Basal power reconstruction during cycling using a robust discrete-time PI observer
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The basal metabolic rate characterizes the energy consumption of the human body at rest. It can be estimated by using respiratory gas exchange analyzers and indirect calorimetry. During cycling this value could vary due to several adaptation processes such as an increase in breathing and blood circulation, controlling body temperature, among others. In this paper we propose to reconstruct the instantaneous value of this basal metabolic rate, referred here as basal power (measured in Watts), by using a robust discrete-time proportional integral (PI) observer. The observer design is based on a solution of linear matrix inequalities and uses an uncertain linear parameter varying model of the gas exchange dynamics. The proposed methodology allows the reconstruction of the basal power while making the respiratory gas exchange estimation robust to bounded uncertainties and disturbances. The PI observer has been validated in simulation.

INTRODUCTION

The basal metabolic rate (BMR) is a physiological quantity characterizing the energy consumption of the human body at rest and can be expressed in Watts. It comprises the minimum functions the body requires such as breathing, regulating the body temperature or ensuring the brain activity. It has been shown that the BMR varies between individual based on parameters like age, gender and weight [START_REF] Harris | A biometric study of human basal metabolism[END_REF]; [START_REF] Mcmurray | Examining variations of resting metabolic rate of adults[END_REF]; [START_REF] Melzer | Metabolic equivalent in adolescents, active adults and pregnant women[END_REF]; [START_REF] Henry | Basal metabolic rate studies in humans: measurement and development of new equations[END_REF]. Also, the BMR can vary for a given individual depending on temperature McConnell (1925), altitude [START_REF] Grover | Basal oxygen uptake of man at high altitude[END_REF] or training level [START_REF] Gilliat-Wimberly | Effects of habitual physical activity on the resting metabolic rates and body compositions of women aged 35 to 50 years[END_REF]. The BMR is closely linked with respiratory gas exchange (RGE) of a breathing individual, more precisely the oxygen consumption and the carbon dioxide production. Methods exploiting this connection are known under the name of indirectcalorimetry. In order to develop control laws allowing the regulation of physiological variables such as the respiratory gas exchanges or the energy expenditure, the variability of the BMR has to be taken into account. Thus, in this paper, we propose to estimate its value in real-time.

During a physical activity, the human ventilatory system adapts with an increase in the oxygen consumption and carbon dioxide production. To sustain a physical activity, adenosine triphosphate (ATP) is hydrolyzed to produce physical work and carbon dioxide. ATP resynthesis can occur with oxygen consumption (aerobic reaction), or without (anaerobic reaction). The aerobic pathway is known to be efficient and sustainable for long periods of time, whereas the anaerobic pathway, used to face intense energy expenditure, lasts only for short periods of time. The anaerobic pathway implies an excess of carbon dioxide produced, which can be measured in the gas exchanged during effort. Thus, gas exchange can provide indirect information regarding physiological reactions happening within the body. In sport medicine, gas exchange is used as a proxy to study individual physical capacities in a noninvasive way.

Gas exchange dynamics is a dynamical system that can be modeled and identified by using experimental data. Several model structures have been proposed into the literature to describe the behavior of this dynamical system. For example, Su et al. [START_REF] Su | Oxygen Uptake Estimation in Humans During Exercise Using a Hammerstein Model[END_REF] and [START_REF] Baig | Estimation of oxygen consumption during cycling and rowing[END_REF] proposed to describe the evolution of the oxygen uptake using a Hammerstein model, respectively during treadmill exercise, and running and rowing. A combination of machine learning and wearable devices is also a popular approach to estimate gas exchange in a non-invasive way as shown in [START_REF] Altini | Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors[END_REF]; [START_REF] Beltrame | Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living[END_REF]; [START_REF] Shandhi | Estimation of Instantaneous Oxygen Uptake during Exercise and Daily Activities using a Wearable Cardio-Electromechanical and Environmental Sensor[END_REF]. In [START_REF] Rosero | Modeling of gas exchange dynamics using cycle-ergometer tests[END_REF], a linear parameter varying (LPV) system is proposed to model gas exchange during cycling. This model offers the advantage to estimate both the oxygen uptake (O 2 ) and the carbon dioxide production (CO 2 ) and proposes a novel way to discriminate the aerobic and anaerobic contributions in CO 2 production during effort. The latter model will be used in this paper to estimate gas exchange dynamics. This model supposes a constant BMR, which is identified using experimental data, and does not account for its variability over time, which can lead to significant steady state errors in the respiratory gas exchange variables.

