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Abstract: The basal metabolic rate characterizes the energy consumption of the human body
at rest. It can be estimated by using respiratory gas exchange analyzers and indirect calorimetry.
During cycling this value could vary due to several adaptation processes such as an increase
in breathing and blood circulation, controlling body temperature, among others. In this paper
we propose to reconstruct the instantaneous value of this basal metabolic rate, referred here
as basal power (measured in Watts), by using a robust discrete-time proportional integral (PI)
observer. The observer design is based on a solution of linear matrix inequalities and uses
an uncertain linear parameter varying model of the gas exchange dynamics. The proposed
methodology allows the reconstruction of the basal power while making the respiratory gas
exchange estimation robust to bounded uncertainties and disturbances. The PI observer has
been validated in simulation.

Keywords: Robust observers, uncertain linear parametric varying systems, linear matrix
inequalities, physiological models.

1. INTRODUCTION

The basal metabolic rate (BMR) is a physiological quan-
tity characterizing the energy consumption of the human
body at rest and can be expressed in Watts. It com-
prises the minimum functions the body requires such as
breathing, regulating the body temperature or ensuring
the brain activity. It has been shown that the BMR varies
between individual based on parameters like age, gender
and weight Harris and Benedict (1918); McMurray et al.
(2014); Melzer et al. (2016); Henry (2005). Also, the BMR
can vary for a given individual depending on tempera-
ture McConnell (1925), altitude Grover (1963) or training
level Gilliat-Wimberly et al. (2001). The BMR is closely
linked with respiratory gas exchange (RGE) of a breath-
ing individual, more precisely the oxygen consumption
and the carbon dioxide production. Methods exploiting
this connection are known under the name of indirect-
calorimetry. In order to develop control laws allowing the
regulation of physiological variables such as the respiratory
gas exchanges or the energy expenditure, the variability of
the BMR has to be taken into account. Thus, in this paper,
we propose to estimate its value in real-time.

During a physical activity, the human ventilatory system
adapts with an increase in the oxygen consumption and
carbon dioxide production. To sustain a physical activity,
adenosine triphosphate (ATP) is hydrolyzed to produce
physical work and carbon dioxide. ATP resynthesis can
occur with oxygen consumption (aerobic reaction), or
without (anaerobic reaction). The aerobic pathway is
known to be efficient and sustainable for long periods of

time, whereas the anaerobic pathway, used to face intense
energy expenditure, lasts only for short periods of time.
The anaerobic pathway implies an excess of carbon dioxide
produced, which can be measured in the gas exchanged
during effort. Thus, gas exchange can provide indirect
information regarding physiological reactions happening
within the body. In sport medicine, gas exchange is used
as a proxy to study individual physical capacities in a non-
invasive way.

Gas exchange dynamics is a dynamical system that can be
modeled and identified by using experimental data. Several
model structures have been proposed into the literature
to describe the behavior of this dynamical system. For
example, Su et al. Su et al. (2007) and Baig et al. Baig et al.
(2012) proposed to describe the evolution of the oxygen
uptake using a Hammerstein model, respectively during
treadmill exercise, and running and rowing. A combination
of machine learning and wearable devices is also a popular
approach to estimate gas exchange in a non-invasive way
as shown in Altini et al. (2016); Beltrame et al. (2017);
Shandhi et al. (2020). In Rosero et al. (2018), a linear
parameter varying (LPV) system is proposed to model gas
exchange during cycling. This model offers the advantage
to estimate both the oxygen uptake (O2) and the carbon
dioxide production (CO2) and proposes a novel way to
discriminate the aerobic and anaerobic contributions in
CO2 production during effort. The latter model will be
used in this paper to estimate gas exchange dynamics. This
model supposes a constant BMR, which is identified using
experimental data, and does not account for its variability



over time, which can lead to significant steady state errors
in the respiratory gas exchange variables.

