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Summary
In this paper, a three-dimensional boundary element method developed to evaluate the acoustic resonance of com-
plex cavity is presented. The formulation is based on a particular integral method. Neumann or mixed boundary
conditions are considered. Some numerical tests are carried out and results compared to classic models. General
agreement is observed. A practical eigenfrequency analysis is realized by applying the model to a complex car
cabin. The Arnoldi method is used to achieve the eigenfrequencies. A good numerical behaviour is observed and
its implementation and use are quite easy.

PACS no. 43.20.Fn, 43.20.Tb, 43.30.Jx, 43.40.Rj

1. Introduction

Since vehicle noise problems are now a serious concern
in the automotive industry, there is a strong demand to
implement a method which can predict the noise level
in the early design stage of a vehicle [1], and particu-
larly, the noise caused by structural vibration. This in-
creasing demand for acoustic eigenvalues analysis calls
for an efficient and reliable method of computation of res-
onance frequencies of acoustical cavities. Acoustic fields
in this steady-state interior problem are governed by the
Helmholtz equation and boundary conditions. Over the
last two decades, both the finite element (FEM) and
boundary element method (BEM) [2] were proposed to
obtain numerical solutions of this problem [3]. For BEM,
the discretization is confined to the fluid-structure bound-
ary. In the case of the FEM, the mesh is extended to the
fluid domain. Compared to FEM, BEM leads to signifi-
cant decrease of the preprocessing time. However, it must
be noted that the FE matrices are symmetric and band for
which efficient solvers are available. Application of BEM
to acoustic eigenvalue analysis leads to a half-dozen effi-
cient formulations [4] like the determinant search method
(DSM) [5], the dual reciprocity method (DRM) [6], the
multiple reciprocity method (MRM) [7, 8] and the series
expansion method (SEM) [9]. In this paper, the particu-
lar integral method (PIM) is chosen because it is, with the
DRM, one of the most versatile eigenanalysis methods:
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frequency parameter is taken out from the matrices which
are computed just once; sound fields are easily obtained;
better accuracy is possible with additional internal collo-
cation points; absorption can be taken into account at the
boundary.

In Section II, a brief review of boundary element meth-
ods used in the acoustic resonance problem, excepted PIM,
is proposed. Afterwards, the problem to solve is stated and
the PIM is described.

In Section III, simple problems with known analytic and
experimental results are presented in order to show the va-
lidity of the proposed technique. A detailed presentation of
the solution procedure for eigenvalues extraction follows
to demonstrate the efficiency of the Arnoldi eigensolver
and the usefulness of the proposed new technique to solve
more practical problems.

2. Acoustic eigenvalue problem and numer-
ical method

In this section, the acoustic resonance problem is given
and the numerical method developed to solve it is de-
scribed.

2.1. Brief review of boundary element methods

Until the year 1982, the DSM [5] was the only method
available to extract eigenvalues using the boundary ele-
ment method. This method suffers from two major draw-
backs: it requires the system matrix to be formed repeat-
edly for different values of frequencies and it is extremely
inefficient in the case of closely spaced frequencies. The
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DRM [6], based on an approximated function related to the
acoustic pressure, offers a clear advantage over the DSM:
matrices are free from the frequency parameter and as a
result, they need to be calculated only once. Nevertheless,
matrices are fully populated and unsymmetric, and their
conditioning can be damaged when additional field collo-
cation points or zoned boundary techniques are used. The
MRM [8] eigenvalue formulation uses Helmholtz funda-
mental solution with expansion of matrices in terms of the
wave numbers [10] and can eliminate the need for internal
collocation points. The MRM method has two important
drawbacks: it is difficult to use and inadequate for a gen-
eral problem. Although this technique increases the size of
matrices, the MRM allows to use generalized eigensolvers
readily available in standard eigensolver packages. More-
over, this increasing matrix procedure introduces spurious
eigenmodes into the solution, which, if not automatically
filtered out, damages the reliability of the eigensolution.
The SEM [9] is equivalent to the MRM and suffers from
the same drawbacks as outlined by the matrix augmenta-
tion procedure of Kamiya et al. [10].