In this paper we explore the use of a Proportional Integral (PI) observer for estimating both the respiratory gas exchange variables (the amounts of O 2 intake and CO 2 output). Several methods for designing PI observers have been proposed in the literature, some of them are known under the name of disturbance observer based control (DOBC), to estimate and compensate the influence of disturbances and uncertainties on a closed-loop system. For continuoustime linear and non-linear frameworks, an extensive review of these methods can be found in [START_REF] Chen | Disturbance-observer-based control and related methods-an overview[END_REF] and a chronological overview in [START_REF] Sariyildiz | Disturbance observer-based robust control and its applications: 35th anniversary overview[END_REF]. DOBC can be found under different forms, in [START_REF] Ohishi | Microprocessor-controlled DC motor for loadinsensitive position servo system[END_REF] the disturbance is reconstructed using a filter with appropriate bandwidth, in [START_REF] Han | From PID to active disturbance rejection control[END_REF] an extended state observer (ESO) is proposed, [START_REF] Johnson | Real-time disturbance-observers origin and evolution of the idea part 1: The early years[END_REF][START_REF] Johnson | Optimal control of the linear regulator with constant disturbances[END_REF]) developed the idea of unknown input observers (UIO) and [START_REF] She | Improving disturbance-rejection performance based on an equivalent-input-disturbance approach[END_REF][START_REF] She | Equivalentinput-disturbance approach-analysis and application to disturbance rejection in dual-stage feed drive control system[END_REF] equivalent input disturbances (EID).

Here, we propose a PI observer design method based on a modified version of the robust set-membership observer proposed in [START_REF] Martinez | H-infinity set-membership observer design for discretetime LPV systems[END_REF]. The considered gas exchange dynamics is an uncertain linear system with a linear parameter varying matrix output matrix (describing sensor nature). The proposed approach has been tested and validated in simulation.

The paper is organized as follows. First, in Section 2, the respiratory gas exchange model and its connections with the basal metabolic rate are presented and discussed. Then, in Section 3, the problem of basal reconstruction is described. In Section 4, we propose a methodology to derive a robust discrete-time PI observer reconstructing the basal power and the respiratory gas exchange variables. The observer is simulated in Section 5 and compared to a robust observer without integral action. Finally, we conclude this work in Section 6.

Notations used are standard. The hat • refers to an estimated quantity. In linear matrix inequalities, ⋆ terms can be inferred from diagonal symmetry. The notation •(k) refers to the value of a vector at time instant k. The superscript • T refers to the transposition. The symbol ⪰ means positive semidefinite, ⪯ negative semidefinite. I n is the identity matrix of order n. Matrices and vectors are bolded, scalars are not.

GAS EXCHANGE MODEL

To model the dynamics of gas exchange during cycling, the following discrete time Linear Parameter Varying system has been proposed in [START_REF] Rosero | Modeling of gas exchange dynamics using cycle-ergometer tests[END_REF] :

x(k + 1) = Ax(k) + B(u(k) + w 0 ) y(k) = C(ρ(k))x(k) (1) 
where x(k) ∈ R 3 is the state vector given by x(k) = [x 1 , x 2 , x 3 ] T with x 1 = mO 2 the consumed mass of oxygen per unit of time (in g/min), x 2 = mCO 2 the aerobically produced mass of carbon dioxide per unit of time (in g/min) and x 3 = εCO 2 stands for the anaerobically produced mass of carbon dioxide per unit of time or excess of CO 2 (in g/min). The input u(k) ∈ R stands for the The symbol w 0 stands for an additional unknown power demand, the basal power (for instance, the power required for other physiological functions such as breathing, blood circulation, controlling body temperature, among others).