In this paper we explore the use of a Proportional Integral
(PI) observer for estimating both the respiratory gas ex-
change variables (the amounts of O2 intake and CO2 out-
put). Several methods for designing PI observers have been
proposed in the literature, some of them are known under
the name of disturbance observer based control (DOBC),
to estimate and compensate the influence of disturbances
and uncertainties on a closed-loop system. For continuous-
time linear and non-linear frameworks, an extensive review
of these methods can be found in Chen et al. (2016)
and a chronological overview in Sariyildiz et al. (2020).
DOBC can be found under different forms, in Ohishi et al.
(1987) the disturbance is reconstructed using a filter with
appropriate bandwidth, in Han (2009) an extended state
observer (ESO) is proposed, Johnson (2008, 1968) devel-
oped the idea of unknown input observers (UIO) and She
et al. (2008, 2011) equivalent input disturbances (EID).
Here, we propose a PI observer design method based on
a modified version of the robust set-membership observer
proposed in Martinez et al. (2018). The considered gas
exchange dynamics is an uncertain linear system with a
linear parameter varying matrix output matrix (describing
sensor nature). The proposed approach has been tested
and validated in simulation.

The paper is organized as follows. First, in Section 2,
the respiratory gas exchange model and its connections
with the basal metabolic rate are presented and discussed.
Then, in Section 3, the problem of basal reconstruction
is described. In Section 4, we propose a methodology to
derive a robust discrete-time PI observer reconstructing
the basal power and the respiratory gas exchange variables.
The observer is simulated in Section 5 and compared
to a robust observer without integral action. Finally, we
conclude this work in Section 6.

Notations used are standard. The hat ·̂ refers to an
estimated quantity. In linear matrix inequalities, ⋆ terms
can be inferred from diagonal symmetry. The notation
·(k) refers to the value of a vector at time instant k. The
superscript ·T refers to the transposition. The symbol ⪰
means positive semidefinite, ⪯ negative semidefinite. In is
the identity matrix of order n. Matrices and vectors are
bolded, scalars are not.

2. GAS EXCHANGE MODEL

To model the dynamics of gas exchange during cycling, the
following discrete time Linear Parameter Varying system
has been proposed in Rosero et al. (2018) :

{
x(k + 1) = Ax(k) +B(u(k) + w0)

y(k) = C(ρ(k))x(k)
(1)

where x(k) ∈ R3 is the state vector given by x(k) =
[x1, x2, x3]

T with x1 = mO2 the consumed mass of oxygen
per unit of time (in g/min), x2 = mCO2 the aerobically
produced mass of carbon dioxide per unit of time (in
g/min) and x3 = εCO2 stands for the anaerobically
produced mass of carbon dioxide per unit of time or excess
of CO2 (in g/min). The input u(k) ∈ R stands for the
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Fig. 1. Evolution of the transition function ρ along the
index z(k) in blue. The index corresponding to the
anaerobic threshold (AT), zT , is represented in red.
The region right of zT is considered mostly aerobic
and the region left of zT mostly anaerobic.

mechanical power developed by the cyclist at the pedal
level (in Watts).

The symbol w0 stands for an additional unknown power
demand, the basal power (for instance, the power required
for other physiological functions such as breathing, blood
circulation, controlling body temperature, among others).
Remark that in this model, the term w0 inherits the units
of watts observed from a pedal point of view.

The output vector y(k) ∈ R2 is given by y(k) = [y1, y2]
T

with y1 = x1 the consumed oxygen mass per unit of time
(in g/min) and y2 = x2+ρx3 the total carbon dioxide mass
per unit of time (in g/min) mCOtot

2 formed by adding the
aerobic CO2 contribution to a fraction ρ of the excess of
carbon dioxide εCO2. Matrices A and B are constant.
Matrix C(ρ(k)) depends affinely in the parameter ρ as
follows :

C(ρ(k)) =

(
1 0 0
0 1 ρ(k)

)
(2)

Thus, system (1) is an LPV system with parameter depen-
dent output.

Because the varying parameter ρ(k), which is the fraction
of excess of carbon dioxide present in the total mass of
CO2 measured in output of the system, is not a variable
that can be directly measured in practice, it is modeled as
the following function of the states :

{
z(k) = x1(k)− x2(k)− ρ(k − 1)x3(k)

ρ(k) = 0.5 + 0.5 tanh
(

zT−z(k)
h

)
(3)

