos(1/2 a1x + 1/2 a1
3t + b1)a1

3 +

2 sin(1/2 a1x+ 1/2 a1
3t+ b1) cos(1/2 a1x+ 1/2 a1

3t+ b1)a1
3(cos(1/2 a2x+ 1/2 a2

3t+

b2))
2 + 2 cos(1/2 a1x + 1/2 a1

3t + b1)a1
3 sin(1/2 a2x + 1/2 a2

3t + b2) sin(1/2 a1x +

1/2 a1
3t+ b1) cos(1/2 a2x+ 1/2 a2

3t+ b2)a2

is a solution to the Gardner equation (1) with a1, a2, b1, b2 arbitrarily real pa-
rameters.

Solution of order 3
For this third order, we only present solution in the particular case where a1 = 1,
a2 = 2, a3 = 3, b1 = 0, b2 = 0, b3 = 0 to shorten the paper.

Proposition 2.3 The function u defined by

u(x, t) =
n(x, t)

d(x, t)
, (6)

with
n(x, t) = −30 sin(1/2x+1/2 t) cos(1/2x+1/2 t)−54 sin(3/2x+ 27

2
t) cos(3/2x+ 27

2
t)+

96 sin(x+4 t) cos(x+4 t)+192 (cos(x+4 t))2+60 (cos(1/2x+1/2 t))2+108 sin(1/2x+

1/2 t) cos(3/2x+ 27

2
t) cos(1/2x+1/2 t) sin(3/2x+ 27

2
t)−252 sin(1/2x+1/2 t) cos(x+

4 t) cos(1/2x+1/2 t) sin(x+4 t)−108 cos(x+4 t) sin(3/2x+ 27

2
t) cos(3/2x+ 27

2
t) sin(x+

4 t)+84 (cos(1/2x+1/2 t))2(cos(3/2x+ 27

2
t))2−102 (cos(x+4 t))2(cos(3/2x+ 27

2
t))2−

234 (cos(1/2x+1/2 t))2(cos(x+4 t))2−108 sin(x+4 t) cos(x+4 t)(cos(1/2x+1/2 t))2−

24 sin(1/2x+1/2 t) cos(1/2x+1/2 t)(cos(3/2x+ 27

2
t))2+54 sin(1/2x+1/2 t) cos(1/2x+

1/2 t)(cos(x+4 t))2−18 (cos(x+4 t))2 sin(3/2x+ 27

2
t) cos(3/2x+ 27

2
t)+12 (cos(3/2x+

27

2
t))2 sin(x+4 t) cos(x+4 t)+72 (cos(1/2x+1/2 t))2 sin(3/2x+ 27

2
t) cos(3/2x+ 27

2
t)

and,
d(x, t) = 128 (cos(x+4 t))2+81 (cos(3/2x+ 27

2
t))2+5 (cos(1/2x+1/2 t))2+276 sin(1/2x+

1/2 t) cos(x + 4 t) sin(3/2x + 27

2
t) cos(1/2x + 1/2 t) cos(3/2x + 27

2
t) sin(x + 4 t) +

54 sin(1/2x+1/2 t) cos(3/2x+ 27

2
t) cos(1/2x+1/2 t) sin(3/2x+ 27

2
t)−56 sin(1/2x+

1/2 t) cos(x+4 t) cos(1/2x+1/2 t) sin(x+4 t)−216 cos(x+4 t) sin(3/2x+ 27

2
t) cos(3/2x+

27

2
t) sin(x+4 t)−54 sin(1/2x+1/2 t)(cos(x+4 t))2 cos(3/2x+ 27

2
t) cos(1/2x+1/2 t) sin(3/2x+

27

2
t) + 56 sin(1/2x + 1/2 t) cos(x + 4 t)(cos(3/2x + 27

2
t))2 cos(1/2x + 1/2 t) sin(x +

4 t)+216 (cos(1/2x+1/2 t))2 cos(3/2x+ 27

2
t) sin(x+4 t) cos(x+4 t) sin(3/2x+ 27

2
t)−

86 (cos(1/2x + 1/2 t))2(cos(3/2x + 27

2
t))2 − 209 (cos(x + 4 t))2(cos(3/2x + 27

2
t))2 −

84 sin(x + 4 t) cos(x + 4 t)(cos(1/2x + 1/2 t))2(cos(3/2x + 27

2
t))2 + 156 sin(3/2x +

27

2
t) cos(3/2x+ 27

2
t)(cos(1/2x+1/2 t))2(cos(x+4 t))2+204 sin(1/2x+1/2 t) cos(1/2x+

1/2 t)(cos(x+4 t))2(cos(3/2x+ 27

2
t))2+214 (cos(x+4 t))2(cos(3/2x+ 27

2
t))2(cos(1/2x+

1/2 t))2−133 (cos(1/2x+1/2 t))2(cos(x+4 t))2+30 sin(x+4 t) cos(x+4 t)(cos(1/2x+

1/2 t))2 − 108 sin(1/2x+ 1/2 t) cos(1/2x+ 1/2 t)(cos(3/2x+ 27

2
t))2 − 96 sin(1/2x+

1/2 t) cos(1/2x+ 1/2 t)(cos(x+ 4 t))2 − 96 (cos(x+ 4 t))2 sin(3/2x+ 27

2
t) cos(3/2x+

27

2
t)+54 (cos(3/2x+ 27

2
t))2 sin(x+4 t) cos(x+4 t)−60 (cos(1/2x+1/2 t))2 sin(3/2x+

27

2
t) cos(3/2x+ 27

2
t)
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is a solution to the Gardner equation (1).

