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ABSTRACT

In the last ten years, Convolutional Neural Networks
(CNNs) have formed the basis of deep-learning architectures
for most computer vision tasks. However, they are not nec-
essarily optimal. For example, mathematical morphology is
known to be better suited to deal with binary images. In this
work, we create a morphological neural network that handles
binary inputs and outputs. We propose their construction
inspired by CNNs to formulate layers adapted to such images
by replacing convolutions with erosions and dilations. We
give explainable theoretical results on whether or not the re-
sulting learned networks are indeed morphological operators.
We present promising experimental results designed to learn
basic binary operators, and we have made our code publicly
available online.

Index Terms— Mathematical morphology, binary, deep
learning, machine learning, image processing

1. INTRODUCTION

Convolutional Neural Networks (CNNs) constitute the basis
of most deep-learning architectures. These can learn com-
plex task-specific processes while requiring only input-output
pairs, albeit sometimes in large numbers. Since their incep-
tion in the mid-1990s, they have achieved outstanding results
in computer vision and have become the go-to technology for
many computer vision tasks, provided enough annotated data
is available.

However, standard literature on image processing states
that some tasks remain for which convolutions are not opti-
mal. Mathematical Morphology (MM) [1] is one of these.
For many applications, MM operators are more suitable than
convolution-based methods, particularly when dealing with
binary or discrete images. However, finding the right se-
quence of operations and the right structuring elements can
be difficult and time-consuming depending on the problem
at hand [2]. Our objective is to mimic the way CNNs are
built on convolutional filters and create a morphological net-
work that can learn a compact sequence of operators together
with their optimal parameters. Morphological networks can
also be used conjointly with CNNs to learn the morpholog-
ical operators that would be otherwise manually engineered,
as in [3].

Learning morphological operators is not new, whereas the
trend of replacing the convolution of CNNs with morpholog-
ical operations is recent. Some researchers have investigated
the use of the max-plus algebra [4, 5], for example, to per-
form image filtering (de-raining and de-hazing) [6]. Others
have replaced the non-differentiable max / min operators by
differentiable approximations, e.g. the adaptative morpholog-
ical layer [7], the PConv layer [8], or even the LMorph and
SMorph layers [9]. All these methods were studied in the
context of grey-scale morphology.

In this work, we seek to learn binary morphological oper-
ators from binary image inputs. End-to-end learning of these
operators could be helpful in shape analysis. We first intro-
duce the Binary Structuring Element (BiSE) neuron, which
can learn erosion and dilation together with a structuring ele-
ment. The BiSE neuron is built using convolution and benefits
from the highly optimized implementations of this operation.
By stacking multiple BiSE, we build a Binary Morphological
Neural Network (BiMoNN). We give theoretical explainabil-
ity of the BiSE such that each learned morphological operator
can be recovered. Binarizing these networks can lead to faster
and cost-efficient deep networks for inference [10, 11, 12].

Our code is publicly available online at https://
github.com/TheodoreAouad/Bimonn_ICIP2022.

2. METHOD

2.1. Mathematical Morphology

Mathematical morphology [1] was created to study porous
materials. It is based on set theory and is well suited to study-
ing binary images. An image of dimension d (d “ 2 for 2D
images or d “ 3 for 3D images) is seen as a subset of Zd:
I Ă Zd. Morphological operations transform I based on a
small structuring element S Ă Zd. The two fundamental op-
erations are dilation and erosion.

Definition 1 The dilation (‘) and erosion (a) of an image
I Ă Zd by a structuring element S Ă Zd are defined as:

δSpIq “ I ‘ S “
ď

sPS

pI ` sq (1)

εSpIq “ I a Š “
č

sPŠ

pI ` sq, (2)
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where Š is the symmetric of S with respect to the origin.