This model is inspired from the concept of anaerobic
threshold, developed in physiology Wasserman (1984).
During exercise, a physical effort is considered aerobic
when the balance between the oxygen supply and the
oxygen demand during the power production process is
ensured, and considered anaerobic when it is not Spur-
way (1992). The shift between these two modes is called
the anaerobic threshold and non-invasive determination
methods through gas exchange have been proposed Beaver
et al. (1986). By definition, ρ takes its values between
0 and 1, ρ = 0 corresponding to an aerobic effort and
ρ = 1 corresponding to an anaerobic effort. The index z(k)
takes its values around 0 when there is a balance between
mO2 and mCO2, corresponding to an aerobic effort. When
the anaerobic threshold is crossed, the additional carbon



dioxide production due to εCO2 implies a growth of z(k) in
the negatives values. zT is the translation of the anaerobic
threshold in the index z(k) and h is scalar modulating the
rate of variation between the aerobic and the anaerobic
pathways. The transition function is represented in Fig.1.

This kind of models can be identified by using experimen-
tal data and by solving successive nonlinear least square
problems as described in Rosero et al. (2018). An example
of such a model for a given individual (that will be used
here as the nominal model), is described by the following
matrices and constants:

A =

(
0.3398 0.5386 0

0 0.9303 0
0 0.1572 0.3458

)
,B =

(
0.0015
0.0015
−0.0009

)
,

zT = −0.2209, h = 0.0516, w0 = 12.7621

for a sampling time Te = 3sec.

3. PROBLEM STATEMENT

In practice, the model (1) undergoes disturbances on the
state and the output due to unmodelled dynamics or
measurement noise. In particular, the variability of w0 has
to be taken into account.

To do so, we propose the following disturbed version of
model (1) :

{
x(k + 1) = Ax(k) +B(u(k) + w0 + p(k)) + Fd(k)

y(k) = C(ρ(k))x(k) + Zv(k)

(4)

where p(k) ∈ R is a piece-wise constant disturbance signal
modelling unknown variations of the basal power with
respect to the nominal one w0, d(k) ∈ R and v(k) ∈ R
are random signals representing respectively the state
disturbance and the measurement noise. Matrix F ∈ R3

and matrix Z ∈ R2.

In order to recover the value of the unknown basal dis-
turbance p(k), we propose to use a proportional integral
(PI) observer. To design such observer, we first extend the
states of system (4) as follows :

xe(k) =

[
x(k)
p(k)

]
(5)

We can now re-write (4) as :

{
xe(k + 1) = Aexe(k) +Be(u(k) + w0) + Fed(k)

y(k) = Ce(ρ(k))xe(k) + Zv(k)
(6)

with Ae =

[
A B
0 1

]
, Be =

[
B
0

]
, Fe =

[
F
θ

]
and Ce =

[C 0 ].

The coefficient θ > 0, in matrix Fe, is a constant parameter
used during the observer design process. This coefficient is
necessary to establish a non-zero transfer function between

disturbances d(k) and the extended state p(k), allowing an
H∞ observer synthesis. The value of that parameter θ can
be considered as a degree of freedom to design an observer
with suitable speed convergence and noise attenuation.

Here, we assume that there exists a constant observer gain
L ∈ R4 such that the following parameter-dependent state
observer can be performed for any value of ρ(k) verifying
(3):

{
x̂e(k + 1) = Ãe(ρ(k))x̂e(k) +Be(u(k) + w0) + Ly(k)

ŷ(k) = C(ρ(k))x̂e(k)
(7)

with Ãe(ρ(k)) = Ae − LCe(ρ(k)).

Now, defining the state estimation error at instant k as
follows:

e(k) = xe(k)− x̂e(k) (8)

we can write its dynamics as:

e(k + 1) = Ã(ρ(k))e(k) +Ew(k) (9)

with E = [F −LZ] and w(k) = [d(k) v(k)]
T
.

Thus, the problem is to find a constant observer gain
L ∈ Rn×p for the parameter dependent state-observer (7)
such that for all ρ(k) the dynamics (9) are stable with
a quadratic H∞ performance γ, i.e. such that the ratio
between the estimation error and the disturbance w(k) is
bounded in the sense of the L2 norm: ∥e(k)∥2 < γ∥w(k)∥2.

