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KNOTS AND PRIMES: ON THE ARITHMETIC OF TODA FLOWS

We propose to view the periodic Toda flow (in its tropical, discrete and continuous incarnations) as a candidate for the elusive Frobenius flow of Q. To support our idea we explain, following the literature, how the different flavours of the periodic Toda flow are related, for example, to the Riemann hypothesis, rational Witt vectors of Z[T ] and Euler's Γ-function.

The main novel aspect of our proposal, still conjectural, is how the formalism of periodic Toda flows potentially links prime numbers to knots in a natural way. For this we exploit the rich underlying geometry of integrable systems. Contents 1. Introduction 1 2. From tpToda to prime numbers 4 3. Geometry of discrete Toda systems 6 4. From periodic Toda flows to knots 11 5. Towards the geometry of Γ-functions 15 6. Further directions 16 References 16

Introduction

It is well known that global fields in positive characteristic can be viewed as function fields of curves over a finite field. In characteristic zero the corresponding geometrization problem for number fields is an important -widely open -problem. For example, it still seems to be very much unclear how to define the mythical "curve" Spec F1 (Z) together with its equally elusive Frobenius flow. The goal of our paper is not to propose a definition of Spec F1 (Z), instead we want to argue that the periodic Toda flow, a famous integrable system, which comes in many different flavours -tropical, discrete and continuous -might be a natural candidate for the elusive Frobenius flow on Spec F1 (Z). We will show that the periodic Toda flow satisfies many properties that one expects of a Frobenius flow on Spec F1 (Z). As Toda systems do not belong traditionally to number theory we decided to write a survey-style paper which gives an overview of Toda systems and explains some of the many links between Toda systems and number theory, which are "well-known" but hard to find in one single place in the literature. We also include many open problems and questions along the way. Some of them will be studied in forthcoming works. It's absolutely crucial to view the Toda flow in all its different flavours, tropical, discrete and continuous, as each flavour reveals a different link with number theory. Importantly, the different flavours can be treated in the same framework. The discrete and continuous flows actually share a common phase space in form of Jacobi matrices and the tropical flow appears via tropicalization of the discrete flow. The tropical flow can also be viewed as the T -adic valuation of the discrete flow with values in Z[T ].

Let us recall some of the arithmetic structures related to different flavours of the periodic Toda flow.

Tropical: Chebyshev function and Riemann hypothesis. Quite surprisingly, Tokihiro and Mada have observed that Chebyshev's prime-counting function ψ(x) = p k ≤x log(p) is encoded in the orbit structure of the tropical periodic Toda flow 1 , and in particular it is possible to formulate the Riemann hypothesis in terms of the asymptotic properties of the (admissible) states P N ⊂ T N of the tpToda flow, see section 2. This might look like a curiosity, but there is a nice analogy with the case of global fields in positive characteristic. One can show that the tpToda flow is equivalent to the tropicalization of the classical arithmetic-harmonic-mean algorithm, cf., [START_REF] Yura | On a periodic soliton cellular automaton[END_REF]. In particular the tpToda flow can be thought of as a tropical algorithm which computes the 2N -th root of a number. The classical arithmetic-geometric-mean algorithm can be used to compute canonical lifts of Frobenius of (hyperelliptic) curves over finite fields, which encode the point counting, see, e.g., [START_REF] Lercier | A quasi quadratic time algorithm for hyperelliptic curve point counting[END_REF]. In that framework, one can construct algorithms that compute the l-th root of a number mod p (if it exists), see [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod p[END_REF][START_REF] Pila | Frobenius maps of abelian varieties and finding roots of unity in finite fields[END_REF][START_REF] Huang | Factorization of polynomials over finite fields and decomposition of primes in algebraic number fields[END_REF]. So we see that this formalism is somehow quite analogous to the tpToda flow.