These operators thus defined are adjunct, i.e. @I, J, S, I Ď

εSpJq ðñ δSpIq Ď J . All basic morphological operations
are obtained from erosions and dilations. The opening is
the application of erosion followed by its adjunct dilation,
and the closing is the other way around. Here we consider
any composition of dilations or erosions, extending to any
sequence of openings or closings.

Erosions and dilations are similar to convolutions: the
structuring elements can be interpreted as the kernel for the
convolutional filter, and the sum is replaced by max or min
operator. Therefore, we must establish a model that can learn
the structuring element and operation type: erosion or dila-
tion.

2.2. Binary Structuring Element Neuron

We now define the BiSE (Binary Structuring Element) neu-
ron, which can learn both the operation and the structuring
element. The BiSE neuron is built upon the convolution op-
eration. First, we notice that the dilation and erosion can
be exactly expressed using convolution. Note that in prac-
tice, for the erosion, we learn the symmetric εŠ such that
εŠpIq “ I a S.

Proposition 1 (Morphological operators from convolution)
Let S Ă Zd be a binary structuring element and X Ă Zd be
a binary image.

X ‘ S “

ˆ

1X f 1S ě 1

˙

(3)

X a S “

ˆ

1X f 1S ě |S|

˙

(4)

For the same structuring element S, the difference be-
tween dilation and erosion is determined by a scalar. Learning
the operation is the same as learning this scalar.

To learn S Ă Zd, first we suppose that S is bounded:
S Ď Ω with |Ω| ă `8. Let Ω be the grid bounded by some
integer n, Ω “ Zd X r´n, nsd. Similarly to [11], we define
a relaxed weight W Ă RΩ, we apply a smooth increasing
threshold function ξ such that ξpW piqq « 1 if i P S, else
ξpW piqq « 0. We use the hyperbolic tangent:

ξpxq “
1

2
tanhpxq `

1

2
(5)

We introduce the softplus function f` : x P R ÞÑ lnp1 `

exppxqq ` 0.5 to ensure that f`pxq ą 0.5.

Definition 2 (BiSE neuron) Let W P RΩ be a weight ma-
trix, b P R a bias and p P R a scaling number. We define a
BiSE (Binary Structuring Element) neuron as follow:

ϵW,b,p : x P r0, 1sZ
d

ÞÑ ξpppx f ξpW q ´ f`pbqqq P r0, 1sZ
d

(6)

First, the weights are thresholded. Then we apply the mor-
phological operation: we perform the convolution and sub-
tract a bias. The bias is forbidden to become negative (in
practice, f`pbq ą 0.5): we avoid the bias at 0, which leads
to constant output and zero-grad zones. Finally, we have to
threshold this result. Before thresholding, the result is multi-
plied by a scaling factor p.

The BiSE neuron can learn erosion, dilation, and the as-
sociated structuring element. The weights W learn the struc-
turing element, and the bias b determines the operation. The
scaling number p has two purposes. It determines how close
to binary the output is, and if p ă 0, the output is inverted, so
in theory, we could learn the complementation as well.

Our thresholding function, the hyperbolic tangent, is
smooth to allow back-propagation; we do not deal with bi-
nary images. We thus introduce the concept of almost binary
images, which are more flexible and are easier to handle than
binary images.

Definition 3 (Almost Binary Image) We say an image I P

r0, 1sZ
d

is almost binary if there exists u ă v P r0, 1s such
that IpZdqXsu, vr“ H. We denote this set Ipu, vq.

A pixel value of an almost binary image is either close to
0 or close to 1.

When is a BiSE neuron equivalent to dilation or erosion
by a structuring element S? The following propositions allow
us to perform a verification for a given structuring element.
Given the weights W and the bias b, we can check if, in its
current state, the BiSE neuron is a dilation or erosion by this
structuring element.

