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We investigate the blow up points of the one-dimensional parabolic Burger's equation ∂ t u = ∂ 2 x u -u∂ x u + u p under a dissipative dynamical boundary condition σ∂ t u + ∂ ν u = 0 for one bump initial data. A numerical example of a solution pertaining exactly two bumps stemming from its initial data is presented. Moreover, we discuss the growth order of the L ∞ -norm of the solutions when approaching the blow up time.

Introduction

This paper is devoted to the blow up phenomenon of the one-dimensional parabolic Burger's equation with a convection term changing sign under dynamical conditions on the time lateral boundary

   ∂ t u = ∂ 2
x u -u∂ x u + u p in Ω for t > 0, B σ (u) = σ∂ t u + ∂ ν u = 0 on ∂Ω for t > 0, u(•, 0) = ϕ ∈ C(Ω) [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] with the interval Ω = (-a, a) and 1 < p ∈ R. The results presented here improve and extend those of Section 5 from [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF]. It is well known that the system defines a local flow, especially local existence results are well established, see [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF] and the references therein. The basic hypotheses on σ and ϕ are [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF] σ(-a) ≥ 0, σ(a) ≥ 0,

(3) ϕ ≥ 0, ϕ ∈ C 2 ([-a, a]) , ϕ -ϕϕ + ϕ p ≥ 0 in [-a, a].

Let T = T (σ, ϕ) denote the blow up time of the maximal solution u = u σ of Problem [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], that is in our context the maximal existence time of u with respect to the L ∞ -norm:

T (σ, ϕ) = inf s > 0 lim t s sup{|u σ (x, t)| x ∈ Ω} = ∞ .
It has been shown in [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF] that for 1 < p ≤ 2, the solutions of Problem (1) exist globally, while for p > 2 they blow up in finite time if ϕ > 0 in Ω. In the present paper we improve the growth order result in [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF] and determine the blow up set for one bump initial data. The last section is devoted to a numerical example displaying a solution pertaining exactly two bumps stemming from its initial data.

Growth order

For p > 3 + 1 3 the solution grow like

1 (T -t) 1 p-1
when approaching the blow up time T = T (σ, ϕ), see [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF]. Here we shall show that the same holds for p > 3 with 4p(p -1)(p -3) > 1. 1 Recall the following basic Lemma 2.1 ([3]) Under ( 2) and (3), the solution

u σ ∈ C 2,1 Ω × [0, T (σ, ϕ)) of (1) satisfies ∂ t u σ ≥ 0 in Ω × [0, T (σ, ϕ)). If, in addition, ϕ is not identically vanishing on Ω, then ∂ t u σ > 0 in Ω × (0, T (σ, ϕ)).
First, we show that the lower growth order amounts always to -1 p-1 for any p > 2.

Lemma 2.2 Under the hypotheses (2) and (3), the maximal solution u of (1) satisfies

u σ (•, t) ∞ ≥ 1 p -1 1 p-1 T (σ, ϕ) -t -1 p-1
for all t ∈ [0, T (σ, ϕ)). 1 Numerically this means that it is sufficient to choose ). By (3) and Lemma 2.1 we have ∂ t u ≥ 0 on [-a, a] × [0, T ). Thus, g is increasing and continuous on [0, T ), and, thereby, g is differentiable almost everywhere in [0, T ). Choose t ∈ [0, T ), 0 < h < t, x and x h such that g is differentiable at t and

p > 4 3 + 2 √ 7 3 cos 1 3 arccos 107 √ 7 392 ≈ 3.0403022002854636178438894434... Proof. Set g(t) = u(•, t) ∞ for t ∈ [0, T
u(•, t) ∞ = u(x, t) and u(•, t -h) ∞ = u(x h , t -h).
Then

g(t) -g(t -h) = u(x, t) -u(x h , t -h) ≤ u(x, t) -u(x, t -h),
and there exists θ ∈ (0, 1) such that