Discrete: Witt vectors and Γ-function. The discrete Toda flow, with open or periodic boundary conditions, lives in the space of (periodic) Jacobi matrices, cf., section 3. If we pass to the corresponding Weyl (or transfer) function, one can view the discrete Toda flow as a flow on (matrix-valued) rational functions and this immediately allows us to interpret the discrete Toda flow in terms of rational Witt vectors W 0 or the closely related space of linear recursive sequences L 2 . Both spaces are prominent examples of the descent approach to F 1 -mathematics, the first advocated by Borger, [START_REF] Borger | Explicit class field theory and the algebraic geometry of Λ-rings[END_REF], the second by Le Bruyn, [START_REF] Le | Linear recursive sequences and Spec(Z) over F 1[END_REF]. Witt vectors are ubiquitous in number theory and their expected appearance in the geometrization problem for Z is very natural. For example, rational Witt vectors (over Z) encode the class field theory of Q, see [START_REF] Borger | Λ-rings and the field with one element[END_REF]. Le Bruyn supported his proposal for studying L in the context of the geometrization problem for Z by showing that the space L(Z) can be used to give a realization of the dual Γ-function in the spirit of Manin's influential ideas in [START_REF] Manin | Lectures on zeta functions and motives[END_REF]. It is therefore very interesting to notice that the tropical Toda flow can be lifted to the discrete Toda flow in W 0 (Z[T ]) or L(Z[T ]). The variable T corresponds to the expression e -1/ which appears in the tropicalization process, the parameter can be viewed as temperature. From our point of view, the polynomial ring Z[T ] or its quotient field Q(T ) are more fundamental than Z or Q, as only when working with a variable T we can consider discrete and tropical Toda flows simultaneously. In the same spirit, the tropical periodic Toda flow can be lifted to the space M 2 (W 0 (Z[T ])).

Surprisingly, the open discrete Toda flow, in form of Hirota's bilinear equation, is equivalent to a determinant identity (for certain Hankel matrices) discovered by none other than Frobenius himself in 1881, see [START_REF] Frobenius | Über Relationen zwischen den Näherungsbrüchen von Potenzreihen[END_REF][START_REF] Spicer | Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm[END_REF]. From this we see that it's actually quite appropriate to view the discrete Toda flow as a Frobenius flow. The (open) discrete Toda flow (as a dynamical system) was first introduced by Rutishauser in form of his QD algorithm which is used to approximate eigenvalues of matrices. From this viewpoint, our candidate Frobenius flow is really (the periodization of) a flow computing roots of polynomials.

Problem 1. Study the compatibility of the discrete Toda flows with the natural operations, such as Frobenius, Verschiebung or Hecke operations, acting naturally on W 0 , L and rational functions, cf., [START_REF] Borger | Λ-rings and the field with one element[END_REF][START_REF] Campbell | Facets of the Witt Vectors[END_REF][START_REF] Le | Linear recursive sequences and Spec(Z) over F 1[END_REF][START_REF] Le | Motivic measures and F 1 -geometries[END_REF][START_REF] Juan | Hecke operators on rational functions i[END_REF] .

Continuous: Conjectural link with knots. Now we pass to the continuous (periodic) Toda flow, cf., section 4, which we will view as first member in the Toda-NLS hierarchy, a natural

A (1)
1 -reduction of the 2D-Toda hierarchy, see [START_REF] Rumanov | The correspondence between Tracy-Widom and Adler-Shiota-van Moerbeke approaches in random matrix theory: the Gaussian case[END_REF][START_REF] Wilson | The τ -functions of the gAKNS equations[END_REF][START_REF] Maarten | τ -functions and zero curvature equations of Toda-AKNS type[END_REF][START_REF] Victor | Exceptional hierarchies of soliton equations[END_REF]. The second member of this hierarchy is the (coupled) complex nonlinear Schrödinger equation (NLS) which comes in two versions, the defocusing and focusing NLS. Quite interestingly, the focusing NLS turns out to be equivalent to the vortex filament equation, a universal integrable flow for curves in R 3 . For (smoothly) closed curves one obtains an integrable motion of knots in R 3 . Our idea to connect prime numbers to knots is now as follows. We obtain a map from states of the tropical periodic Toda flow to solutions of the NLS equation, by lifting a tropical state to a periodic Jacobi matrix (with entries in Z[T ]). After a suitable specialization of T , this periodic Jacobi matrix defines a spectral curve, from which we can construct a (finite-gap) solution of the periodic Toda flow (a well-known procedure using theta functions) and this solution gives also naturally rise to a solution of the complex NLS equation. Unfortunately, this only defines a solution of the defocusing NLS equation, because all the branch points are seen to be positive real numbers, whereas (finite-gap) solutions of the focusing NLS equations are characterized by spectral curves having only non-real branch points. 2 If the Jacobi matrices have values in a ring R, the discrete Toda flows live naturally in W 0 (R) or L(R).