Proposition 2 (Dilation / Erosion Equivalence) We assume
the weights are thresholded: W P r0, 1sΩ. Given an almost
binary input in Ipu, vq

• ϵW,b,`8 is a dilation by S if and only if
ÿ

iPΩzS

wi ` u
ÿ

iPS

wi ď b ă vmin
iPS

wi (7)

• ϵW,b,`8 is an erosion by S if and only if

max
jPS

ˆ

ÿ

iPSzj

pwiq ` u ¨ wj

˙

ď b ă v
ÿ

iPS

Wi (8)

If either of these expressions is fulfilled, we say that the
BiSE neuron is activated.

If the weights and bias are correctly learned, the structur-
ing element can be recovered by thresholding the weights for
some value. The suitable threshold is given in proposition 3.

Proposition 3 (Linear Check) Let us assume the BiSE is ac-
tivated for almost binary images Ipu, vq. Let b be the BiSE
bias, let W be the normalized weights (W Ps0, 1rΩ). Then
there exists τ P R such that S “ ti P Ω | W piq ě τu.
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• If the BiSE is a dilation

τ “
b

v
(9)

• If the BiSE is an erosion

τ “

ř

kPΩ Wk ´ b

1 ´ u
(10)

To find out the learned structuring element and operation,
we only need to check both thresholds. This can be done in
Op|Ω|q operations.

Erosion and dilation are dual operations: applying a di-
lation is the same as applying an erosion to the background.
This property allows us to recover the inequalities of one op-
eration to get its dual. Finally, if the BiSE neuron is activated,
then its output is almost binary. The notion of almost binary
images is justified: we now deal with almost binary images
instead of binary images.

2.3. BiMoNN

We can now define the Binary Morphological Neural Network
(BiMoNN) as a composition of multiple BiSEs:

BiMoNN “ ϵL ˝ ... ˝ ϵ1 (11)

If each BiSE is activated, the BiMoNN’s inputs and out-
puts are almost binary. In theory, this framework can learn
any sequence of dilations or erosions with any structuring el-
ement, including opening and closing.

We learn the BiMoNN using the classical deep learning
framework. Given a loss L, we use a masked version of L.
Borders act depending on our interpretation of the value out-
of-bounds pixels. To avoid this problem, we mask the bor-
ders of size kernel shape divided by two. Parameters are up-
dated with the Adam [13] optimizer. We initialize the biases
at f`p2q “ 0.63. The weights W of the convolutions have
kaiming uniform initialization [14].

3. EXPERIMENTS

3.1. Datasets

We create a dataset of generated images that we call Disko-
rect. Each image is made of random-shaped and random-
oriented rectangles and disks. Then, we add some random
Bernoulli noise. Finally, complementation is applied half the
time. The images dimensions are 50 ˆ 50.

MNIST [15] is a dataset of 70000 handwritten digits of
size 28 ˆ 28. The images are grey-level. To be able to work
with structuring elements of size p7, 7q, we reshape them to
p50, 50q, with a cubic interpolation [16]. Then we threshold
the image to recover binary images.

In order to analyze the duality of operators, we also test
our network on the complementation of MNIST, which we
call inverted MNIST.

(a) Diskorect (b) MNIST (c) Inverted MNIST

Fig. 1. Datasets example.

3.2. Experiment description

We check the ability of a BiMoNN to learn basic morpholog-
ical operators. We attempt to learn the erosion and dilation
(table 1), as well as the opening (erosion then dilation) and
closing (dilation then erosion) (table 2). The protocol is the
same for each operation: the morphological operator is ap-
plied to the input image to create the target yi. To learn the
erosion and dilation, we train a single BiSE neuron. To learn
the opening and closing, we stack two BiSE neurons. We fol-
low the DICE [17] of the target images vs. predicted images.
We also check if each BiSE neuron is activated.

For both MNIST and inverted MNIST, the structuring el-
ements are of size 5ˆ5 for the erosion and dilation; the trans-
formations are too significant compared to the size of the dig-
its otherwise.

The parameter p is fixed p “ 4. For Diskorect, we use the
Dice loss [18] with learning rate 0.01 for the erosion / dilation
and 0.001 for the opening / closing. For MNIST, we use the
MSE loss with learning rate 0.1 for the erosion / dilation and
0.01 for the opening / closing.