u(x, t) = u(x, t -h) + h∂ t u(x, t -θh).
We conclude

g(t) -g(t -h) h ≤ ∂ t u(x, t -θh).
and, letting h tend to 0,

g (t) ≤ ∂ t u(x, t).
By hypothesis on u and definition of g,

g (t) ≤ ∂ 2 x u(x, t) -u(x, t)∂ x u(x, t) + u(x, t) p ≤ u(x, t) p = g(t) p .
Integration between t > 0 and t < τ < T yields

g(t) 1-p -g(τ ) 1-p ≤ (p -1)(τ -t).
As τ tends to T , the function g(τ ) tends to ∞. This shows

g(t) 1-p ≤ (p -1)(T -t).
The growth order bound is optimal as the example of constant initial data ϕ > 0 under Neumann boundary conditions displays well. Theorem 2.3 Suppose conditions (2) and (3) to hold and that

(4) p > 3, p(p -1)(p -3) > 1 4 .
Then there is a constant C > 0 such that the maximal solution

u σ ∈ C 2,1 ([-a, a]× [0, T (σ, ϕ)) of (1) satisfies u σ (•, t) ≤ C (T (σ, ϕ) -t) 1 p-1 for all t ∈ [0, T (σ, ϕ)).
Proof. We can adopt and improve the proofs by Friedman & McLeod [4] and von Below & Pincet [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF]. For the reader's convenience we repeat some similar arguments here. Choose α > 1 such that

p(p -1)(p -3) ≥ α 2 4 > 1 4
.

We choose M > 1 et M > 1 6 (α -1) -2 p-3 . Suppose ξ ∈ ]0, t 0 2 ] with t 0 = ϕ 1-p ∞ p-1 .
We shall show that there exists δ > 0 such that (5)

∂ t u ≥ δe -M t (u p + u 3 ) in [-a, a] × [ξ, T (σ, ϕ)).
In the same way as in Corollary 2.7 from [START_REF] Below | Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions[END_REF], the strong minimum principle from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] yields that there exists a positive constant c such that (6)

y := ∂ t u ≥ c > 0 in [-a, a] × [ξ, T (σ, ϕ)).
Now, set d(t) = exp(-M t) with M > 1 sufficiently large to be determined later and k(u) = u p + u 3 and introduce

J = ∂ t u -δd(t)k(u),
where δ > 0 is sufficiently small such that

(7) J(•, ξ) ≥ 0 in [-a, a]
in view to [START_REF] Mailly | Explosion des solutions de problèmes paraboliques sous conditions au bord dynamiques, Thèse doctorale à l'Université du Littoral Côte d'Opale[END_REF]. By classical regularity results, J ∈ C 2,1 ([-a, a] × [ξ, T (σ, ϕ))), see e.g. [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF], and J satisfies the boundary condition

B σ (J) = B σ (y) -δdk (u)B σ (u) -σδd k(u) = σδ exp(-M t)k(u) ≥ 0.
Moreover, J fulfills

∂ t J -∆J + u∂ x J -(pu p-1 -∂ x u)J = δdH(u) in [-a, a] × [ξ, T (σ, ϕ)),
where

H(u) := pu p-1 k(u) -k (u)u p + k (u)(∂ x u) 2 - d d k(u) -k(u)∂ x u.
In order to show that H(u) ≥ 0, we prove the inequality

|∂ x u|(u p + u 3 ) ≤ M (u p + u 3 ) + (p -3)u p+2 (8) + p(p -1)u p-2 + 6u (∂ x u) 2 .
It is obvious when |∂ x u| ≤ M . Now, we suppose that |∂ x u| > M . In the case where u 2 ≤ 6|∂ x u|, (8) is fulfilled because

u 3 |∂ x u| ≤ 6u(∂ x u) 2 and u p |∂ x u| ≤ p(p- 1)u p-2 (∂ x u) 2 since p > 3. If u 2 > 6|∂ x u|, then we have u > √ 6M = (α -1) -1
p-3 , and u p + u 3 ≤ αu p .