Fortunately, one can show that there exists a natural involution

ι CKM : pJac N → pJac N (1.1)
on the space of periodic Jacobi matrices, which gives us the following result, one of our main observations. Theorem 1.1. The involution ι CKM defines a map 3 from the positive part of the state space T N of tpToda to the solution space of the focusing NLS equation.

The inspiration for ι CKM is explained in the following Remark 1.1. 1) The involution ι CKM is related to a Weyl group action on the phase space of (periodic) Toda systems defined by Casian and Kodama [START_REF] Casian | Toda lattice, cohomology of compact Lie groups and finite Chevalley groups[END_REF], but it is not part of their Weyl group, which was used to show that the open (continuous) Toda flow counts the number of points |Fl n (F q )| of flag varieties in a finite field F q .

2) One can show that the involution ι CKM somehow corresponds to Manin's idea of taking the dual of the "F 1 -motive" of Γ, see (3.22).

The finite-gap solutions of the focusing NLS equation give rise to knots if they satisfy the closure condition (Criterion 4.2), which is a very subtle property of the quasimomentum differential on the corresponding spectral curve, see 4.1.4. We conjecture that the solutions coming from the tropical periodic Toda flow satisfy the closure condition, giving thus rise to knots in R 3 . Our main conjectures are the following Conjecture 1.1. 1) The solutions of the focusing NLS equation (suitably specialized) coming the tpToda states P N ⊂ T N satisfy the closure condition (Criterion 4.2) and thus give rise to knots.

2) The corresponding map

P N -→ {knots in R 3 }
is faithful (on the orbits of the tpToda flow).

3) The orbits of the tpToda flow in P N give rise to non-trivial representations of Gal(Q/Q).

For the last conjecture we use Furusho's action, cf., [START_REF] Furusho | Galois action on knots. I: Action of the absolute Galois group[END_REF], of Gal(Q/Q) on knots 4 . Furusho's action is, of course, related to the marvellous works by Grothendieck on GT-theory, Drinfeld on associators and Kontsevich on knot invariants.

In particular, our main conjecture would on the one hand give a very nice analogous picture to the case of curves of finite fields (where the absolute Galois group of the corresponding finite field acts naturally) and on the other hand link the geometrization problem for Q to Grothendieck-Teichmüller theory, KZ equations and knot theory.

Remark 1.2. The technical difficulties contained in our conjecture are of course formidable, as one needs to understand explicitly some subtle geometric properties of Toda spectral curves (of arbitrarily high genus) to check the closure condition and then, if true, understand the knots that appear, and how they depend on the ambiguities involved in the construction, mainly the temperature parameter . Nevertheless, we believe that the closure condition, at least for small genus, is certainly accessible. Problem 2. Understand the relation between the (lifted) tropical periodic Toda flow and unitary matrix models, cf., [START_REF] Van Moerbeke | The spectrum of random matrices and integrable systems[END_REF][START_REF] Rumanov | The correspondence between Tracy-Widom and Adler-Shiota-van Moerbeke approaches in random matrix theory: the Gaussian case[END_REF][START_REF] Ben | Extreme gaps between eigenvalues of random matrices[END_REF], both appearing in the framework of the Toda-NLS hierarchy and both related to Riemann's ζ-function.

Inspiration from Shintani's conjecture. Our original motivation to study Toda flows in the context of number theory comes from Shintani's conjecture 5 , see [START_REF] Shintani | On Kronecker limit formula for real quadratic fields[END_REF][START_REF] Shintani | On certain ray class invariants of real quadratic fields[END_REF], predicting that (certain) abelian extensions of number fields can be expressed via special functions of (multi-variable) Γ-functions. Shintani's important conjecture is still wide open (except for the usual instances of Q and imaginary quadratic number fields), but there are many numerical confirmations, e.g., for real quadratic number fields. The lack of a conceptual/geometric understanding of Γ-functions, is one main reason why Shintani's conjecture is so difficult and this is, of course, closely related to the geometrization problem for number fields, 3 Depending on the temperature . 4 Furusho defines an action on so-called profinite knots. If the Kontsevich invariant is a perfect knot invariant, then Furusho's action is also well-defined on proper knots. 5 As far as the author knowns, Shintani's conjecture is the only conjecture related to Hilbert's 12th problem which proposes concrete (archimedean) special functions generating abelian extensions of number fields.

cf., [START_REF] Manin | Lectures on zeta functions and motives[END_REF].