Table 1. Results on erosion and dilation. DICE error (1 ´

DICE) is presented for each case. ✓ indicates if the neuron is
activated.

Dataset Diskorect MNIST Inverted MNIST
Operation Disk Stick Cross Disk Stick Cross Disk Stick Cross

Target

Dilation ‘
✓

0.000
✓

0.000
ˆ

0.000
ˆ

0.000
✓

0.000
ˆ

0.000
ˆ

0.000
✓

0.000
ˆ

0.000

Erosion a
✓

0.000
✓

0.000
✓

0.000
ˆ

0.000
✓

0.000
ˆ

0.000
ˆ

0.000
✓

0.000
ˆ

0.000

Table 2. Results on opening and closing. DICE error (1 ´

DICE) is presented for each case. ✓ indicates if the neuron is
activated.

Dataset Diskorect MNIST Inverted MNIST
Operation Disk Stick Cross Disk Stick Cross Disk Stick Cross

Target

Opening ˝
ˆ

ˆ
0.072

✓

✓
0.000

✓

✓
0.002

ˆ

✓
0.008

✓

✓
0.000

ˆ

✓
0.001

ˆ

ˆ
0.006

✓

ˆ
0.001

ˆ

ˆ
0.012

Closing ‚
ˆ

ˆ
0.038

✓

✓
0.000

✓

ˆ
0.000

ˆ

ˆ
0.009

✓

ˆ
0.001

ˆ

ˆ
0.020

ˆ

ˆ
0.009

✓

✓
0.000

✓

✓
0.000
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4. DISCUSSION

4.1. Erosion and Dilation

For any optimizer or any initialization, on both MNIST and
Diskorect, the dilation is learned perfectly for all structuring
elements: after a few hundred iterations, the DICE is 1 for the
validation set. The BiSE are all activated except for the cross.
On the Diskorect dataset, the BiSE neurons are activated after
a few thousand iterations for the disk and stick.

For the erosion, on Diskorect, we obtain similar results but
with slower convergence. Sometimes the weights are darker
than in the dilation case. This is not a problem: if the BiSE
is activated, the weights do not need to be as high as 1. On
MNIST, the learned disk is limited to its border, which is not
surprising: given S and its border BS, the difference between
I a S and I a BS is small and only visible on a dataset with
small holes. While the DICE is not 1, the error is small at
0.003.

The perfect metric is reached before the BiSE neurons are
activated. Indeed, it is possible for the inequality not to be ful-
filled, while the BiSE is a dilation only for a specific dataset
D Ĺ Zd. Could a necessary and sufficient condition be estab-
lished for a specific dataset to know if the BiSE is a dilation
on this dataset? This question is left for future work.

4.2. Opening and Closing

On Diskorect, for both opening and closing, we learn per-
fectly the stick and cross, and almost all the BiSE are ac-
tivated. However, the disk is more challenging to learn for
opening (resp. closing): the DICE is still high at 0.93 (resp.
0.96).

On MNIST, the opening is learned well for all structuring
elements. However, the training on closing returns chaotic
weights for the disk and cross. To explain this, we notice that
closing with S has little effect on the image for this dataset.
Therefore many weight combinations yield a similar trans-
formation. See the disk closing: even with totally different
structuring elements, the error is small at 0.002. For the in-
verted MNIST, the situation is almost the same, but for the
dual operators: we will dive into that in the next paragraph.

We compare to SMorph and LMorph [9]. On both
datasets, they achieve good results on erosion and dilation,
with perfect metric and good structuring elements. How-
ever, they fail to converge on the opening and closing and
present stability issues (because of an exponential in their
formulation). This is not surprising as they are both built on
a differentiable softmax function that is not suitable to deal
with binary elements.