2.2 Other types of solutions

We obtain similar results with other types of generating functions whose proofs
are identical.

2.2.1 Solutions with cosine generating functions

Theorem 2.2 Let gj, g be the following functions

gj(x, t) = cos

(

1

2
ajx+

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N,

g(x, t) = exp

(

1

2
(x− t)

) (7)

then the function u defined by

u(x, t) = ∂x ln

(

W (g1, . . . , gN , g)

W (g1, . . . , gN )

)

−
1

2
(8)

is a solution to the Gardner equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.

2.2.2 Solutions with hyperbolic generating functions

Theorem 2.3 Let hj, h be the following functions

hj(x, t) = sinh

(

1

2
ajx−

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N,

h(x, t) = exp

(

1

2
(x− t)

) (9)

then the function u defined by

u(x, t) = ∂x ln

(

W (h1, . . . , hN , h)

W (h1, . . . , hN )

)

−
1

2
(10)

is a solution to the Gardner equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.

Theorem 2.4 Let kj, k be the following functions

kj(x, t) = cosh

(

1

2
ajx−

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N,

k(x, t) = exp

(

1

2
(x− t)

) (11)
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then the function u defined by

u(x, t) = ∂x ln

(

W (k1, . . . , kN , k)

W (k1, . . . , kN )

)

−
1

2
(12)

is a solution to the Gardner equation (1) with aj, bj 1 ≤ j ≤ N arbitrarily real
parameters.

3 Rational solutions to the Gardner equation

3.1 Rational solutions to the Gardner equation as a limit

To obtain rational solutions to the Gardner equation (1), we are going to perform
a limit when a parameter e tends to 0. For this we replace all parameters aj
and bj , 1 ≤ j ≤ N by âj =

∑N

k=1
ak(je)

2k−1 and b̂j =
∑N

k=1
bk(je)

2k−1 with e
an arbitrary real parameter.
We get the following result :

Theorem 3.1 Let ψj, ψ be the functions

ψj(x, t, e) = sin

(

1

2

∑N

k=1
ak(je)

2k−1x+
1

2

(

∑N

k=1
ak(je)

2k−1

)3

t+
∑N

k=1
bk(je)

2k−1

)

,

for 1 ≤ j ≤ N ,

ψ(x, t) = exp

(

1

2
(x− t)

)

then the function u defined by

u(x, t) = lim
e→0

∂x ln

(

W (ψ1, . . . , ψN , ψ)

W (ψ1, . . . , ψN )

)

−
1

2
(13)

is a rational solution to the Gardner equation (1).

We have similar results with generating cosine or hyperbolic functions.

3.2 Degenerate rational solutions to the Gardner equation

We can give the expression of the rational solutions of the Gardner equation
avoiding the presence of a limit. For this we consider another type of functions.
We get the following result :

Theorem 3.2 Let ψ, ϕj, ϕ be the functions

ψ(x, t, e) = sin

(

1

2

(

∑N

k=1
ake

2k−1

)

x+
1

2

(

∑N

k=1
ake

2k−1

)3

t+
∑N

k=1
bke

2k−1

)

,

ϕj(x, t) =
∂2j−1ψ(x, t, 0)

∂2j−1e
, for 1 ≤ j ≤ N ,
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ϕ(x, t) = exp

(

1

2
(x− t)

)

then the function v defined by

v(x, t) = ∂x ln

(

W (ϕ1, . . . , ϕN , ϕ)

W (ϕ1, . . . , ϕN )

)

−
1

2
(14)

is a rational solution to the Gardner equation (1) depending on 2N parameters
aj, bj, 1 ≤ j ≤ N .

So we obtain an infinite hierarchy of rational solutions to the Gardner equation
depending on the integer N .
In the following we give some examples of rational solutions.
These results are consequences of the previous result.
But, it is also possible to prove it directly in replacing the expressions of each
of the solutions given in the corresponding equation and check that the relation
is verified.

3.3 First order rational solutions

We have the following result at order N = 1 :

Proposition 3.1 The function v defined by

v(x, t) =
2a1

2

(a1x+ 2 b1) (−2 a1 + 2 b1 + a1x)
, (15)

is a rational solution to the Gardner equation (1) with a1, b1, arbitrarily real
parameters.