4. ROBUST PI OBSERVER DESIGN

The objective is to find a constant observer gain L ensuring
the stability of the estimation error dynamics (9) and
minimizing the influence of disturbances on the estimation
error. This problem is easily solved for the case of linear
time invariant (LTI) systems with a direct application
of the Bounded Real Lemma (BRL) in which a linear
matrix inequality (LMI) is solved in order to find the
gain L. However, for LPV systems like (1) using the
previous method would imply to solve an infinite number
of LMIs over the range of variation of ρ, which is not
tractable. To overcome this difficulty, an extension of the
BRL to LPV systems was proposed in Apkarian et al.
(1995). This extension is based on the assumption that
the parameter dependent matrices involved in (1) are
contained in a convex hull with known vertices, allowing
to solve a finite number of LMIs for these vertices only.
Based on this result, a method to design a robust set-
membership observer for LPV systems was proposed by
Martinez et al. (2018). This method is mainly focused on
the case of constant output matrices C and Z in order to
ease the translation of the problem in the form of LMIs,
but an adaptation is proposed for the case of parameter
dependent output matrices C and Z.

Here, we propose an alternate solution to the observer
design problem in the case of parameter varying matrix
Ce(ρ) adapted from the work of Martinez et al. (2018).

Because ρ(k) ∈ [0; 1] for all k, and matrix Ce(ρ(k))
depends affinely on ρ(k), a polytopic decomposition can



be performed and matrix Ce(ρ(k)) can be expressed as a
linear combination of constant matrices as follows :

Ce(ρ(k)) = α0(k)Ce0 + α1(k)Ce1 (10)

where α0 ≥ 0, α1 ≥ 0 and for all k

α0(k) + α1(k) = 1 (11)

Matrices Ce0 and Ce1 are the vertex matrices of the
decomposition and are computed by evaluating Ce(ρ(k))
its extreme values, respectively Ce(0) and Ce(1). In our
case, coefficients α0(k) and α1(k) are not required for the
implementation since the gain chosen for the state observer
is constant (and not a linear combination of gains at the
vertices).

We also operate such decomposition on the system matri-
ces Ãe(ρ(k)) :

Ãe(ρ(k)) = α0Ãe0 + α1Ãe1 (12)

with Ãe0 = Ae − LCe0 and Ãe1 = Ae − LCe1. Now, we
are ready to use the following theorem to derive a robust
observer design method.

Proposition 1. System (9) is stable if there exist a sym-
metric positive definite matrix P ∈ Rn×n, and a positive
scalar γ > 0 such that, for j = {0,1},−P+Q 0 Ã

T

ejP

0 −γ2 ETP

PÃej PE −P

 ⪯ 0 (13)

where Q ∈ R4×4 is a given (arbitrary) symmetric positive
definite matrix. In addition, system (9), with output

z(k) := Q1/2e(k) and input w(k), has a Quadratic H∞
performance equal to γ. 2

Now, the following result can be used to design a the robust
observer :

Theorem 2. Consider the system (9) and a given symmet-
ric matrix Q ≻ 0. The H∞ norm of the system is less than
γ > 0 if there exist symmetric positive definite matrices P
and matrix U satisfying the following condition:−P+Q 0 AT

ejP−CT
ejU

T

⋆ −γ2 [PF −UZ]T

⋆ ⋆ −P

 ⪯ 0 (14)

for every vertex of the polytopic decomposition, j =
{0,1}. 2

Proof.

By replacing Ãej by its definition, the LMI (13) can be
rewritten as :−P+Q 0 Aej

TP−Cej
TLTP

⋆ −γ2 [F −LZ]
T
P

⋆ ⋆ −P

 ⪯ 0 (15)

The inequality (15) is not linear because of the variable
product LTP and is then not solvable. To make up for
this, we use a change of variable by introducing the matrix
U = PL. This completes the proof.

The set of LMIs (14) can be solved easily using any
convex programming solver and the robust observer gain
computed as

L = P−1U (16)

In this paper, the problem (14) is solved using CVX tool-
box, a package for specifying and solving convex programs
Grant and Boyd (2014), Grant and Boyd (2008).

5. RESULTS & DISCUSSION

To validate the observer design methodology described in
Section 4, we compute a state observer for system (6)
undergoing state and output disturbances (d and v), as
well as a constant disturbance p on w0.

We suppose that the model mismatch can be split into two
contributions. First, a constant disturbance p, modelling a
low bandwidth component due to the uncertainty on the
value of w0 and taking up to 100% of the hypothesized
value for w0. Then, a random component d following a
uniform distribution, modelling a high bandwidth compo-
nent and taking up to 10% of the hypothesized value for
w0.