In a very inspiring series of papers, cf., [START_REF] Gerasimov | Baxter operator and Archimedean Hecke algebra[END_REF][START_REF] Gerasimov | On Baxter Q-Operators and their Arithmetic Implications[END_REF], it was shown that Γ-functions appear naturally in the framework of quantum Toda systems, and actually, one finds that Γ-functions appear quite naturally in the framework of quantum groups, knot invariants and quantum Teichmüller theory, see [START_REF] Ludwig | Quantum dilogarithm[END_REF][START_REF] Kashaev | The quantum dilogarithm and Dehn twists in quantum Teichmüller theory[END_REF][START_REF] Fock | The quantum dilogarithm and representations of quantum cluster varieties[END_REF][START_REF] Schrader | A cluster realization of Uq(sln) from quantum character varieties[END_REF]. But linking the quantum side directly to number theory turned out to be difficult, only by passing to the classical Toda systems, the link with number theory became more accessible.

The main next step would be to incorporate quantum Toda systems into the picture with the following goal in mind ( see also section 5).

Problem 3. Give a conceptual proof of Shintani's conjecture for Q using the framework of classical and quantum Toda systems.
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From tpToda to prime numbers

The periodic Box-Ball (pBB) system is a dynamical system of balls in a (finite) closed chain of boxes on a circle. It can be obtained in many ways from important (integrable) physical systems, e.g., it is given as tropicalization of the periodic discrete Toda system or as crystallization (the q → 0 limit) of the XXZ-system. In the latter interpretation, visualized in the next example, the phase space6 

I n = {0, 1} n
is naturally viewed as a U q ( sl 2 )-crystal graph and the flow T pBB acting on I n is a crystal version of the transfer operator of the XXZ system, expressed in terms of the combinatorial R-matrix, a crystal version of the usual quantum R-matrix, see [START_REF] Inoue | Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry[END_REF][START_REF] Halacheva | Crystals and monodromy of Bethe vectors[END_REF] for some nice overview.

Example 2.1. If we denote by 1 a box containing a ball and by 0 an empty box, the dynamics of the pBB system can be visualized as follows. (Note that the flow T pBB commutes with the cyclic shift operator.)

01110011010000 t = 0 00001100101110 t = 1 11000011010001 t = 2 00111000101100 t = 3
From a number-theoretic point of view it is very interesting to realize that the pBB flow is actually equivalent to a tropicalization of the arithmetic-harmonic mean algorithm. In particular, this shows that the pBB flow on I n can be viewed as a (tropical) algorithm for computing the 2n-th root of a number, see [START_REF] Yura | On a periodic soliton cellular automaton[END_REF].

Beyond that, we shall now explain how the Riemann hypothesis can actually be formulated in terms of the pBB flow. This should be compared with the situation for (hyperelliptic) curves over finite fields, where the classical AGM algorithm can be used to calculate canonical lifts of Frobenius, which encode the point counting over finite fields, as explained in [START_REF] Schoof | Elliptic curves over finite fields and the computation of square roots mod p[END_REF][START_REF] Pila | Frobenius maps of abelian varieties and finding roots of unity in finite fields[END_REF][START_REF] Huang | Factorization of polynomials over finite fields and decomposition of primes in algebraic number fields[END_REF][START_REF] Lercier | A quasi quadratic time algorithm for hyperelliptic curve point counting[END_REF], where it is further shown how these considerations lead to algorithms for computing the l-th root of a number mod p. For this reason one might (optimistically) view the pBB flow as a candidate for the elusive and mysterious Frobenius flow of Q.

First, we need to introduce the fundamental period per(ν) of a state ν ∈ I n , defined as the smallest positive integer m such that

T m pBB (ν) = ν. (2.1)
In order to explicitly describe per(ν) following [START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF], we have to explain the '10'-elimination procedure which associates to every state ν ∈ I n a Young diagram Y ν , a conserved quantity of the flow T pBB . Starting with a state ν ∈ I n we denote by p 1 the number of occurrences of '10' in ν and delete them to obtain a (smaller) state ν 2 . Again, we denote the occurrences of '10' in ν 2 by p 2 and eliminate then to obtain a state ν 3 . After finitely many steps this procedure ends, and we're left with a sequence p 1 ≥ p 2 ≥ .. ≥ p l of positive numbers with i p i = m, the number of balls in ν. The sequence {p 1 , .., p l } naturally defines a Young diagram (with p j boxes in the j-th row) whose transpose we denote by the Young diagram

Y ν = [L n1 1 , L n2 2 , ..., L ns s ], (2.2)
where n j is the multiplicity of L j .