3.4 Second order rational solutions

Proposition 3.2 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (16)

with
n(x, t) = −6 a1a2(−a1

5a2−a2
5a1+2 a2

3a1
3)x4

−6 a1a2(4 a2
5a1+4 a1

5a2−8 a2
3a1

3)x3
−

6 a1a2(−48 a2
3ta1

3
−48 b2a1

3+48 b2a1a2
2+24 a1

5ta2+48 b1a2a1
2
−48 b1a2

3+24 a2
5ta1)x−

6 a1a2(−48 b2a1a2
2
−48 b1a2a1

2+48 a2
3ta1

3+48 b2a1
3
−24 a1

5ta2+48 b1a2
3
−24 a2

5ta1),

and,
d(x, t) = (a1

3a2−a1a2
3)2x6+(a1

3a2−a1a2
3)(−6 a1

3a2+6 a1a2
3)x5+(a1

3a2−

a1a2
3)(12 a1

3a2−12 a1a2
3)x4+2 (−12 a2

3ta1−24 b2a1+12 a1
3ta2+24 b1a2)(a1

3a2−

a1a2
3)x3 +(−12 a2

3ta1 − 24 b2a1 +12 a1
3ta2 +24 b1a2)(−6 a1

3a2 +6 a1a2
3)x2 +

(−12 a2
3ta1−24 b2a1+12 a1

3ta2+24 b1a2)(12 a1
3a2−12 a1a2

3)x+(−12 a2
3ta1−

24 b2a1 + 12 a1
3ta2 + 24 b1a2)

2

is a rational solution to the Gardner equation (1) dependant on 4 real parameters
a1, a2, b1, b2.
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3.5 Rational solutions of order three

The explicit solution depending on 6 real parameters being too long, we give
only the rational solution without parameters. We get the following rational
solutions given by :

Proposition 3.3 The function v defined by

v(x, t) =
n(x, t)

d(x, t)
, (17)

with
n(x, t) = 12x10

−120x9+360x8+8640 tx5+64800 t2x4
−259200 t2x3+518400 t2x2+

518400 t3x− 518400 t3

and,

d(x, t) = x12
− 12x11 + 60x10 + (120 t − 120)x9

− 1080 tx8 + 4320 tx7 + (−1440 t2 −

60 t(120−60 t)−1440 t)x6
−12960 t2x5+(720 t2(120−60 t)−60 t(1440 t+720 t2))x3+

259200 t3x2
− 518400 t3x+ 720 t2(1440 t+ 720 t2)

is a rational solution to the Gardner equation (1).

4 Case of the mKdV equation

4.1 Solutions in terms of wronskians

As a consequence of the previous study, we easily deduce solutions to the mo-
dified Korteweg-de Vries (mKdV) equation in the following normalization (??)

wt − 6w2wx + wxxx = 0.

We have the following result :

Theorem 4.1 Let fj,f be the following functions

fj(x, t) = sin

(

1

2
ajx+

1

2
a3j t+ bj

)

, for 1 ≤ i ≤ N,

f(x, t) = exp

(

1

2
(x− t)

) (18)

then the function w defined by

w(x, t) = ∂x ln

(

W (f1, . . . , fN , f)

W (f1, . . . , fN )

)

(19)

is a solution to the mKdV equation (??) depending on 2N real parameters aj,
bj, 1 ≤ j ≤ N .
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4.2 Rational solutions

We get the following statement :

Theorem 4.2 Let ψj, ψ be the functions

ψj(x, t, e) = sin

(

1

2

∑N

k=1
ak(je)

2k−1x+
1

2

(

∑N

k=1
ak(je)

2k−1

)3

t+
∑N

k=1
bk(je)

2k−1

)

,

for 1 ≤ j ≤ N ,

ψ(x, t) = exp

(

1

2
(x− t)

)

then the function u defined by

u(x, t) = lim
e→0

∂x ln

(

W (ψ1, . . . , ψN , ψ)

W (ψ1, . . . , ψN )

)

(20)

is a rational solution to the mKdV equation (??).

We can also give the expression of the rational solutions of the mKdV equation
without the presence of a limit. We get the following result : We get the
following result :

Theorem 4.3 Let ψ, ϕj, ϕ be the functions

ψ(x, t, e) = sin

(

1

2

(

∑N

k=1
ake

2k−1

)

x+
1

2

(

∑N

k=1
ake

2k−1

)3

t+
∑N

k=1
bke

2k−1

)

,

ϕj(x, t) =
∂2j−1ψ(x, t, 0)

∂2j−1e
, for 1 ≤ j ≤ N ,

ϕ(x, t) = exp

(

1

2
(x− t)

)

then the function v defined by

v(x, t) = ∂x ln

(

W (ϕ1, . . . , ϕN , ϕ)

W (ϕ1, . . . , ϕN )

)

(21)

is a rational solution to the mKdV equation (??) depending on 2N parameters
aj, bj, 1 ≤ j ≤ N .

5 Conclusion

We have given two types of representations of solutions to the Gardner equation.
First, solutions as a quotient of a wronskian of order N + 1 by a wronskian of
order N depending on 2N real parameters have been constructed. Then per-
forming a passage to the limit when one parameter goes to 0 we get rational
solutions to the Gardner equation depending on 2N real parameters.
So we obtain an infinite hierarchy of multiparametric families of rational solu-
tions to the Gardner equation as a quotient of a polynomials in x and t depending
on 2N real parameters.
As a byproduct, we easily deduce solutions to the mKdV equation in terms of
wronkians and rational solutions, depending on 2N real parameters.
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