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Summary
In the present paper, impulse responses of thin isotropic plates of arbitrary shape and linear boundary conditions
are determined from a set of measurements enclosing the area of interest. The used approach derives from the
Method of Fundamental Solutions considering virtual monopolar sources in order to reconstruct the free vibration
of the plate. The originality of this work lies in the practical deployment of this method: the collocation points
are set in the plate and not at its boundaries as usually employed in eigenanalysis context. Also, an alternative
formulation is presented for which only the relative placements of the virtual sources and the collocation points
are needed to determine the weighting coefficients, without knowing the shape of the plate and its boundary con-
ditions. Several measurements with 3 kinds of plates have been achieved and the results highlight the remarkable
robustness of the proposed formulations even for plate of complicated shape with various boundary conditions.

PACS no. 43.40.Dx, 43.40.Sk, 43.40.At

Introduction

With the wide range of application of structures of com-
plex geometry, analysis of plate vibration is still of pri-
mary importance. Although various analytical and numer-
ical methods are available in the literature [1], with explicit
formulas for some particular problems [2], exact analysis
are usually difficult when the plate shape or the bound-
ary conditions are complex. A standard finite difference
method can produce good results when dealing with a par-
ticular type of shapes, defined on rectangular grids, oth-
erwise the finite element method or the boundary element
method are more appropriate [3].

The plate problem was also considered using mesh-
free methods as Kang et al. [4] who proposed the non-
dimensional dynamic influence function method, Chen et
al. [5] with a method using a radial basis function or Alves
et al. [6] who employed the Method of Fundamental Solu-
tions (MFS) for the eigenanalysis of 2D plates.

In this paper, an alternative meshfree method based on
the principle of the MFS is proposed, for the vibration
analysis of arbitrarily shaped plates and various bound-
ary conditions. The basic idea is to decompose the solu-
tions of a partial differential equation into a linear com-
bination of the fundamental solutions, represented by vir-
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tual source points. Usually, the intensities of the sources
are the unknown parameters [7]. This principle has been
extensively used and is known under various denomina-
tions as the Wave Superposition Method (WSM) [8], the
sources simulation method [9], the auxiliary [10] or equiv-
alent [11] sources method. While different in theoretical
aspects, all these formulations substitute a real radiating
body by a set of elementary sources, thus the global field
of interest can be approximated by the sum of the fields
due to each source. One of the most advantageous fea-
ture of these meshfree methods is to have a computational
cost lower than usual boundary or finite element methods.
Thus, these methods constitute efficient and economical
simulation techniques for practical applications like ac-
tive control. As a setback to the simplicity of its under-
lying principle, the determination of the source strengths
leads to numerical and analytic difficulties, extensively
discussed over the past two decades [6, 12]. It’s worth not-
ing that if the sources are located on a continuous contour,
and employed to solve the Helmholtz equation, the MFS
is equivalent to the WSM.

Starting from the fundamental solution of the governing
differential equation of the plate, with an implicit domain
considered, a wave-type function that propagates omni-
directionally is considered. Physically, this Green’s func-
tion represents the response at a point B to a unit excitation
at A. It thus defines a 1D function, as the only independent
variable is the distance between A and B. So, the main
idea of the proposed method is to reconstruct the response
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at B from a set of virtual sources surrounding the plate.
This method ensures the equivalence between the mea-
sured and the reconstructed impulse response between A
and B. Indeed, the proposed method differs strongly from
other MFS applications to plate vibration as the colloca-
tion points are located inside the real bounded plate and
not at its boundaries. This configuration is of primarily im-
portance since it allows to take into account any boundary
conditions at plate edges implicitly with ease of applica-
tion thanks to vibration measurements at any point of the
plate.

In the following section the MFS formulations used in
this paper is shown. This underscores the matrix system
needed to obtain the weighting coefficients associated at
virtual sources. Also in this section, a new scheme of
the classical MFS is proposed for which only the rela-
tive placements of the virtual sources and the collocation
points are needed in order to determine the weighting co-
efficients. Thus, the main process of the MFS which is the
determination of these weighting coefficients is simplified
as its only involves unbounded-medium Green’s functions
with no knowledge about the plate boundary conditions.
The third section concerns the applications performed us-
ing these different formulations applied to three kind of
plates with various boundary conditions.