We run a simulation under which the ideal system (1) is
affected by the exact same disturbances and uncertainties
as the ones chosen for the design. Finally, we assess the
performances of the observer.

The measured output ym(k) is the total carbon dioxide
production, mCOtot

2 . Thus :

C(ρ(k)) = [0 1 ρ(k)] (17)

and

ym(k) = C(ρ(k))x(k) + Zv(k) (18)

Assuming a measurement of mCOtot
2 is relevant because,

in practice, mCOtot
2 is directly proportional to the volume

of gas exhaled which is an easy quantity to measure using
an oral pneumotachograph.

To simulate the behavior of the system, the scheduling
parameter ρ(k) is computed at each sample time using (3)
and the states of system (4).

The output estimation is performed by computing ρ̂(k), an
estimated value of ρ(k) using (3) and the estimated states
of (7).

We also suppose that the accuracy of the sensor used to
measure ym(k) is 0.1g/min.

In this example, we choose :

F = 0.1Bw0

Z = 0.1
ρ = 0
ρ̄ = 1
d̄ = 1
v̄ = 1

θ = 0.25

The system is affected by the following input and output
disturbances :



Du = 0.1Bw0d

Dy = Zv

with d a uniform random noise of maximum amplitude d̄
and v a uniform random noise of maximum amplitude v̄.
The simulation setup is shown in Fig. 2.

Using the methodology described in Section 4, we compute
the observer gain for the system (1) :

L =

0.2669
0.3792
0.1456
3.9957

 , γ = 24.1611,

P =

 0.7530 −0.1680 −0.0530 −0.0005
−0.1680 0.8933 −0.0896 −0.0097
−0.0530 −0.0896 2.2650 −0.0003
−0.0005 −0.0097 −0.0003 0.0010

 105

For comparison purposes, a robust state observer was
designed using the methodology described in Section 4 but
using the state vector x instead of xe, thus removing the
integral action. The parameters computed for this observer
are :

Lr =

(
0.0041
0.0049
0.0023

)
, γr = 0.0352,

Pr =

(
47.9067 −41.7438 −5.7833
−41.7438 63.6976 −7.4568
−5.7833 −7.4568 75.2937

)

Fig. 3 shows the evolution of the states and output of
the real system and the states estimated by the designed
robust PI observer and by the same robust observer
but without the estimation of d. Three simulations were
performed using the same power profile but different
disturbance and noise signals. The power profile was
generated using piece-wise constant power levels of random
magnitude such that the parameter ρ takes values in its full
range of variation. The evolution of the varying parameter
ρ and of its estimation are shown, the mismatch between
them can be explained by the estimation errors on the
state and the tendency of ρ to vary abruptly.

Fig. 4 shows the evolution of the estimation error for each
state of the system, in each simulation and for both the
robust PI observer and the robust observer. It shows that
for every scenario, the estimation error of the robust PI
observer tends to 0, while the estimation of the robust
observer is not. Thus, the proposed observer is robust to
piece-wise constant disturbances affecting the system.

Fig. 5 shows that for each simulation the robust PI
observer is able to reconstruct the value of d.

Fig. 6 shows the influence of the parameter θ in the quality
of the disturbance estimation. Multiple simulations were
ran using different observer gains L based on different
values of θ chosen for the design. We can see that higher
values for θ allow a faster but noisier convergence of the
estimation. Lower values for θ allow a smoother but slower
convergence of the estimation. Parameter θ can then be
used as a tuning parameter for the observer taking into

u

Du w0 + p

System : x
Dy

Observer : x̂

+ + ym

++

Fig. 2. Simulation setup for design validation. The gas
exchange model generates the current state x and the
state observer the state estimation x̂ from input and
output measurements. Here, the observer is either the
PI robust observer or the robust observer.

account the noise levels affecting the state and output of
the considered system. In our example θ = 0.25 appeared
to be a good trade-off.