2.2. Equations of the problem

An acoustical cavity (domain �) filled with fluid, e.g. air,
is considered (see Figure 1). The variables exhibit an im-
plicit e�j�t time dependence. The harmonic wave propa-
gation problem in terms of acoustic pressure amplitude is
governed by the Helmholtz equation

�P � k�P � �� �x� y� z� � � � ��� (1)

where � is the Laplacian operator, P is the amplitude of
the acoustic pressure, k is the wave number ��c, � is the
circular frequency and c is the sound velocity in the fluid
medium. To solve the acoustic eigenvalue problem, three
types of boundary conditions are possible:

P � � on �� (Dirichlet) (2a)

�P��n � � on �� (Neumann) (2b)

�P��n � �P on �� (Robin) (2c)

where � is a function of the location of the point that
depends on the frequency, and ���n is the outward nor-
mal derivative on the boundary. This last condition is used
when sound absorption at boundaries is taken into account.
In the following, homogeneous Neumann and/or Dirichlet
boundary conditions are considered. The acoustic problem
consists in computing the eigenvalues - wave number k -
in the acoustic fluid within the enclosure.

2.3. Particular Integral Method

In order to use an eigenanalysis solver, the frequency must
be removed from the final set of equations. To this end,
Ahmad et al [11] proposed the PIM. In this method, the
total pressure and its gradient are decomposed into two
functions, a complementary function and a particular so-
lution:

P � P c � P i and
�P

�n
�
�P c

�n
�
�P i

�n
� (3)

Γ2

Γ3
Domain Ω

Γ1

Γ = Γ1 ∪ Γ2 ∪ Γ3

Figure 1. An acoustic cavity.

The complementary function satisfies the homogeneous
part of the Helmholtz equation (1) without the inertial term

�P c � �� (4)

The particular solutions is solved by using

�P i � k�P � �� (5)

The boundary integral statement of equation (4) can be
written as [2]

�P c �	r� �

Z
�

�G�	r� 	rs�

�n
P c�	rs� d��	rs�

�

Z
�

G�	r� 	rs�
�P c�	rs�

�n
d��	rs� � �� (6)

where� is the so-called solid angle [12] at the source point
	r, n is the outward normal at the field point 	rs and � is
the boundary of the domain �. G�	r� 	rs� is the free-space
Green’s function for the Laplace’s equation:

G�	r� 	rs� �
	




��	r � 	rs

�� (3-D). (7)

This Green’s function does not depend on the frequency
parameter k. After discretization of the boundary and per-
forming the integrations, equation (6) is re-written in a dis-
crete form

�A�fP cg � �B�

�
�P c

�n

�
� (8)

The complementary function and its derivative are elimi-
nated from this equation by means of equation (3) to obtain

�A�fPg � �B�

�
�P

�n

�
� �A�fP ig � �B�

�
�P i

�n

�
� (9)

P can be approximated by a global shape function:

P �	r� �

�X
m��

C�	r� 	rm���	rm�� (10)

where � is a fictitious density function at 	rm [13]. The
shape function used is

C�	r� 	rm� � R� r�	r� 	rm�� (11)
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where r�	r� 	rm� is the distance between this two points and
R is a suitable constant which is generally the largest dis-
tance between any two points on the body [13]. The sum
(10) is truncated: the number of terms is equal to the num-
ber of nodes of the mesh. So, we obtain the following ma-
trix form:

fPg � �C�f�g� (12)

From equations (5), (10) and (11), we get

P i�	r� � k�
�X

m��

D�	r� 	rm���	rm�� (13)

with

D�	r� 	rm� �
	



�
	

�
r�	r� 	rm�� �Rr�	r� 	rm��

�
� (14)

Just as for �C�, we obtain:

fP ig � k��D�f�g� (15)

The normal derivative �P i��n at 	r can be computed from
equation (13) and equation (14):

�P i�	r�

�n
� k�

�X
m��

T �	r� 	rm���	rm�� (16)

with

T �	r� 	rn� �

�
	



r�	r� 	rn��

	

�
R

�
�	r � 	rn� � 	n� (17)

Its matrix form is�
�P i

�n

�
� k��T �f�g� (18)

After combining equations (9), (15) and (18), the follow-
ing equation is obtained:

�A�fPg � �B�

�
�P

�n

�
� k�

�
�A��D�� �B��T �

�
f�g� (19)

By expressing the acoustic eigenvalue problem in terms of
the fictitious function � with equation (12), rather than the
pressure amplitude P , the inversion of matrix is avoided.
This yields [14]:

�A��C�f�g � �B�

�
�P

�n

�
� k��M �f�g� (20)

with

�M � � �A��D�� �B��T ��

Including the appropriate boundary conditions in equation
(20) leads to a generalized eigenvalue problem (GEP)

�H �fxg � k��G�fxg � �� (21)

For pure homogeneous Neumann boundary conditions,
fxg � f�g, �H � � �A��C� and �G� � �M � [13]:

�A��C�f�g � k��M �f�g � �� (22)