Remark that in this model, the term w 0 inherits the units of watts observed from a pedal point of view.

The output vector y(k) ∈ R 2 is given by y(k) = [y 1 , y 2 ] T with y 1 = x 1 the consumed oxygen mass per unit of time (in g/min) and y 2 = x 2 +ρx 3 the total carbon dioxide mass per unit of time (in g/min) mCO tot 2 formed by adding the aerobic CO 2 contribution to a fraction ρ of the excess of carbon dioxide εCO 2 . Matrices A and B are constant. Matrix C(ρ(k)) depends affinely in the parameter ρ as follows :

C(ρ(k)) = 1 0 0 0 1 ρ(k) (2) 
Thus, system (1) is an LPV system with parameter dependent output.

Because the varying parameter ρ(k), which is the fraction of excess of carbon dioxide present in the total mass of CO 2 measured in output of the system, is not a variable that can be directly measured in practice, it is modeled as the following function of the states :

z(k) = x 1 (k) -x 2 (k) -ρ(k -1)x 3 (k) ρ(k) = 0.5 + 0.5 tanh z T -z(k) h (3)
This model is inspired from the concept of anaerobic threshold, developed in physiology [START_REF] Wasserman | The Anaerobic Threshold Measurement to Evaluate Exercise Performance 1, 2[END_REF].

During exercise, a physical effort is considered aerobic when the balance between the oxygen supply and the oxygen demand during the power production process is ensured, and considered anaerobic when it is not [START_REF] Spurway | Aerobic exercise, anaerobic exercise and the lactate threshold[END_REF]. The shift between these two modes is called the anaerobic threshold and non-invasive determination methods through gas exchange have been proposed [START_REF] Beaver | A new method for detecting anaerobic threshold by gas exchange[END_REF]. By definition, ρ takes its values between 0 and 1, ρ = 0 corresponding to an aerobic effort and ρ = 1 corresponding to an anaerobic effort. The index z(k) takes its values around 0 when there is a balance between mO 2 and mCO 2 , corresponding to an aerobic effort. When the anaerobic threshold is crossed, the additional carbon dioxide production due to εCO 2 implies a growth of z(k) in the negatives values. z T is the translation of the anaerobic threshold in the index z(k) and h is scalar modulating the rate of variation between the aerobic and the anaerobic pathways. The transition function is represented in Fig. 1.

This kind of models can be identified by using experimental data and by solving successive nonlinear least square problems as described in [START_REF] Rosero | Modeling of gas exchange dynamics using cycle-ergometer tests[END_REF]. An example of such a model for a given individual (that will be used here as the nominal model), is described by the following matrices and constants: for a sampling time T e = 3sec.

A = 0.

PROBLEM STATEMENT

In practice, the model (1) undergoes disturbances on the state and the output due to unmodelled dynamics or measurement noise. In particular, the variability of w 0 has to be taken into account.

To do so, we propose the following disturbed version of model (1) :

x(k + 1) = Ax(k) + B(u(k) + w 0 + p(k)) + Fd(k) y(k) = C(ρ(k))x(k) + Zv(k) (4) 
where p(k) ∈ R is a piece-wise constant disturbance signal modelling unknown variations of the basal power with respect to the nominal one w 0 , d(k) ∈ R and v(k) ∈ R are random signals representing respectively the state disturbance and the measurement noise. Matrix F ∈ R 3 and matrix Z ∈ R 2 .