(8) is satisfied if

α|∂ x u|u p ≤ (p -3)u p+2 + p(p -1)u p-2 (∂ x u) 2
which is equivalent to

α|∂ x u|u 2 ≤ (p -3)u 4 + p(p -1)(∂ x u) 2 ≤ p -3u 2 -p(p -1)|∂ x u| 2 + 2 p(p -1)(p -3)u 2 |∂ x u|.
In other words, we just need

α ≤ 2 p(p -1)(p -3),
which is guaranteed by the definition of α and p. Thus, ( 5) is shown. Finally, for the growth order, it suffices to estimate u(

•, t) ∞ for t ∈ [ t 0 2 , T (σ, ϕ)). For each x ∈ [-a, a] the integral S t ∂ t u(x, s) u p (x, s) ds = u(x,S) u(x,t) 1 η p dη
converges as S T (σ, ϕ). We conclude

u 1-p (x, T (σ, ϕ)) -u 1-p (x, t) 1 -p ≥ δ (T (σ, ϕ) -t) , and 
u(x, t) ≤ (p -1) 1 1-p max δ 1 1-p , 2T (σ, ϕ) t 0 -1 1 p-1 1 (T (σ, ϕ) -t) 1/p-1 ,
which holds especially at the blow up points.

Blow up points

Let p > 2 and suppose that σ is a constant satisfying (9) σ > 0.

For the initial values, we require in addition to condition (3)

(10) ϕ(x) ≥ ϕ(-x) in [0, a],
and the one bump condition

ϕ (x) > 0 in [-a, x 0 ), ϕ (x) < 0 in (x 0 , a] (11) 
with some x 0 ∈ (-a, a). Set T = T (σ, ϕ). Following the proof of Lemma 5.2 of [START_REF] Below | Blow up for reaction diffusion equations under dynamical boundary conditions[END_REF], and using an argument by Friedman & McLeod, see Lemma 5.2 from [START_REF] Friedman | Blow up of positive solutions of semilinear heat equations[END_REF], in the case where h(u) = u p , we can state Lemma 3.1 There exists a continuous function x = s(t) such that for 0 < t < T

∂ x u(x, t) > 0 if -a ≤ x < s(t), ∂ x u(x, t) < 0 if s(t) < x ≤ a. Proof. By Lemma 2.1, ∂ t u > 0 on Ω × [0, T ). The boundary condition B σ (u) = 0 with σ > 0 shows ∂ ν u < 0 on ∂Ω × (0, T ), i.e. (12) ∂ x u > 0 on {-a} × (0, T ) and ∂ x u < 0 on {a} × (0, T ).
Moreover, (11) implies

∂ x u > 0 on [-a, x 0 ) × {0} and ∂ x u < 0 on (x 0 , a] × {0}.
First, by continuity of the solution u, there are two relatively open subsets A + and A -of Ω × [0, T ) such that 1. A + ⊆ {∂ x u > 0} and A -⊆ {∂ x u < 0}.

2.

A + and A -are connected.

3. the parabolic boundary Ω × {0} ∪ ∂Ω × (0, T ) belongs to ∂A + ∪ ∂A -∪ {x 0 }.

4.

A + and A -are maximal with respect to the properties 1. -3.