Example 2.2. The Young diagram of 01110011010000 is given by the (self-dual) Young diagram [START_REF]The hyperadelic gamma function[END_REF][START_REF] Adler | Limit matrices for the Toda flow and periodic flags for loop groups[END_REF][START_REF] Malcolm | Heisenberg algebras, Grassmannians and isospectral curves[END_REF] Defining the numbers l 0 = n-2m, N 0 = l 0 , L s+1 = 0, l j = L j -L j+1 and N j = l 0 + j k=1 2n k (L k -L j+1 ), we can finally state the fundamental result (see [START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF]) on the period of states ν ∈ I n (with no internal symmetry 7 )

per(ν) = lcm(Y ν ) := lcm( NsNs-1 lsl0 , Ns-1Ns-2 ls-1l0 , .., N1N0 l1l0 , 1). (2.3)
Let us recall the definition of Chebyshev's prime counting function

ψ(n) = p,k∈N | p k ≤n log(p) = log(lcm(1, 2, .., n)). (2.4)
It is well known that the Riemann hypothesis is equivalent to the following asymptotic behavior

ψ(n) = n + O( √ n log 2 (n)) as n → ∞. (2.5)
In their studies [START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF][START_REF] Mada | Asymptotic behaviour of fundamental cycle of periodic box-ball systems[END_REF] of asymptotic properties of the pBB flow, Tokihiro and Mada define a family {ν n } n∈N of states ν n ∈ I n and show that per(ν n ) is roughly equivalent to ψ( √ n). More precisely, they prove the following Theorem 2.1 ([110] Theorem 1). The Riemann hypothesis is equivalent to the estimate

log(per(ν n )) = 2 √ n + O(N 1/4 log 2 (N )) as n → ∞ (2.6)
The family {ν n } is constructed in [START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF][START_REF] Mada | Asymptotic behaviour of fundamental cycle of periodic box-ball systems[END_REF] such that Y νn contains a (big enough) self-dual Young diagram, with the extra flexibility to allow the multiplicities n 1 , n 2 and n s to be bigger than 1, and this allows a nice approximation of ψ(n).

Remark 2.1. In general, the asymptotics of "sufficiently complicated" families {µ n } of states µ n ∈ I n are expected can be related to ψ(n). In particular, one can study families with proper self-dual Young diagrams (i.e., all multiplicities n i = 1), but the asymptotic formulas are less nice than the one described above.

The link between the RH and pBB allows to connect the RH to other (seemingly unrelated) structures. For example, the eigenvalues of the flow T pBB are given by roots of unity, and the order of these roots of unity are (essentially) given by the fundamental periods, see [START_REF] Mada | Fundamental cycle of a periodic box-ball system and solvable lattice models[END_REF]. The eigenvalues of T pBB are given by the q → 0 limit of eigenvalues of the transfer operator of XXZ systems described by the Bethe Ansatz. In this direction one finds connections to diverse areas such as quantum K-theory or opers [START_REF] Petr P Pushkar | Baxter Q-operator from quantum K-theory[END_REF][START_REF] Koroteev | Quantum K-theory of quiver varieties and many-body systems[END_REF][START_REF] Frenkel | q-Opers, QQ-systems, and Bethe ansatz[END_REF]. Let us also mention Cotti's paper [START_REF] Cotti | Coalescence phenomenon of quantum cohomology of Grassmannians and the distribution of prime numbers[END_REF], where the Riemann hypothesis is related to subtle properties of the quantum cohomology QH * (Gr k,n ) of Grassmannians.

Leaving this direction for another occasion, in this paper we will focus on the Toda theoretic interpretation of the pBB system, which can be equivalently described by the tropical periodic Toda (tpToda) system given as follows:

Q t+1 i = min{W t i , Q t i + X t i }, W t+1 i = Q t i+1 + W t i -Q t+1 i , X t i = max k∈{0,1,..,N -1} { k l=1 Q t i-l -W t i-l },
for i ∈ {1, .., N } and t ∈ N 0 , with periodic boundary conditions

Q t i+N = Q t i , W t i+N = W t i .
The phase space

T N = {(Q 1 , . . . , Q N , W 1 , . . . , W N )} ⊂ R 2N (2.7)
of the tpToda system describes the length of the connected components of 1's and 0's in the pBB system, e.g., the initial state 01110011010000 corresponds to Q = {3, 2, 1} and W = {2, 1, 5}.