In order to recover the value of the unknown basal disturbance p(k), we propose to use a proportional integral (PI) observer. To design such observer, we first extend the states of system (4) as follows :

x e (k) = x(k) p(k) (5) 
We can now re-write (4) as :

x e (k + 1) = A e x e (k) + B e (u(k) + w 0 ) + F e d(k) y(k) = C e (ρ(k))x e (k) + Zv(k) (6) 
with

A e = A B 0 1 , B e = B 0 , F e = F θ and C e = [ C 0 ].
The coefficient θ > 0, in matrix F e , is a constant parameter used during the observer design process. This coefficient is necessary to establish a non-zero transfer function between disturbances d(k) and the extended state p(k), allowing an H ∞ observer synthesis. The value of that parameter θ can be considered as a degree of freedom to design an observer with suitable speed convergence and noise attenuation.

Here, we assume that there exists a constant observer gain L ∈ R 4 such that the following parameter-dependent state observer can be performed for any value of ρ(k) verifying (3):

xe (k + 1) = Ãe (ρ(k))x e (k) + B e (u(k) + w 0 ) + Ly(k) ŷ(k) = C(ρ(k))x e (k) (7) 
with Ãe (ρ(k)) = A e -LC e (ρ(k)).

Now, defining the state estimation error at instant k as follows: e(k) = x e (k) -xe (k) (8) we can write its dynamics as:

e(k + 1) = Ã(ρ(k))e(k) + Ew(k) (9) with E = [F -LZ] and w(k) = [d(k) v(k)] T .
Thus, the problem is to find a constant observer gain L ∈ R n×p for the parameter dependent state-observer ( 7) such that for all ρ(k) the dynamics ( 9) are stable with a quadratic H ∞ performance γ, i.e. such that the ratio between the estimation error and the disturbance w(k) is bounded in the sense of the L 2 norm: ∥e(k)∥ 2 < γ∥w(k)∥ 2 .

ROBUST PI OBSERVER DESIGN

The objective is to find a constant observer gain L ensuring the stability of the estimation error dynamics (9) and minimizing the influence of disturbances on the estimation error. This problem is easily solved for the case of linear time invariant (LTI) systems with a direct application of the Bounded Real Lemma (BRL) in which a linear matrix inequality (LMI) is solved in order to find the gain L. However, for LPV systems like (1) using the previous method would imply to solve an infinite number of LMIs over the range of variation of ρ, which is not tractable. To overcome this difficulty, an extension of the BRL to LPV systems was proposed in [START_REF] Apkarian | Self-scheduled H control of linear parameter-varying systems: a design example[END_REF]. This extension is based on the assumption that the parameter dependent matrices involved in (1) are contained in a convex hull with known vertices, allowing to solve a finite number of LMIs for these vertices only.

Based on this result, a method to design a robust setmembership observer for LPV systems was proposed by [START_REF] Martinez | H-infinity set-membership observer design for discretetime LPV systems[END_REF]. This method is mainly focused on the case of constant output matrices C and Z in order to ease the translation of the problem in the form of LMIs, but an adaptation is proposed for the case of parameter dependent output matrices C and Z.

Here, we propose an alternate solution to the observer design problem in the case of parameter varying matrix C e (ρ) adapted from the work of [START_REF] Martinez | H-infinity set-membership observer design for discretetime LPV systems[END_REF].

Because ρ(k) ∈ [0; 1] for all k, and matrix C e (ρ(k)) depends affinely on ρ(k), a polytopic decomposition can be performed and matrix C e (ρ(k)) can be expressed as a linear combination of constant matrices as follows :

C e (ρ(k)) = α 0 (k)C e0 + α 1 (k)C e1 (10) 
where α 0 ≥ 0, α 1 ≥ 0 and for all k α 0 (k) + α 1 (k) = 1 (11)

Matrices C e0 and C e1 are the vertex matrices of the decomposition and are computed by evaluating C e (ρ(k)) its extreme values, respectively C e (0) and C e (1). In our case, coefficients α 0 (k) and α 1 (k) are not required for the implementation since the gain chosen for the state observer is constant (and not a linear combination of gains at the vertices).