We shall show that A -= {∂ x u < 0} and

A + = {∂ x u > 0}. Recall that u ∈ C 3,1 (Ω × [0, T )), see [5]. Thus, y := ∂ x u ∈ C 2,1 (Ω × [0, T )) and    ∂ t y = ∆y -y 2 -u∂ x y + pu p-1 y in Ω × [0, T ), B σ (y) = 0 on ∂Ω × [0, T ), y(•, 0) = ϕ in Ω. For 0 < τ < T , set Ω τ := Ω × [0, τ ). Let Q -denote a connected component of {∂ x u < 0}∩Ω τ and prove that Q -⊆ A -.
We first show that ∂Q -and the parabolic boundary of Ω τ meet at least in one point different from {x 0 }. For that purpose, suppose that

∂Q -∩ Ω × {0} ∪ ∂Ω × [0, τ ) ⊆ {x 0 }.
It yields y ≡ 0 on ∂Q -∩ Ω τ . Moreover, by definition of Q -we have

∂ t y ≤ ∆y -u∂ x y in Q -, y ≤ 0 on ∂Q -.
Since y attains its maximum 0 on ∂Q -, the strong maximum principle from [START_REF] Walter | Differential and integral inequalities[END_REF] implies y ≡ 0 in Q -, which is impossible. Clearly,

Q -∩ A -= ∅, which implies A -∪ Q -= A -by maximality of A -. Now, for a connected component Q + of {∂ x u > 0} ∩ Ω τ , suppose that ∂Q + ∩ Ω × {0} ∪ ∂Ω × [0, τ ) ⊆ {x 0 }.
We still have y ≡ 0 on ∂Q + ∩ Ω τ , which implies that the interior of the set

P + := Q + \ {pu p-1 -y < 0} is not empty. Then y satisfies ∂ t y ≥ ∆y -u∂ x y + y(pu p-1 -y) ≥ ∆y -u∂ x y in P + , y ≥ 0 on ∂P + .
Since y attains its minimum 0 on ∂Q + ⊆ ∂P + , the strong minimum principle from [START_REF] Walter | Differential and integral inequalities[END_REF] again, leads to y ≡ 0 in P + , in contradiction with the definition of P + . Thus, we can conclude that {∂ x u > 0} = A + . Then, since {∂ x u > 0} and {∂ x u < 0} are connected, for (x + , t) ∈ {∂ x u > 0} and (x -, t) ∈ {∂ x u < 0} with 0 < t < T , we have x + < x -. Furthermore, we can prove that for all x such that (x, t) ∈ {∂ x u = 0}, x + < x < x -. Indeed, for x 1 < x 2 < x 3 and s ∈ (0, T ) with (x 1 , s) and (x 3 , s) belonging to {∂ x u > 0} and (x 2 , t) ∈ {∂ x u = 0}, we can choose x 1 , x 3 , s and r ∈ (0, s) such that [x 1 , x 3 ]×[r, s) ⊆ {∂ x u > 0}. For x 1 and x 3 sufficiently close to x 2 and r sufficiently close to s, we have pu p-1 -y ≥ 0, and we obtain

∂ t y ≥ ∆y -u∂ x y in [x 1 , x 3 ] × [r, s], y ≥ 0 on {x 1 , x 3 } × [r, s] ∪ [x 1 , x 3 ] × {r}.
Thus, y attains its minimum in (x 2 , s) and the strong minimum principle leads to y ≡ 0 in [x 1 , x 3 ] × [r, s], which is impossible. In the same way, points of the form (x 1 , s) and (x 3 , s) with x 1 < x 2 < x 3 and s ∈ (0, T ) with (x 1 , s) and (x 3 , s) belonging to {∂ x u < 0} and (x 2 , t) ∈ {∂ x u = 0} can be excluded. Finally, the analytic non linearity implies the analyticity of the function u(•, t), and, if we consider

x 1 , x 2 ∈ Ω and s ∈ [0, T ) such that ∂ x u(•, s) = 0 in [x 1 , x 2 ],
we obtain ∂ x u(•, s) = 0 in Ω, in contradiction with (12). Now, we can state the following Theorem 3.2 Under Conditions (9)-(11), for each (x, t) ∈ [0, a] × [0, T ) it holds u(x, t) ≥ u(-x, t).