Using the tpToda description of the pBB system, one can linearize the pBB flow using tropical spectral curves and further, in analogy with the classical case, one can construct explicit solutions of the tpToda flow in terms of tropical theta functions, see [START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF][START_REF] Inoue | Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry[END_REF]. In particular, the fundamental periods can be expressed in terms of tropical period matrices, as shown in [START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF].

Let us finish this section by defining the subset P N of "sufficiently complicated" states of tpToda, mentioned in Remark 2.1. In particular, it contains the states used in Theorem 2.1 and states with self-dual Young diagram. Definition 2.1. Let P N denote the smallest subspace of the phase space T N of tpToda which containes the states

p N = {(n mn , (n -1) mn-1 , . . . , 1 m1 ), (n mn-1 , (n -1) mn-1 , . . . , 1 m1 , m) | (2.8) m i , m, n > 0, m > n, i m i = N }
and is closed under the tpToda flow. (Here n mn stands for n, . . . , n mn . )

Geometry of discrete Toda systems

The discrete Toda equations are given by the following equations

I t+1 i = I t i + V t i -V t+1 i-1 , (3.1) 
V t+1 i = I t i+1 V t i I t+1 i , (3.2) 
for i ∈ {1, .., N }. The periodic boundary conditions are given by

I t i+N = I t i and V t i+N = V t i , (3.3)
the open boundary conditions are given by

V t 0 = V t N = 0. (3.4) Given initial values {(Q 0 i ), (W 0 i )} of tropical Toda, we can construct a lift 8 φ N = φ N ( ) : T N -→ (p)Jac N (3.5)
to discrete Toda by the formulae

I 0 i = I 0 i ( ) = e -Q 0 i / and V 0 i = V 0 i ( ) = e -W 0 i / . (3.6)
Note that can be interpreted as a temperature parameter, see [START_REF] Itenberg | Geometry in the tropical limit[END_REF]. Clearly, φ N does not commute with the tropical and discrete Toda flows.

But, importantly, we see, cf., [START_REF] Kimijima | Initial-value problem of the discrete periodic Toda equation and its ultradiscretization[END_REF][START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF], that the tropical and discrete Toda flows commute with the tropicalization, i.e., we have

lim →+0 -I t i ( ) = Q t i and lim →+0 -V t i ( ) = W t i , (3.7)
for all t ≥ 0. (Here the positivity of the lifts is important.) Thus, the information contained in the pBB flow can be studied on the level of discrete Toda flows. If we identify e -1 with a variable T , we can think of the elements of the (lifted) discrete Toda system as rational functions in Q(T ), the tropical limit is then given by the natural T -adic valuation ν T of Q(T ). Let us now study the open and periodic Toda systems in little more detail. 8 One could take more general lifts, as described in [START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF][START_REF] Inoue | Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry[END_REF].

Open discrete Toda.

The open discrete Toda system turns out to be equivalent to Rutishauser's QD-algorithm, introduced in [START_REF] Rutishauser | Der Quotienten-Differenzen-Algorithmus[END_REF]. The QD-algorithm approximates the eigenvalues of matrices (or equivalently the roots of characteristic polynomials). And even earlier, the open discrete Toda flow, in form of Hirota's bilinear equation, is equivalent to a determinant identity (for certain Hankel matrices) discovered by none other than Frobenius himself, see [START_REF] Frobenius | Über Relationen zwischen den Näherungsbrüchen von Potenzreihen[END_REF][START_REF] Spicer | Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm[END_REF]. As the periodic discrete Toda flow can be written as a limit of the open discrete Toda flow, our proposal of viewing the pBB flow as an arithmetic Frobenius flow for Q, turns out -quite amusingly -to be justified.