We also operate such decomposition on the system matrices Ãe (ρ(k)) :

Ãe (ρ(k)) = α 0 Ãe0 + α 1 Ãe1 (12)
with Ãe0 = A e -LC e0 and Ãe1 = A e -LC e1 . Now, we are ready to use the following theorem to derive a robust observer design method.

Proposition 1. System ( 9) is stable if there exist a symmetric positive definite matrix P ∈ R n×n , and a positive scalar γ > 0 such that, for j = {0,1},   

-P + Q 0 ÃT ej P 0 -γ 2 E T P P Ãej PE -P    ⪯ 0 ( 13 
)
where Q ∈ R 4×4 is a given (arbitrary) symmetric positive definite matrix. In addition, system (9), with output z(k) := Q 1/2 e(k) and input w(k), has a Quadratic H ∞ performance equal to γ. 2

Now, the following result can be used to design a the robust observer :

Theorem 2. Consider the system (9) and a given symmetric matrix Q ≻ 0. The H ∞ norm of the system is less than γ > 0 if there exist symmetric positive definite matrices P and matrix U satisfying the following condition:

  -P + Q 0 A T ej P -C T ej U T ⋆ -γ 2 [PF -UZ] T ⋆ ⋆ -P   ⪯ 0 (14)
for every vertex of the polytopic decomposition, j = {0,1}. 2

Proof.

By replacing Ãej by its definition, the LMI (13) can be rewritten as :

  -P + Q 0 A ej T P -C ej T L T P ⋆ -γ 2 [F -LZ] T P ⋆ ⋆ -P   ⪯ 0 (15)
The inequality ( 15) is not linear because of the variable product L T P and is then not solvable. To make up for this, we use a change of variable by introducing the matrix U = PL. This completes the proof.

The set of LMIs ( 14) can be solved easily using any convex programming solver and the robust observer gain computed as L = P -1 U (16) In this paper, the problem ( 14) is solved using CVX toolbox, a package for specifying and solving convex programs [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF], [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF].

RESULTS & DISCUSSION

To validate the observer design methodology described in Section 4, we compute a state observer for system (6) undergoing state and output disturbances (d and v), as well as a constant disturbance p on w 0 .

We suppose that the model mismatch can be split into two contributions. First, a constant disturbance p, modelling a low bandwidth component due to the uncertainty on the value of w 0 and taking up to 100% of the hypothesized value for w 0 . Then, a random component d following a uniform distribution, modelling a high bandwidth component and taking up to 10% of the hypothesized value for w 0 .

We run a simulation under which the ideal system (1) is affected by the exact same disturbances and uncertainties as the ones chosen for the design. Finally, we assess the performances of the observer.

The measured output y m (k) is the total carbon dioxide production, mCO tot 2 . Thus :

C(ρ(k)) = [0 1 ρ(k)] (17) 
and

y m (k) = C(ρ(k))x(k) + Zv(k) (18) 
Assuming a measurement of mCO tot 2 is relevant because, in practice, mCO tot 2 is directly proportional to the volume of gas exhaled which is an easy quantity to measure using an oral pneumotachograph.

To simulate the behavior of the system, the scheduling parameter ρ(k) is computed at each sample time using (3) and the states of system (4).

The output estimation is performed by computing ρ(k), an estimated value of ρ(k) using (3) and the estimated states of (7).

We also suppose that the accuracy of the sensor used to measure y m (k) is 0.1g/min.