With mixed homogeneous boundary conditions, i.e. P� �
� on �� and �P���n � � on ��, equations (12) and (19)
can be partitionned [15] as:�

A�� A��

A�� A��

��
P�
P�

�
�

�
B�� B��

B�� B��

��
�P�
�n
�P�
�n

�

� k�
�
M�� M��

M�� M��

��
��
��

�
� (23)

and �
P�
P�

�
�

�
C�� C��
C�� C��

��
��
��

�
�

Then the following system is obtained:�
B�� A����C��C

��
�� C�� � C���

B�� A����C��C
��
�� C�� � C���

��
�P�
�n

��

�

� k�
�
� �M��C

��
�� C�� �M���

� �M��C
��
�� C�� �M���

��
�P�
�n

��

�
� (24)

The fxg vector of equation (21) contains the unknown
boundary values of � and �P��n. The PIM is also able to
handle sound absorption at the boundary [16]. Absorption
in an acoustic cavity can be incorporated in the discretized
boundary element equation (20) with the following expres-
sion of boundary pressure gradient at the sound absorbing
boundary, Robin conditions (equation 2c):�

�P

�n

�
� �jk� fPg (25)

If pressure gradients at the absorbing and non-absorbing
boundary nodes are respectively denoted by f�P���ng
and f�P���ng, then, substituting equation (25) into equa-
tion (20), with hard boundary condition for the non-
absorbing nodes, yields:

jk�

�
B��C�� B��C��
B��C�� B��C��

��
��
��

�
��A��C�f�g � k��M �f�g� (26)

Including the coefficient � into the matrix and denoting the
absorption matrix as �Cabs� and �K� � �A��C�, equation
(26) is rewritten as

�K�f�g� �Cabs�f�g� ��M �f�g � �� (27)

with the eigenvalues  � jk. This is a quadratic eigen-
problem.

2.4. Eigenvalues extraction

The eigenvalue problem formulated in the previous part
is a generalized eigenproblem with real unsymmetric and
fully populated matrices. The two-sided Lanczos method
[17] is quite popular to solve such a problem, because
the Lanczos subspace matrix is tridiagonal, and then
saves memory space. However the major problem of
the Lanczos method is its potential breakdown problem.
The look-ahead Lanczos method [18], the block Lanczos
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Figure 2. Normal vector determination.

method [19], the nested Lanczos method [20] and implic-
ity restarted Lanczos method [21] all offer solutions to this
problem. Here, a variant of the Arnoldi procedure called
the implicitly restarted Arnoldi method (IRAM) is chosen
to solve the eigenfrequency problem. This method, pro-
vided by the ARPACK software [22], is designed to solve
large scale GEPs with unsymmetric matrices. In Section
III, it shows its efficiency by comparison to a direct algo-
rithm of LAPACK [23], as well as the analytical values of
the studied problems when available.

2.5. Geometry difficulties

The discretization of the problem is carried out with
isoparametric quadratic elements [24]. This process dupli-
cates the number of normal vectors at some nodes, belong-
ing to two or more elements. To overcome this difficulty,
the average normal is used, as shown in Figure 2.

3. Numerical experiments

These numerical developments written in Fortran 77 are
included in the boundary element code EQI [25].

The above numerical method, called the generalized
particular integral method (GPIM), is tested by compari-
son with conventional methods and its validation is given.
Some improvements are also developed and the model is
finally applied to a complex car cabin.

3.1. Validity of the method

The first simulation case involves determination of the
eigenmodes of a rectangular parallelepiped with Neumann
conditions (cf. equation 2b called hard boundary condi-
tions). The dimension are Lx � ��a, Ly � ���a and
Lz � a (Figure 3), where a is a typical length.

GPIM results are compared to the corresponding analyt-
ical eigenvalues, computed by the following formula [26]:

k�nx� ny� nz� � 


s	nx
Lx


�
�
	ny
Ly


�
�
	nz
Lz


�
� (28)

An eigenmode is found by a particular combination of in-
tegers nx, ny and nz. Each of these three integers is as-
sumed non-negative. Four meshes composed by identical

Z

Y

X

Lz

Lx

Ly

Figure 3. The 24-elements mesh of the rectangular parallelepiped
acoustical cavity.

Table I. Comparison of natural frequencies (ka) of the 3-D rect-
angular parallelepiped with hard boundary.