Proof. Set v(x, t) := u(-x, t) in [0, a]×[0, T ) and introduce the function y defined by y(x, t) := u(x, t) -v(x, t). Then y is a solution belonging to

C([0, a] × [0, T )) ∩ C 2,1 ([0, a]×](0, T )) of the problem        ∂ t y = ∂ 2 x y + v∂ x y + δy -(u + v)∂ x u in [0, a] × (0, T ), y(x, 0) ≥ 0 in [0, a], B σ (y) = 0 on {a} × (0, T ), y = 0 on {0} × (0, T ), with δ(x, t) = u p (x, t) -u p (-x, t) u(x, t) -u(-x, t) .
Now, suppose that there exists a point (x, t) ∈ [0, a] × (0, T ) with (13) y(x, t) < 0, then y(•, t) attains a negative minimum at (x, t) ∈ [0, a] × (0, T ) such that

(14) u(x, t) < v(x, t) ∂ x u(x, t) = ∂ x v(x, t).
If x > s( t), then, by Lemma 3.1, ∂ x u(x, t) < 0. In a neighbourhood V of (x, t) in which ∂ x u < 0, we have

∂ t y -∂ 2 x y -v∂ x y -δy ≥ 0.
The comparison principle in [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] leads to y ≥ 0, in contradiction with (14). On the other hand, if x = s( t) we have y(x, t) = u(x, t) -u(-x, t) ≥ 0, in contradiction with (13). Finally, for 0 ≤ x < s( t), we have ∂ x u(x, t) > 0 and ∂ x u(-x, t) > 0 since -s( t) < -x ≤ 0 < s( t). Then we conclude that

∂ x y(x, t) = ∂ x u(x, t) + ∂ x u(-x, t) > 0,
again, in contradiction with (14).

The last two results immediately yield the following. The two following theorems will show that blow up can only occur in the interval [s -, s + ].

Theorem 3.5 Under the aforementioned assumptions, no point in [-a, s -) is a blow up point.

Proof. By Corollary 3.3, s -≥ 0. Suppose β ∈ [-a, s -) and choose T 0 < T sufficiently close to T such that s(t) > β for

T 0 ≤ t < T . Introduce R = [-a, β] × (T 0 , T ),
and

J = ∂ x u -εdk with d(x) = (x -β) n , n ∈ N * even, k(u) = u q , q = p -1,
and ε > 0 sufficiently small such that

(15) J ≥ 0 in [-a, β] × {T 0 }, and (16) 
u q + n(n -1) (x -β) 2 + n |x -β| u ≥ εu q-1 (x -β) n u + 2nq|x -β| n-1 .
Condition ( 15) is due to Lemma 3.1, where as ( 16) is a consequence of the assumptions on p, q and n. Moreover J(β, •) > 0 in [T 0 , T ) by Lemma 3.1, since d(β) = 0. Set f (u) := u p , (16) implies that H defined by

H(u) := f (u)k(u) -f (u)k (u) -ε dk 2 (u) -2d k(u)k (u) - d d k(u)u + d d k(u) + k (u)(∂ x u) 2 + 1 εd (∂ x u) 2 satisfies H(u) ≥ k (u)(∂ x u) 2 + 1 εd (∂ x u) 2
≥ 0 since u is strictly positive in R, as well as k for q > 1. Recall that u > 0 for t > 0 by the comparison principle of [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] and by Lemma 2.1. Moreover, J satisfies on {-a} × (T 0 , T ),

B σ (J) = B σ (∂ x u) -εdk (u)B σ (u) -εd k(u) = -εn(-a -β) n-1 u q (-a, t)
since σ is a constant. As Ω is an interval of the real line, classical interior regularity results, see e.g. [START_REF] Ladyzenskaya | Linear and quasilinear equations of parabolic type[END_REF], imply that

u ∈ C 3,2 ([-a, β] × [T 0 , T )). Thus, J belongs to C 2,2 ([-a, β] × [T 0 , T )) and is a solution of        ∂ t J -∆J + u∂ x J + K(u)J = εdH(u) ≥ 0 in [-a, β) × (T 0 , T ), B σ (J) ≥ 0 on {-a} × (T 0 , T ), J(•, T 0 ) ≥ 0 in [-a, β], J ≥ 0 on {β} × (T 0 , T ),
where