In this example, we choose :

F = 0.1Bw 0 Z = 0.1 ρ = 0 ρ = 1 d = 1 v = 1 θ = 0.25
The system is affected by the following input and output disturbances : For comparison purposes, a robust state observer was designed using the methodology described in Section 4 but using the state vector x instead of x e , thus removing the integral action. The parameters computed for this observer are :

L r = 0.0041 0.0049 0.0023 , γ r = 0.0352, P r = 47. 9067 -41.7438 -5.7833 -41.7438 63.6976 -7.4568 -5.7833 -7.4568 75.2937 Fig. 3 shows the evolution of the states and output of the real system and the states estimated by the designed robust PI observer and by the same robust observer but without the estimation of d. Three simulations were performed using the same power profile but different disturbance and noise signals. The power profile was generated using piece-wise constant power levels of random magnitude such that the parameter ρ takes values in its full range of variation. The evolution of the varying parameter ρ and of its estimation are shown, the mismatch between them can be explained by the estimation errors on the state and the tendency of ρ to vary abruptly. Fig. 4 shows the evolution of the estimation error for each state of the system, in each simulation and for both the robust PI observer and the robust observer. It shows that for every scenario, the estimation error of the robust PI observer tends to 0, while the estimation of the robust observer is not. Thus, the proposed observer is robust to piece-wise constant disturbances affecting the system. Fig. 5 shows that for each simulation the robust PI observer is able to reconstruct the value of d. account the noise levels affecting the state and output of the considered system. In our example θ = 0.25 appeared to be a good trade-off.

In practice, estimated values of gas exchange variables and basal power are used by practitioners to characterize the effort performed. For example, the respiratory quotient (RQ) allows to estimate the contribution of carbohydrates and fats oxidized during the exercise and is defined as follows : Fig. 7 shows the values of RQ computed for each simulation and their estimated values using the robust PI observer and the robust observer. We can see that the estimation provided by the robust PI observer are accurate and that the estimation of RQ provided by the robust observer can show significant mismatch. For example, in RQ1 and RQ2, the robust observer fails to recover the real RQ between t = 500sec and t = 950sec. This shows that even if the estimation errors are slightly higher with the robust observer for the chosen levels of disturbance p, the consequences in the interpretation of the results can be significant.

RQ = V CO 2 V O 2 = δ 1 mCO 2 δ 2 mO 2 (19) With V CO 2 , the volume of CO 2 produced per unit of time, V O 2 , the volume of O 2 consumed per unit of time, δ 1 = 1.429kg/m 3 , the density of O 2 at 20 • C, δ 2 = 1.842kg/m 3 ,

CONCLUSION

In this paper, we have presented a proportional integral observer design method for estimating the instantaneous basal power during cycling.

Since the physiological model of gas exchange dynamics concerns an uncertain linear parameter varying model, the proposed observer design is based on a robust H ∞ synthesis by solving a family of LMI.

The approach has been tested and validated in simulation for several possible cases of disturbances and possible choices of disturbance model parameters, and compared with respect to a robust observer without disturbance estimation. 
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 1 Fig. 1. Evolution of the transition function ρ along the index z(k) in blue. The index corresponding to the anaerobic threshold (AT), z T , is represented in red. The region right of z T is considered mostly aerobic and the region left of z T mostly anaerobic. mechanical power developed by the cyclist at the pedal level (in Watts).
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  u = 0.1Bw 0 d D y = Zv with d a uniform random noise of maximum amplitude d and v a uniform random noise of maximum amplitude v. The simulation setup is shown in Fig. 2.Using the methodology described in Section 4, we compute the observer gain for the system (1) :
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 62 Fig.6shows the influence of the parameter θ in the quality of the disturbance estimation. Multiple simulations were ran using different observer gains L based on different values of θ chosen for the design. We can see that higher values for θ allow a faster but noisier convergence of the estimation. Lower values for θ allow a smoother but slower convergence of the estimation. Parameter θ can then be used as a tuning parameter for the observer taking into
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 567 Fig. 5. Estimation of the constant disturbance p after simulating 3 times the system for the same power profile but different noises and disturbances affecting the system.

  the density of CO 2 at 20 • C. It is known that values of RQ around 1 suggest that carbohydrates are oxidized and values of RQ around 0.7 suggest that fats are oxidized.

Fig. 4. State estimation errors after simulating 3 times the system for the same power profile but different noises and disturbances affecting the system. The errors of the PI observer are shown in full lines , the errors of the robust observer in dotted lines .