A natural way of encoding discrete Toda systems is in terms of Jacobi matrices. Definition 3.1. The space Jac N of Jacobi matrices is defined as space of N × N tridiagonal matrices of the form

           a 1 1 0 • • • • • • 0 b 1 a 2 1 0 • • • . . . 0 b 2 a 3 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 b N -2 a N -1 1 0 • • • • • • 0 b N -1 a N            . (3.8)
If we further define

R t =            I t 1 1 0 • • • • • • 0 0 I t 2 1 0 • • • . . . 0 0 I t 3 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 I t n-1 1 0 • • • • • • 0 0 I t n            , M t =            1 0 0 • • • • • • 0 V t 1 1 0 0 • • • . . . 0 V t 2 1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 V t N -2 1 0 0 • • • • • • 0 V t N -1 1            (3.9) 
then the discrete Toda flow is equivalent to the equation

M t+1 R t+1 = R t M t . (3.10)
When Jac N is viewed as phase space of the discrete Toda flow, one uses matrices of the following form as coordinates

L t = M t R t =            I t 1 1 0 • • • • • • 0 I t 1 V t 1 I t 2 + V t 1 1 0 • • • . . . 0 I t 2 V t 2 I t 3 + V t 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 I t N -2 V t N -2 I t N -1 + V t N -2 1 0 • • • • • • 0 I t N -1 V t N -1 I t N + V t N -1            . (3.11)
One way to linearize the discrete Toda flow is to use the Rutishauser-Moser (RM) map

f : Jac N -→ Rat N (3.12) defined by L → f L (z) = [(zE N -L) -1 ] := e t 1 (zE N -L) -1 e 1 , (3.13) 
where Rat N denotes the space of strict rational functions (in z) with fixed McMillan degree N , E N the N × N unit matrix and e 1 the standard basis vector and e t 1 its transpose, see [START_REF] Faybusovich | Rational functions, Toda flows, and LR-like algorithms[END_REF][START_REF] Faybusovich | QR-type factorizations, the Yang-Baxter equation, and an eigenvalue problem of control theory[END_REF]. Remark 3.1. The rational function f L (z) is also known as Weyl or transfer function, cf., [START_REF] Faybusovich | Rational functions, Toda flows, and LR-like algorithms[END_REF][START_REF] Le | Motivic measures and F 1 -geometries[END_REF].

The following results can be found in [START_REF] Faybusovich | Rational functions, Toda flows, and LR-like algorithms[END_REF] and [START_REF] Kamioka | Combinatorial expressions of the solutions to initial value problems of the discrete and ultradiscrete Toda molecules[END_REF]. Under the RM map the discrete Toda flow is given as follows

f Lt+1 (z) = [L t+1 0 (zE N -L 0 ) -1 ] [L t+1 0 ] = [L t (zE N -L i ) -1 ] [L i ] . (3.14)
Using the Taylor expansion of f L0 at infinity

f L0 (z) = ∞ i=0 h i (L 0 ) z i+1 , (3.15)
we can define the famous τ -function of the discrete Toda flow as determinant of the following Hankel determinant

τ t i = det([h t a+b-2 ] 1≤a,b≤i ), (3.16)
where we have defined

h t i := h i+t (L 0 ) = [L i+t 0 ]
. We thus obtain the relations

I t i = τ t+1 i τ t i-1 τ t+1 i-1 τ t i and V t i = τ t+1 i-1 τ t i+1 τ t+1 i τ t i (3.17)
leading to the (difference version of the) famous Hirota bilinear equation for the τ -functions

τ t+1 i τ t-1 i = τ t+1 i-1 τ t-1 i+1 + τ t i τ t i , (3.18)
which is equivalent to the discrete Toda equations 9 . In particular, this shows how the open discrete Toda system can be solved explicitely in terms of rational functions given by determinants of Hankel determinants. Note that the sequence (h i (L 0 )) i∈N0 satisfies the linear recurrence equation determined by the characteristic polynomial of L 0 .

Let us finish this section by mentioning that the discrete Toda flow can be view as a shift operator, because

f Lt+1 (z) = ∞ i=0 h i (L t+1 ) z i+1 3.14 = h 1 (L t ) -1 ∞ i=0 h i+1 (L t ) z i+1 , (3.19) 
i.e., up to projectivization (or scaling), the discrete Toda flow acts by shifting the Taylor expansion at infinity to the left. Remark 3.2. Another well-known linearization is given by the so-called Flaschka-Haine map, which linearizes the Toda flow via a map to a flag variety, see [START_REF] Faybusovich | Rational functions, Toda flows, and LR-like algorithms[END_REF].