Mode GPIM GPIM GPIM GPIM Analyt.
24 94 384 864 solution
elts elts elts elts

1 3.602 3.224 3.213 3.188 3.142
2 4.602 4.126 4.028 3.999 3.927
3 5.991 5.326 5.184 5.128 5.029
4 6.248 5.717 5.389 5.371 5.236

ka max 3.142 7.854 12.566 18.849

8-nodes quadrilateral elements are used to investigate the
numerical behaviour of GPIM (respectively 24, 94, 384
and 864 elements). In Table I, the approximations of the
first four Neumann eigenvalues by using the different dis-
cretizations are given. To ensure convergence, every mesh
must meet the ‘�
 criterion’ [27]: the length of elements
must be smaller than a quarter of wavelength at the high-
est computed frequency. This condition defines a maximal
value of ka for each mesh, which is also indicated in Ta-
ble I, and is often used for radiation or scattering prob-
lem with isoparametric quadratic elements. We observe
that this condition is not sufficient to guarantee accuracy
of the solution.

The second example takes into account Dirichlet bound-
ary conditions. We consider the same rectangular paral-
lelepiped, but with Dirichlet condition on every nodes for
Lz � a and Neumann condition everywhere else. The re-
sults of this analysis are compared in Table II to the MRM
solution [10] and the analytical solution for this problem
given by [26]:

k�nx� ny� nz� � (29)




s	nx
Lx


�
�
	ny
Ly


�
�
	nz � 	��

Lz


�

3.2. Improvements

To solve the GEP with dense matrices of the GPIM, we
use two different algorithms. The first can be found in LA-
PACK, driven by the procedure xGGEV, a direct solver
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Table II. Comparison of natural frequency (ka) of the 3-D rect-
angular parallelepiped with mixed boundary.

Mode 24 elements 94 elements Analyt.
MRM GPIM MRM GPIM solution

1 1.640 1.534 1.590 1.537 1.517
2 4.440 4.999 4.280 4.449 4.229
3 4.760 5.446 4.710 4.834 4.712
4 5.600 6.316 5.580 5.942 5.467

ka max 3.142 7.854

which uses the generalized Schur decomposition of the
pair of matrices (H , G) of (21) to obtain all the gener-
alized eigenvalues of these matrices, and optionally their
left or right eigenvectors (or both). This procedure is eas-
ily implemented and offers accurate results but needs a lot
of computation time. The second algorithm used can be
found in the subroutines package ARPACK. This software
is designed to compute few eigenvalues, in opposition to
LAPACK. It is based on IRAM, which is able to solve
large-scale Hermitian, non-Hermitian, standard or gener-
alized eigenvalueproblems. However, when applied to the
GEP developped in this paper, its uses proves to have more
difficulties than for LAPACK. This fact is mainly due to
the structure of the matrices, which are not Hermitian pos-
itive semidefinite. Thus, a direct transformation of equa-
tion (21) to a standard eigenvalue problemCx � x leads
to C � G��H . To avoid it, a direct factorization of G can
be obtained, and replaced, when matrix vector product in-
volving G��H is called. However, experiments showed
the limits of such a procedure. Thus, the choice of the
number of Arnoldi vectors to be generated at each iter-
ation of the method is not easy in this case. Depending
on the size of the problem to solve rather than the num-
ber of eigenvalues to calculate, the methods leads, for the
same accuracy, to higher computing time than the direct
method. A better use of ARPACK for GPIM is to use the
shift-invert mode applied to the standard eigenvalue prob-
lem Cx � x defined previously.

The choice of the shift value parameter influences the
efficiency of this method, i.e. zero value leads to spurious
eigenvalues. The number of Arnoldi vectors is driven by an
empirical rule which can be written as [22]: ncv � ��nev,
where nev is the number of eigenvalues to be computed
and ncv is the number of Arnoldi vectors. With this con-
figuration, the average CPU gain is 6 compared to the di-
rect solver implemented on LAPACK.

As an integral formulation, the GPIM must verify the
‘�
 criterion’. Experiments show a good adjustment of
this criterion for the GPIM, but attention must be paid to
certain eigenvalues which do not meet this criterion fully.
Table III shows the ability of the GPIM for a cube with
hard boundary and four different discretizations (N is the
number of nodes). Values that are given in bold types cor-
respond to frequencies that do not fit the ‘�
 criterion’.

Convergence is slower than expected. Accuracy can be
improved using internal collocation points [15] and a dif-
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Figure 4. 3-D cube with hard boundary: computation cost versus
number of nodes of the GEP for the first 12 eigenvalues.
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Figure 5. 90-elts meshed car interior.

ferent shape function from equation (11) [28]. Moreover,
it has to be noted that spurious eigenvalues exist, for struc-
tures with one or more geometrical symmetric planes :
multiple modes for undersized meshes are seen like dif-
ferent modes as we seen in Table III for the fourth and
fifth modes.