In practice, estimated values of gas exchange variables and
basal power are used by practitioners to characterize the
effort performed. For example, the respiratory quotient
(RQ) allows to estimate the contribution of carbohydrates
and fats oxidized during the exercise and is defined as
follows :

RQ =
V CO2

V O2
=

δ1mCO2

δ2mO2
(19)

With V CO2, the volume of CO2 produced per unit of time,
V O2, the volume of O2 consumed per unit of time, δ1 =
1.429kg/m3, the density of O2 at 20◦C, δ2 = 1.842kg/m3,
the density of CO2 at 20◦C. It is known that values of
RQ around 1 suggest that carbohydrates are oxidized and
values of RQ around 0.7 suggest that fats are oxidized.

Fig. 7 shows the values of RQ computed for each sim-
ulation and their estimated values using the robust PI
observer and the robust observer. We can see that the
estimation provided by the robust PI observer are accurate
and that the estimation of RQ provided by the robust
observer can show significant mismatch. For example, in
RQ1 and RQ2, the robust observer fails to recover the real
RQ between t = 500sec and t = 950sec. This shows that
even if the estimation errors are slightly higher with the
robust observer for the chosen levels of disturbance p, the
consequences in the interpretation of the results can be
significant.

6. CONCLUSION

In this paper, we have presented a proportional integral
observer design method for estimating the instantaneous
basal power during cycling.

Since the physiological model of gas exchange dynamics
concerns an uncertain linear parameter varying model,
the proposed observer design is based on a robust H∞
synthesis by solving a family of LMI.

The approach has been tested and validated in simulation
for several possible cases of disturbances and possible
choices of disturbance model parameters, and compared
with respect to a robust observer without disturbance
estimation.
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Fig. 3. Evolution of the states and output of the real system, in full lines , and of their estimation by the PI observer,
in dashed lines , and by the robust observer, in dotted lines , to a step input function.
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Fig. 4. State estimation errors after simulating 3 times the
system for the same power profile but different noises
and disturbances affecting the system. The errors of
the PI observer are shown in full lines , the errors
of the robust observer in dotted lines .

REFERENCES

Altini, M., Penders, J., and Amft, O. (2016). Estimat-
ing Oxygen Uptake During Nonsteady-State Activities
and Transitions Using Wearable Sensors. IEEE Jour-
nal of Biomedical and Health Informatics, 20(2), 469–
475. doi:10.1109/JBHI.2015.2390493. URL http://
ieeexplore.ieee.org/document/7006640/.

Apkarian, P., Gahinet, P., and Becker, G. (1995).
Self-scheduled H control of linear parameter-varying
systems: a design example. Automatica, 31(9),
1251–1261. doi:10.1016/0005-1098(95)00038-X. URL
https://linkinghub.elsevier.com/retrieve/pii/
000510989500038X.

Baig, D.e.Z., Savkin, A.V., and Celler, B.G. (2012). Es-
timation of oxygen consumption during cycling and

0 200 400 600 800 1000 1200 1400 1600 1800

time (s)

-8

-6

-4

-2

0

2

4

6

Fig. 5. Estimation of the constant disturbance p after
simulating 3 times the system for the same power
profile but different noises and disturbances affecting
the system.

rowing. In 2012 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society,
711–714. IEEE, San Diego, CA. doi:10.1109/EMBC.
2012.6346030. URL http://ieeexplore.ieee.org/
document/6346030/.

Beaver, W.L., Wasserman, K., and Whipp, B.J. (1986).
A new method for detecting anaerobic threshold
by gas exchange. Journal of Applied Physiol-
ogy, 60(6), 2020–2027. doi:10.1152/jappl.1986.60.6.
2020. URL https://www.physiology.org/doi/10.
1152/jappl.1986.60.6.2020.

Beltrame, T., Amelard, R., Wong, A., and Hughson,
R.L. (2017). Prediction of oxygen uptake dynamics by
machine learning analysis of wearable sensors during
activities of daily living. Scientific Reports, 7(1), 45738.

http://ieeexplore.ieee.org/document/7006640/
http://ieeexplore.ieee.org/document/7006640/
https://linkinghub.elsevier.com/retrieve/pii/000510989500038X
https://linkinghub.elsevier.com/retrieve/pii/000510989500038X
http://ieeexplore.ieee.org/document/6346030/
http://ieeexplore.ieee.org/document/6346030/
https://www.physiology.org/doi/10.1152/jappl.1986.60.6.2020
https://www.physiology.org/doi/10.1152/jappl.1986.60.6.2020


0 200 400 600 800 1000 1200 1400 1600 1800

time (s)

-5

0

5

10

15

20

25

Fig. 6. Estimation of the constant disturbance p = w0 after
simulating 5 times the system with different gains for
the observer based on a different value for θ in the
design process.