1. MFS formulation

The equation for harmonic free flexural vibration of an
uniform thin plate is written as [2]

∇4w (r) − k4w (r) = 0, (1)

where w (r) is the function of transverse deflection, k4 =
ω2ρh/D with ρ the density, ω the angular frequency, h the
thickness of the plate, and D the flexural rigidity.

The fundamental solution of the equation equation (1)
is defined by

∇4G (rA|r) − k4G (rA|r) = −δ (rA − r) , (2)

where r represents the coordinates of field point and rA the
coordinates of source point. The solution of the equation
(2) is the Green’s function defined by [13]

G (rA|r) =
1

8k2

�
iH (1)

0 (kr) − 2
π

K0 (kr)
�

. (3)

H
(1)
0 is the Hankel function of the first kind, K0 the mod-

ified Bessel function of the second kind, r = |r − rA| the
distance between the plate excitation placed at rA, and its
measurement at r.

In the MFS, the solution is assumed to be [14]

w (r) ≈
N�

j=1

�
αjH

(1)
0

�
k|r − sj|

�
+ βjK0

�
k|r − sj|

��
, (4)

where αj and βj are the intensities of the virtual source
point at sj, and N the number of virtual source points as
depicted in Figure 1.

sj

Γ

Ωint

Ωext

Ω = Ωext ∪ Ωint

xj

r

Figure 1. Geometry configuration of the MFS for plate vibra-
tions.

Classically, in order to obtain the unknown intensities,
boundary field points are chosen to satisfy the specified
boundary conditions of the plate. Here, for practical rea-
sons concerning measures and for some cases to quantify
only propagative waves, collocation points are selected in
Ω. In order to be able to reconstruct the area of interest
Ωint with minimal measurements, these collocation points
should define a contour bounding Ωint. One should notice
that two weighting coefficients are associated for each vir-
tual source locations, α for the propagative and β for the
evanescent waves. Thus, for N virtual sources, 2N collo-
cation points xj (where w is measured) are needed. From
equation (4), this results in a 2N × 2N linear system,

[A]2N×2N

�
[α]N

[β]N



= [w (x)]2N , (5)

where [A] represents the influence matrix between the vir-
tual sources and the collocation points in terms of funda-
mental solutions,

[A] =

 H
(1)
0 (k|x1 − s1|) · · · K0 (k|x1 − sN|)

...
. . .

...
H

(1)
0 (k|x2N − s1|) · · · K0 (k|x2N − sN|)

 . (6)

Then, determination of the unknown weighting coeffi-
cients is straightforward using matrix inversion.

This scheme is effective to handle practical applications
as the boundary conditions are not needed to reconstruct
plate vibrations but simply incorporated via the displace-
ment measure at collocation points. Knowing the disper-
sive property of the medium, determination of the coeffi-
cients αj and βj leads to evaluate w (r) anywhere in Ωint

thanks to equation (4):

w (r) ≈
�
[α]
[β]


T
��

H
(1)
0 (k|r − s|)



[K0 (k|r − s|)]

�
. (7)

A simplification of the reconstruction system defined by
equation (5) is also possible. In fact, evanescent waves can
be generally neglected when dealing with plates of large

920



Leblanc et al.: Impulse responses reconstruction ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 97 (2011)

dimensions in respect to the investigated wavelengths.
The resulting matrix system is therefore directly applica-
ble to simply supported plates or fixed membranes where
evanescent waves are not generated at plate boundaries.
The first term of equation (3) corresponds to a propa-
gating wave whereas the second term corresponds to an
evanescent wave. In the proposed method, those waves
can generally be ignored since we observe the plate only
in its interior domain. Indeed, the evanescent waves de-
crease quickly, −20 dB per λ/3, compared to the propa-
gating waves [15]. This assumption recovers the far-field
Hankel approximation of the fundamental solution for the
infinite plate [16, 17]. If neglecting the evanescent waves
(thus solving a bidimensional Helmholtz equation [2]) and
if the sources are distributed along a continuous contour as
shown in Figure 1, an application of the WSM can also be
performed [8]. For the MFS, and since equation (1) can be
reduced to the membrane equation (∇2w + k2w = 0), the
linear system defined in equation (4) is recast only for the
weighting coefficients related to the propagative waves,

w(r) ≈ [α]T
�
H

(1)
0 (k|r − s|)