4.3. A few words on duality

In mathematical morphology, two operators δ and ε are dual if
@X , δpXq “ εpXq. This is the case for the couples (dilation,

erosion) and (opening, closing). Let D be a dataset and D the
set of its complementations. We formulate the hypothesis H:
are the training of δ on D and the training of ε on D similar?

Let D be the Diskorect dataset. By construction, D “ D
and the training of dual operators should be the same. For the
erosion and dilation, the results are not exactly the same. For
the erosion, the structuring elements are darker, and the model
takes longer to converge: from 10 times slower on Disko-
rect to a hundred times slower on MNIST. We still manage
to learn both operations. On the other hand, the opening and
closing do not behave the same on the closing, with dissimilar
weights. These results contradict H.

Now, let D be the MNIST dataset. The dilation behaves
identically for both D and D, and the same can be said for
the erosion, which goes against H. However, even though
the learned weights seemed chaotic, the closing on D works
similarly to the opening on D, which corroborates H. This
similarity also happens for the opening on D and closing on
D, being only different for the disk.

The case of MNIST and its invert suggests that there is a
strong link between the learning of dual operators. However,
they do not learn exactly the same. We leave the study of this
link to future work.

5. CONCLUSION

We created a neural network built to operate on binary im-
ages. We successfully learn some morphological operations:
results on dilations and erosions are perfect. Overall, we
achieved good results on the opening and closing, only failing
for the disk and more complicated operations. We also pro-
vide explainability results to understand the operation of each
neuron.

We sometimes reach a perfect metric without the neurons
being theoretically morphological operators. This raises the
need for more relaxed inequalities depending on the dataset
properties. Enforcing that each BiSE is activated (e.g., using
a regularization loss) would allow us to binarize the entire
network.

To complete our network, we should also learn the com-
plementation and multiple filters (e.g., to learn the top-hat
operators). The complementation can be done by learning
the parameter P and allowing it to be negative. While the
BiSE could theoretically complement its results, it was not
yet demonstrated in practice: we leave it to future work. To
fully simulate the CNNs’ multiple-filter structure, we will in-
corporate intersection and union of filters.

These results demonstrate that we can learn simple mor-
phological operators. In the near future, we will investigate
its integration in more complex pipelines to leverage useful
morphological information, with a view to construct high-
performing binary deep networks.
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Appendices
A. USAGE OF DUALITY FOR EROSION AND

DILATION EQUIVALENCE

Erosion and dilation are dual operations, meaning @X,S P

t0, 1uΩ, X ‘ S “ X̄ a S: applying a dilation is the same as
applying an erosion to the background. This property allows
us to recover the inequalities of the dilation using those of the
erosions, and the other around. Let us show this in the binary
case.

Let us consider two BiSE layers ϵ1W,b1
and ϵ2W,b2

sharing
the same weights, but the first one being a dilation and the
second one being an erosion. Let us denote ue, ve the bounds
for the erosion and ud, vd the bounds for the dilation. We
have:

ud “ sup
XPt0,1uΩ,iPΩ

t1X f W piq | i R X ‘ Su (12)

vd “ inf
XPt0,1uΩ,iPΩ

t1X f W piq | i P X ‘ Su (13)

Given that 1X fW `1X̄ fW “
ř

iPΩ wi, we can write:

ve “ inf
XPt0,1u,iPΩ

t1X f W piq | i P X a Su (14)

“ inf
XPt0,1u,iPΩ

t1X̄ f W piq | i P X̄ a Su (15)

“ inf
XPt0,1u,iPΩ

t1X̄ f W piq | i P X ‘ Su (16)

“ inf
XPt0,1u,iPΩ

t1X̄ f W piq | i P X ‘ Su (17)

“ inf
XPt0,1u,iPΩ

t
ÿ

iPΩ

wi ´ 1X f W piq | i R X ‘ Su (18)

“
ÿ

iPΩ

wi ´ sup
XPt0,1u,iPΩ

t1X f W piq | i R X ‘ Su (19)

ve “
ÿ

iPΩ

wi ´ ud (20)

The same can be done for the other bound: ue “
ř

iPΩ wi ´ vd.