Figure 4 shows the behaviour of central processor unit
(CPU) time to solve GEP. With the same accuracy, three
symmetric planes allow an average decrease factor equal
to 10 on computation times.

3.3. Application

The usefulness of the BEM-based eigenanalysis technique
is now tested in the case of noise control in automotive
design [29]. A complex-shaped boundary (see Figure 5),
for which no analytic solution is available, is considered.
The model is compared to other numerical methods.

Table IV shows GPIM performances compared to the
results data given by [30]. The mesh is made of 90 rectan-
gular boundary elements, while the mesh of the FEM con-
sists of 54 bricks elements. The GPIM is prone to com-
pute higher frequencies because it is less affected by the
increasing density of eigenmodes than the DSM [30].

For larger meshes (Table V), eigenvalues of the GPIM
are closer to FEM and DSM results. The slower conver-

877



ACTA ACUSTICA UNITED WITH ACUSTICA Leblanc et al.: Acoustic resonance study of Cavities
Vol. 91 (2005)

Table III. Natural frequency (ka) for the 10 first modes of the 3-D cube with hard boundary.

N Modes
1 2 3 4 5 6 7 8 9 10

74 1.797 2.824 3.293 3.334 3.770 4.146 4.603 4.827 5.863 5.923 6.188 6.692
290 1.647 2.371 2.804 3.234 3.401 3.711 3.847 4.074 4.879 5.115 5.410 5.556
650 1.621 2.310 2.763 3.234 3.303 3.623 3.729 3.972 4.708 4.944 5.226 5.278

1154 1.610 2.285 2.749 3.241 3.274 3.597 3.691 3.944 4.661 4.904 5.178 5.219
theoretical 1.571 2.221 2.721 3.142 3.512 3.848 4.443 4.712 4.967 5.210

Figure 6. Car interior (272 nodes) with hard boundary: relative
pressure amplitude at the second eigenmode in the symmetric
plane.

Figure 7. Geometry of the sedan compartment without seats.

gence of GPIM is compensated by its low computation
time versus the DSM.

So, the GPIM eigenanalysis technique exhibits its ef-
fectiveness in extracting eigenmodes for an enclosure of
complex geometry. Eigenmodes are easily obtained with
equation (10) by using eigenvector of equation (21) as the
fictitious function.

An example for the second mode shape is shown in Fig-
ure 6, an excellent agreement has been achieved with Bai’s
results [30].

A second application on a more complex Sedan com-
partment (cf. Figure 7) is carried out. This mesh contains
330 8-node boundary elements. In Table VI, comparisons
with results given in Ref. [31] are shown and good agree-
ment is observed.

Table IV. Eigenvalues of the sound field in the car cabin with hard
boundary computed with GPIM versus others numerical meth-
ods.

Mode FEM BEM
DSM GPIM

1 0.710 0.700 0.743
2 1.220 1.200 1.275
3 1.380 1.400 1.550
4 1.490 1.480 1.573
5 1.550 1.570 1.745

Table V. Eigenvalues of the sound field in the car cabin with hard
boundary for three different meshes.

Mode GPIM
90 elts 172 elts 688 elts

1 0.743 0.723 0.719
2 1.275 1.242 1.221
3 1.550 1.458 1.418
4 1.573 1.563 1.526
5 1.745 1.644 1.592

ka max 1.060 2.454 3.595

Table VI. Eigenvalues of the sound field in the second car cabin
with hard boundary computed with the GPIM versus others nu-
merical BEM results.

Mode BEM GPIM
330 elts 330 elts

1 1.561 1.612
2 2.007 1.946
3 2.494 2.619
4 2.771 2.829
5 2.800 2.888

4. Conclusion
A boundary element eigensolution formulation (GPIM) is
presented and tested for differents theoretical and prac-
tical acoustical cavities. Results are compared to exist-
ing robust numerical methods. The accuracy and speed
of the GPIM eigenfrequency calculations, combined with
the greatly simplified meshing requirements for three-
dimensional problems, gives great prospects for this tech-
nique as a design tool. An application of ARPACK solvers
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is also outlined as an easy implementable and accurate
eigenproblem solver for the GPIM. Moreover, these com-
putations could be faster thanks to the possibility offered
by the process of eigenvalues search employed in IRAM to
work on parallel computers. Results show unexpected oc-
curences of spurious eigenvalues, whose behaviour in case
of internal collocation points will have to be studied with
care.
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