. (8)

The weighting coefficients α are obtained easily thanks to
the collocation points,α1

...
αN

 =

H
(1)
0 (k|x1 − s1|) · · · H

(1)
0 (k|x1 − sN|)

...
. . .

...
H

(1)
0 (k|xN − s1|) · · · H

(1)
0 (k|xN − sN|)


−1

·

w (x1)
...

w (xN)

 =
�
A
� [w (x)] . (9)

Thus, the reconstruction process consists of two main
steps:
• compute the weighting coefficients α and β (resp. α)

with measures at collocation points via equation (5) (re-
spectively equation 9),

• associate these coefficients with free-space Green’s
function (cf. equation 7 or 8).

1.1. Alternative formulation

An alternative formulation for the weighting coefficients
determination is possible. Expliciting the weighting coef-
ficients in equation (7) with equation (5), we have

w (r) ≈ �
[A]−1 [w (x)]

�T

��
H

(1)
0 (k|r − s|)



[K0 (k|r − s|)]

�
. (10)

This equation can be recast as

w (r) ≈
��

[A]T
�−1

��
H

(1)
0 (k|r − s|)



[K0 (k|r − s|)]

��T

[w (x)] . (11)

This leads to another MFS formulation with new weight-
ing coefficients α̃ and β̃,

w (r) ≈
�
[α̃]�
β̃
�
T

[w (x)] . (12)

Here these coefficients are computable without any
prior measurements on boundary conditions as we have�

[α̃]�
β̃
�
 =

�
[A]T

�−1

��
H

(1)
0 (k|r − s|)



[K0 (k|r − s|)]

�
. (13)

Once again, if the evanescent waves can be neglected,
equation (12) is simplified,

w(r) ≈ ��α�T
[w(x)] . (14)

The weighting coefficients �α are thus obtained by

[α̃] =
��

A
�T
�−1 �

H
(1)
0 (k|r − s|)



. (15)

Comparing this last equation with the classical MFS
scheme defined by equation (8), the process is somehow
reversed:
• compute the weighting coefficients �α and �β (resp. �α)

with free-space Green’s function only via equation (13)
(resp. (15)),

• associate these coefficients with measures at collocation
points (cf. equation 12 or equation 14).

This procedure can be useful when dealing with plate of
same dispersive properties but different shapes and various
boundary conditions.

2. MFS Applications

The usual and alternative MFS formulations presented in
this paper are investigated for three different plates:
• rectangular inox plate, clamped at one edge, free on the

others. Equation (4) is employed here, because of sig-
nificant evanescent waves in the reconstruction area.

• circular glass mirror with one segment cut off, with free
edges. As only propagating waves are considered in the
reconstruction area, equation (8) is used.

• complex-shaped inox plate, clamped at one edge, free
on the others. Again, only propagating waves are ex-
pected in the area of interest, equation (14) is evaluated.

These three cases also highlight the potential of the pro-
posed method for impulse responses reconstruction in ar-
bitrarily shaped plates. Indeed, after a first case dealing
with the space reconstruction of plate vibration at a dis-
crete frequency, the frequency responses obtained by the
MFS process can be treated by inverse discrete Fourier
transform in order to obtain the corresponding impulse re-
sponses.

2.1. Numerical considerations
Matrix inversion: basic rank-revealing decompositions
show the rank-deficient nature of numerical problems de-
fined by methods based on fundamental solutions. For
the following applications, truncated singular value de-
composition [18] are performed to compute efficiently the
weighting coefficients with the use of equations (5) or (9).
Fictitious eigenfrequencies: an issue of the MFS is
the existence of the fictitious eigenfrequencies when the
sources network defines a closed contour or surface. As
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it has been proved for the WSM, these methods share the
same uniqueness problem at characteristic frequencies.