K(u) = J -f (u) + 2εdk(u) -2εd k (u)
. By the comparison principle from [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] we conclude that J ≥ 0 in [-a, β] × [T 0 , T ), in other words

∂ x u k(u) ≥ εd.
Integration between x and y with -a ≤ x < y < β and the parity of n yield

u 1-q (x, t) -u 1-q (y, t) ≥ ε q -1 n + 1 [(y -β) n+1 -(x -β) n+1 ] > 0.
Finally, suppose that x ∈ [-a, β) is a blow up point. Using 1 -q < 0, we conclude that u 1-q (y, t) < 0 for y ∈ (x, β), and t sufficiently close to T , which is impossible.

Theorem 3.6 Under the aforementioned assumptions, no point of (s + , a] is a blow up point.

Proof. We can follow the idea of the proof of Theorem 3.5. Suppose that s + < a and γ ∈ (s + , a]. Choose T 0 < T sufficiently close to T such that s(t) < γ for T 0 ≤ t < T . Set R = [γ, a] × (T 0 , T ) and

J = ∂ x u + εdk with d(x) = e 1 γ-x , k(u) = u q , 2 < q < p,
and ε > 0 sufficiently small such that

(17) J(•, T 0 ) ≤ 0 in [γ, a].
Condition (17) is possible by Lemma 3.1. Using f (u) := u p , set

H(u) = f (u)k(u) -f (u)k (u) + εdk 2 (u) -2εd k(u)k (u) - d d k(u)u + d d k(u) + (∂ x u) 2 k (u) = (p -q)u p+q-1 + u q+1 (γ -x) 2 + 1 (γ -x) 4 - 2 (γ -x) 3 u q +εe -1 γ-x 2qu 2q-1 (γ -x) 2 + u 2q + q(q -1)(∂ x u) 2 u q-2 .
Then H(u) ≥ 0 since p > q > 2. Moreover, J satisfies on {a} × (T 0 , T ) the dynamical boundary condition,

B σ (J) = B σ (∂ x u) + εdk (u)B σ (u) + εd k(u) = -ε (γ -a) 2 e 1 γ-a u q (a, t) since σ is a constant. Thus J ∈ C 2,2 ([γ, a] × [T 0 , T )) is a solution of        ∂ t J -∆J + u∂ x J + K(u)J = -εdH(u) ≤ 0 in (γ, a] × (T 0 , T ), B σ (J) ≤ 0 on {a} × (T 0 , T ). J(•, T 0 ) ≤ 0 on [γ, a], J(γ, •) ≤ 0 on (T 0 , T ),
where K(u) := J -f (u)-2εdk(u)+2εd k (u). By the comparison principle of [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF], J ≤ 0 in [γ, a]×[T 0 , T ). By integrating as above, we obtain u 1-q (y, t)-u 1-q (x, t) > 0 for γ < x < y ≤ a. Thus if y ∈ (γ, a] is a blow up point, u 1-q (x, t) < 0 for x ∈ (γ, y) and t sufficiently close to T , in contradiction to the positivity of u. Thus, u remains bounded in R.

In fact, it will be shown that s -= s + . In other words, blow up can only occur at a singleton.

Theorem 3.7 Under Conditions (3) (9) (10) (11), the blow up set of Problem (1) consists at most of a single point.