B. BINARY STRUCTURING ELEMENT LAYER

One of CNNs’ strengths is the ability to learn multiple filters
per layer. We also want to be able to learn multiple filters.
In CNNs, each final channel is a sum of one filter per input
channel. In our case, the final result is either a union or an
intersection of the morphological operators (dilation or ero-
sion). Therefore, we want a layer that can learn the union or
intersection of any combination of inputs. Let us consider n
binary images x1, ..., xn Ă Ω. Let C Ă rr1, nss. Then the
intersection and union are given as:

1
Ş

iPC xi
“

´

ÿ

iPC
1xi ě |C|

¯

(21)

1
Ş

iPC xi
“

´

ÿ

iPC
1xi

ě 1
¯

(22)

As with the BiSE, we can use a single scalar to discrim-
inate between the union or the intersection. To learn the set
C, we can use a parameter βi for each image. This gives the
following definition:

Definition 4 (LUI) Let β “ pβ1, ..., βcq P Rc. Let ξ be a
smooth increasing threshold. Let b P R` be a bias and p P

R a scaling factor. We define the LUI (Layer Intersection
Union) as a thresholded linear combination:

LUIβ : x P pZdqc ÞÑ ξ

ˆ

p
´

c
ÿ

i“1

βixi ´ f`pbq
¯

˙

P Zd (23)

A LUI layer can learn any intersection or union of
any number of almost binary inputs. We denote I “
Śn

k“1 Ipuk, vkq the set of images with n almost binary
channels.

Proposition 4 (LUI intersection / union equivalence) Let
n P N˚ and C Ă rr1, nss. Let b P R. Let u1 ă v1, ..., un ă

vn P r0, 1s. Let β P Rn
`.

• LUI is an intersection by C if and only if

n
ÿ

k“1

βk ´ min
kPC

”

p1 ´ ukqβk

ı

ď b ă
ÿ

kPC
βkvk (24)

• LUI is a union by C if and only if
ÿ

kPC
βkuk `

ÿ

kPrr1,nsszC

βk ď b ă min
kPC

pβkvkq (25)

Like for the BiSE, if the LUI is properly learned (i.e. in-
equalities are respected), the set C can be found by threshold-
ing the pβiqi for a certain value. Moreover, if the inequalities
are strict, if all the channels of an input image I are almost bi-
nary in Ipu, vq, then the output LUIβ,bpIq is almost binary:
LUIβ,bpIq P Ipξpu ´ bq, ξpv ´ bqq.

We combine the BiSE neurons and the LUI to be able
to learn the morphological operators, and aggregate them as
unions or intersections.

Definition 5 (BiSEL) A BiSEL (BiSE Layer) is the combina-
tion of multiple BiSE and multiple LUI . Let pϵn,kq be N ˚ K
BiSE and pLUIkqk be K LUI . Then we define a BiSEL as:

ϕ : x P pZdqn ÞÑ

ˆ

LUIk

”

`

ϵn,kpxnq
˘

n

ı

˙

k

P pZdqK (26)
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Given almost binary inputs, the outputs of the BiSEL are
also almost binary.

This follows the same logic as CNN. In CNN, at each
layer, we have k filters. Each filter applies one convolution to
each channel, then we apply a linear combination to all con-
voluted channels. In BiSEL, we have K filters (the number
of LUI). For each filter, we apply a morphological operation
to a channel, then we aggregate by taking the intersection or
union of any channels. See figure 2.

The parameters are the BiSE weights tWn,kun,k Ă

RΩ, the BiSE biases tbn,kun,k Ă R, the LUI parameters
tβn,kun,k Ă R and the LUI biases tbln,kun,k Ă R. There are
NKp|Ω| ` 3q parameters.

Fig. 2. Schema of BiSEL. Input x with 3 input channels.
Output ϕpxq with 2 channels.
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