Several solutions exist to circumvent this indetermina-
tion, one of the easiest to implement in the present case is
to place few other collocation points out of the main col-
location points network [19].
Number of collocation points: when the discrete set of
the collocation points defines an outline, the accuracy of
the MFS depends solely of the classic frequency criterion
seen in previous works on the WSM, setting the maxi-
mum recommended distance between two points at λ/3
[20]. Increasing the collocation points density has shown
no significant improvement on method accuracy. On the
contrary, as the condition number of the influence matrix
increases with the number of collocation points, this may
have the opposite effect on the method reliability.
Acoustic dispersion: the dispersive relation, used in
the following applications, between k and the frequency
f is given by the low-frequency approximation k2 =
2π

√
3f/Vph [21], where Vp is the plate velocity as defined

in [22].

2.2. Experimental setup

Figure 2 shows the experimental setup deployed in order
to acquire the normal displacements needed to validate the
present method. The impulse responses are measured us-
ing glued PZT ceramic acting as an emitter, and a laser
vibrometer acting as a receiver at the observation point
in Ωint and for the normal displacements measurement at
collocation points. The diameter of the piezoelectric disk
is 10 mm. The signal used to excite the PZT ceramic is a
chirp signal of varying frequency (from 3 kHz to 20 kHz)
and driven by a standard audio card with a 44 kHz sam-
pling rate. This impulse load acting results in an initial ve-
locity and the response due to such loading can be thought
as free vibration under the initial velocity. For the 2nd ap-
plication, for which the edges are supposed free, the plate
is supported by 3 foam blocks. Comparisons with a plate
for which a solution is known [2] have validated this setup.

2.3. Experimental results

The first experiment is performed on a rectangular inox
plate (length Lp = 190 mm, width Wp = 130 mm, h =
2 mm and Vp = 3725 m/s). This plate is clamped at one
of its widths and free to vibrate at the three other edges.
Here, equation (5) is employed in order to determine the
unknown intensities for both propagative and evanescent
virtual sources. The collocation points define two outlines:
• the exterior outline defines the reconstruction area Ωint,
• the interior outline is use for numerical stability and

could be placed anywhere in Ωint.
Indeed, the few interior collocation points added to the
exterior set of collocation points cancel the fictitious res-
onance frequencies of the rectangular contour. Without
these additional measures, the correlation level will de-
pend mainly on the fictitious resonances density, which
can be irrelevant for small plate but cancel the efficiency

Personal
computer

Plate

N measures

Laser vibrometer

PZT

Figure 2. Experimental setup.
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0
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Figure 3. Measured and reconstructed amplitude and phase by
the MFS algorithm (N = 108) at 3.4 kHz.
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Ω
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R
i

R

Ω’
ext

Figure 4. Truncated glass plate, •: collocation points (N = 99).

of the proposed method for common plate or high frequen-
cies investigation. It must be remembered that these eigen-
frequencies are only linked to the geometrical disposition
of the collocation points and not to the real plate physical
boundaries.

Figure 3 shows the reconstruction of the normal dis-
placements in all the plate domain from these 108 collo-
cation points and with a virtual sources outline set to be
a homothetic transformation of ratio 2 of the exterior out-
line.
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Figure 5. Amplitude and phase
reconstruction of the frequency
response for the MFS configu-
ration of Figure 4.

The Mean Square Error (MSE) obtained by the method
is less than 1.2% at collocation points and less than 5% for
the whole plate surface. This estimator is defined as

MSE =

�����N
i=1 |wc(f, xi) − wm(f, xi)|2�N

i=1 |wm(f, xi)|2
, (16)

where wc (resp. wm) is the calculated displacement (resp.
measured) w at the measure points.

With equation (9), then neglecting the evanescent field
reconstruction, the MFS leads to higher error value (MSE
> 20%), as expected.