Proof. Theorem 3.5 and Theorem 3.6 imply that blow up can only occur in [s -, s + ]. It remains to show that s -= s + . Suppose that s + > s -and that u blows up at

z 1 ∈ [s -, s + ]. Set y 1 = s --ε, with (18) 0 < ε < s + -s - 2 .
By Theorem 3.5, there exists a constant C 0 > 0 such that

(19) u(y 1 , t) ≤ C 0 in [0, T ).
As u explodes at z 1 , there is τ 1 sufficiently close to T such that u(z 1 , t) > C 0 for any τ 1 < t < T . Moreover, by Lemma 3.1,

u(z 1 , t) ≤ max Ω u(•, t) = u(s(t), t) for all 0 < t < T.
Thus, by Definition 3.4 and Lemma 3.1, there exists τ ∈ (0, T ) with T -τ sufficiently small such that for y 2 = s(τ ) > s + -ε and for α = y 1 +y 2

2

we have

u(y 2 , τ ) > C 0 , u(x, τ ) ≤ u(2α -x, τ ) for x ∈ [y 1 , α], u(x, τ ) < u(2α -x, τ ) for x ∈ [y 1 , α).
Then (19) and Lemma 2.1 yield u(y 1 , t) < u(y 2 , t) for τ ≤ t < T.

Set v(x, t) = u(2α -x, t) in [y 1 , α] × [τ, T ) and w(x, t) = v(x, t) -u(x, t). Then w ∈ C 2,1 ([y 1 , α] × [τ, T )) is a solution of        ∂ t w = ∆w + v∂ x w + δw + (u + v)∂ x u in (y 1 , α) × (τ, T ), w(•, τ ) ≥ 0 in [y 1 , α], w > 0 on {y 1 } × (τ, T ), w = 0 on {α} × (τ, T ),
where we have set

δ(x, t) = v p (x, t) -u p (x, t) v(x, t) -u(x, t) .
Suppose that (20) w(x, t) < 0 at some (x, t) ∈ (y 1 , α) × (τ, T ). Then there exists a point (x, t) ∈ (y 1 , α) × (τ, T ) at which w(•, t) takes a negative minimum. Thus,

(21) v(x, t) < u(x, t), ∂ x v(x, t) = ∂ x u(x, t). If α > x > s( t) then ∂ x u(x, t) < 0 and ∂ x u(2α -x, t) < 0 since 2α -x > α > x > s( t). Thus, ∂ x w = -∂ x u(2α -x, t) -∂ x u(x, t) > 0,
in contradiction with (21). Next, recall that x is the unique zero of ∂ x u(•, t), by Lemma 3.1. Thus, α > x = s( t) would lead to another zero since 2α -x = x. Finally, suppose y 1 ≤ x < s( t), then ∂ x u(x, t) > 0. Let V a neighborhood of (x, t) in which ∂ x u > 0. In V , we have

∂ t w -∆w -v∂ x w -δw = (u + v)∂ x u ≥ 0,
and comparison principle of [START_REF] Below | A qualitative theory for parabolic problems under dynamical boundary conditions[END_REF] leads to w ≥ 0, in contradiction to (20). Thus, we have shown that w ≥ 0. For any t ∈ (τ, T ), the maximum of u(•, t) in [y 1 , y 2 ] can not be attained for x ∈ [y 1 , α). As ∂ x u vanishes at s(t) by Lemma 3.1, α ≤ s(t) for τ < t < T . Thus, by Definition 3.4

s -= lim inf t→T s(t) ≥ α = y 1 + y 2 2 ≥ s -+ s + 2 -ε
and s -≥ s + -2ε, in contradiction with (18). This permits to conclude that s -= s + . 

Corollary 3 . 3

 33 Under the aforementioned hypotheses, s(t) ≥ 0 and∂ x u(x, t) > 0 in [-a, 0) × (0, T ).Definition 3.4 s -= lim inf t→T s(t) and s + = lim sup t→T s(t)
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 1 Figure 1: Initial data ϕ and the bifurcation of local maxima
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 242 Figure 2: Convergence to one bump for c = 10.7 and conservation of two bumps for c = 9