0 200 400 600 800 1000 1200 1400 1600
0.8

1

R
Q

1

0 200 400 600 800 1000 1200 1400 1600
0.8

1

R
Q

2

0 200 400 600 800 1000 1200 1400 1600

time (s)

0.8

0.9

1

1.1

R
Q

3

Fig. 7. Respiratory quotient (RQ) for each of the simula-
tions. The RQ of the real system is shown in full lines

, its estimation by the robust PI observer is shown
in dashed lines and its estimation by the robust
observer is shown in pointed lines .

doi:10.1038/srep45738. URL http://www.nature.com/
articles/srep45738.

Chen, W.H., Yang, J., Guo, L., and Li, S. (2016).
Disturbance-observer-based control and related meth-
ods—an overview. 63(2), 1083–1095. doi:10.1109/tie.
2015.2478397. URL https://doi.org/10.1109/tie.
2015.2478397.

Gilliat-Wimberly, M., Manore, M.M., Woolf, K., Swan,
P.D., and Carroll, S.S. (2001). Effects of habitual
physical activity on the resting metabolic rates and body
compositions of women aged 35 to 50 years. 101(10),
1181–1188. doi:10.1016/s0002-8223(01)00289-9. URL
https://doi.org/10.1016/s0002-8223(01)00289-9.

Grant, M. and Boyd, S. (2008). Graph implementations
for nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura (eds.), Recent Advances in Learning
and Control, Lecture Notes in Control and Information
Sciences, 95–110. Springer-Verlag Limited. http://
stanford.edu/~boyd/graph_dcp.html.

Grant, M. and Boyd, S. (2014). CVX: Matlab software for
disciplined convex programming, version 2.1. http://
cvxr.com/cvx.

Grover, R.F. (1963). Basal oxygen uptake of man at high
altitude. 18(5), 909–912. doi:10.1152/jappl.1963.18.
5.909. URL https://doi.org/10.1152/jappl.1963.
18.5.909.

Han, J. (2009). From PID to active disturbance rejection
control. 56(3), 900–906. doi:10.1109/tie.2008.2011621.
URL https://doi.org/10.1109/tie.2008.2011621.

Harris, J.A. and Benedict, F.G. (1918). A biometric study
of human basal metabolism. 4(12), 370–373. doi:10.
1073/pnas.4.12.370. URL https://doi.org/10.1073/
pnas.4.12.370.

Henry, C. (2005). Basal metabolic rate studies in humans:
measurement and development of new equations. 8(7a),
1133–1152. doi:10.1079/phn2005801. URL https://
doi.org/10.1079/phn2005801.

Johnson, C. (1968). Optimal control of the linear regulator
with constant disturbances. 13(4), 416–421. doi:10.
1109/tac.1968.1098947. URL https://doi.org/10.
1109/tac.1968.1098947.

Johnson, C.D. (2008). Real-time disturbance-observers
origin and evolution of the idea part 1: The early years.
IEEE. doi:10.1109/ssst.2008.4480196. URL https://
doi.org/10.1109/ssst.2008.4480196.

Martinez, J.J., Loukkas, N., and Meslem, N. (2018).
H-infinity set-membership observer design for discrete-
time LPV systems. International Journal of Control,
1–12. doi:10.1080/00207179.2018.1554910. URL
https://www.tandfonline.com/doi/full/10.1080/
00207179.2018.1554910.

McConnell, W.J. (1925). BASAL METABOLISM AS
AFFECTED BY ATMOSPHERIC CONDITIONS.
36(3), 382. doi:10.1001/archinte.1925.00120150091005.
URL https://doi.org/10.1001/archinte.1925.
00120150091005.

McMurray, R.G., Soares, J., Caspersen, C.J., and Mc-
Curdy, T. (2014). Examining variations of resting
metabolic rate of adults. 46(7), 1352–1358. doi:10.
1249/mss.0000000000000232. URL https://doi.org/
10.1249/mss.0000000000000232.

Melzer, K., Heydenreich, J., Schutz, Y., Renaud, A.,
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