The second application is carried out on a circular glass
mirror with one segment cut off (Figure 4, radius R =
210 mm, h = 4 mm, radius of cutting Ri = 150 mm and
Vp = 5315 m/s). This plate is homogeneous with free
edges. For this application, equations (8) and (9) are em-
ployed, thus the collocation points can not be placed any-
where: the distance d defines the area where the evanes-
cent waves can not be ignored. The point A is surrounded
by a rectangular collocation points network with again
few additional interior points to cancel the fictitious reso-
nance frequencies. With the low-frequency approximation
on dispersion, d ≈ 37 mm if the lowest frequency of inter-
est is 3 kHz. The axes origin is the center of mass of the
mirror. The MFS scheme is used for an observation point
located at A (x = −74 mm and y = −2 mm) and a PZT
ceramic glued at B (x = 110 mm and y = −102 mm). The
virtual sources are located on a circle of radius 2R and
centered on axes origin.

Figure 5 shows the amplitude and the phase recon-
structed at A compared to the original measure. The mea-
sured frequency response can be quantitatively compared
to that determined from the MFS using a correlation indi-
cator defined

corr (x, y) =
1
p

p�
i=1

Re

�
wc(fi, xA) · wm(fi, xA)∗

|wc(fi, xA) · wm(fi, xA)|

�
, (17)

Figure 6. Polygonal plate, •: collocation points (N = 121).

where p denote the number of discrete frequencies for
which the MFS is performed. Here, high level of corre-
lation is achieved (up to 98% for this example).

The last application consists in the structural vibration
reconstruction of an arbitrarily shaped inox plate (cf. Fig-
ure 6). The plate characteristics dimensions are Lp =
355 mm, Wp = 130 mm and h = 2 mm. Plate velocity is
estimated at 4640 m/s.

Here, the plate is clamped at Γ

ext with free edges for

Γext. Two chirp signals are alternately emitted from the
two PZT ceramics at B1 and B2 and the displacement in-
duced at original source location is measured by the laser
vibrometer. equation (14) is used here in order to demon-
strated the robustness of the alternative MFS formulation
when dealing with a plate of complex shape and boundary
conditions.

Figure 7 illustrates the reconstruction quality with cor-
relation map for more than 600 locations of observation
points A in Ωint and for 121 sources disposed on a cir-
cular contour (radius = Lp) exterior to Γext and Γ


ext and
centered at the center of mass. For the working band fre-
quency from 3 kHz to 20 kHz, the results are particularly
good as the reconstructed displacement is close to the col-
location points. Nevertheless, correlation levels for the in-
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Figure 7. Polygonal plate: correlation maps for the reconstruction
of the impulse response measured at A ∈ Ωint: (a) from B1 - (b)
from B2 (cf. Figure 6)

measured
reconstructed

time

Figure 8. Polygonal plate: impulse response reconstruction ex-
ample.

ner area are largely satisfactory with a mean value of 0.93
and a standard deviation of 0.02.

Finally, and to demonstrate the ability of the proposed
formulation for the determination of the impulse response,
the same plate is used but with an excitation signal now
from 500 Hz to 20 kHz. Thus, prior considerations on the
evanescent waves should be invalided by the added low
frequency band. Nevertheless, and as illustrated by Fig-
ure 8 for a point near the center of mass, results show
remarkable agreement between the measured and recon-
structed impulse response obtained via inverse discrete
Fourier transform.

The robustness of the proposed method can be ex-
plained by the fact that most of the mechanical energy
stands in the 3 kHz - 20 kHz range as shown in Figure 9.

3. Conclusion

Compared to usual techniques applied to the determination
of the plate impulse responses, the MFS presents a real
benefit in terms of measurement needs. With minimal ma-
terial properties or boundary conditions knowledge, only a

203
Frequency (kHz)

A
m
pl
itu
de

Figure 9. Polygonal plate: frequency response for the measured
point of Figure 8.

contour discretization inside the plate is required to com-
pute efficiently the transverse displacements with no as-
sumptions on geometry. Excellent results are obtained for
both rectangular and complex-shaped thin plates, show-
ing the quality and the robustness of the proposed method.
When the evanescent waves are taken into account, the
method could be also applied to plate with arbitrary holes
or cutouts. Further developments and experiments should
be carried out to establish the limits of this approach.
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