3.2. Witt vectors and linear recursive sequences. Now we want to indicate how the discrete Toda system is naturally related to the space of Witt vectors W and the space of linear recursive sequences L. Inspired by ideas from system theory, Le Bruyn defines in [START_REF] Le | Motivic measures and F 1 -geometries[END_REF], for R a commutative ring, the category S R of discrete R-linear dynamical systems, whose objects are quadruples (E, g, v, c) given by a projective R-module E of finite rank, g ∈ End R (E), v ∈ E, c ∈ E * . Further, it is shown, that there exists the following commutative diagram

E R α / / W 0 (R) gh1 χ / / W(R) gh2 S R β / / L(R) i / / R ∞ , (3.20) 
where the category E R is defined by tuples (E, g) of projective R-modules E together with g ∈ End R (E), W 0 (R) = K 0 (E R )/K 0 (R) and W(R) the ring of big Witt vectors of R. The Moser-Rutishauser map naturally induces a map

f : S R -→ W(R) (3.21)
given by mapping (E, g, v, c) to its transfer function f (E,g,v,c) (z) = c(zE n -M g ) -1 v, which is compatible with the above diagram. For example, by definition, the image of f is contained in χ(W 0 (R)), the subring of all rational functions in W(R). It is actually known, see, e.g., [START_REF] Nakamura | Moduli space of SU(2) monopoles and complex cyclic-Toda hierarchy[END_REF], that the discrete Toda flow can be defined in the more general context of S R . Further, it's clear that Jac N (R) is naturally contained in S R (by choosing v = e 1 and c = e t 1 ). This shows that the discrete Toda flow can be studied in terms of L and W 0 . In the case of the lifted pBB flow the relevant ring is given by R = Z[T ] (together with its T -adic valuation). Problem 4. Study the compatibility of discrete Toda flows with the natural operations, such as Frobenius, Verschiebung or Hecke operations, acting naturally on W 0 , L and rational functions, cf., [START_REF] Borger | Λ-rings and the field with one element[END_REF][START_REF] Campbell | Facets of the Witt Vectors[END_REF][START_REF] Le | Linear recursive sequences and Spec(Z) over F 1[END_REF][START_REF] Le | Motivic measures and F 1 -geometries[END_REF][START_REF] Juan | Hecke operators on rational functions i[END_REF]] .

3.3.

Interlude: Γ-motive from discrete dynamical systems. Le Bruyn's motivation for studying L(Z) in the context of F 1 -geometry was his remarkable observation that within S C one can identify a "F 1 -motive" related to the Γ-function. The underlying idea goes back to Manin, cf., [START_REF] Manin | Lectures on zeta functions and motives[END_REF], who proposed to realize (generalized) Γ-functions as zeta functions of duals of certain F 1 -motives. From that perspective, Le Bruyn, cf., [START_REF] Le | Linear recursive sequences and Spec(Z) over F 1[END_REF], defined the non-commutative moduli space

M Γ = n (sys cc n ∪ sys co n ) ⊂ Gr 2 (∞) (3.22)
of equivalence classes of completely reachable and observable discrete dynamical systems and showed (using an interpretation in terms of quiver representations developed in [START_REF] Le | Canonical systems and non-commutative geometry[END_REF]) that the corresponding F 1 -zeta function (in the sense of Kurokawa) is given by

ζ MΓ/F1 (s) = k≥0 s -k 2π . (3.23)
Remark 3.3. The regularized product k≥0 s+k 2π has been identified by Deninger with the inverse of the (complex) Γ C -function, see [START_REF] Deninger | On the Γ-factors attached to motives[END_REF][START_REF] Manin | Lectures on zeta functions and motives[END_REF].

3.4. Γ-functions from quantum Toda. Interestingly, Γ-functions appear in the context of the quantum Toda system as eigenvalues of Baxter Q-operators [START_REF] Gerasimov | Baxter operator and Archimedean Hecke algebra[END_REF][START_REF] Gerasimov | On Baxter Q-Operators and their Arithmetic Implications[END_REF]. This begs the question if there is a natural relation between M Γ and the Q-operator of the quantum Toda system. In particular, one can hope that such a link might shed some light on a famous conjecture by Shintani [START_REF] Shintani | On Kronecker limit formula for real quadratic fields[END_REF][START_REF] Shintani | On certain ray class invariants of real quadratic fields[END_REF].

3.5. Periodic discrete Toda. The phase space of the periodic discrete Toda flow is most conveniently described in terms of periodic Jacobi matrices which are of the form Definition 3.2. The space pJac N of periodic Jacobi matrices is defined as space of N × N matrices of the form

           a 1 1 0 • • • • • • b N b 1 a 2 1 0 • • • . . . 0 b 2 a 3 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 b N -2 a N -1 1 1 • • • • • • 0 b N -1 a N            . (3.24) If we define R t =            I t 1 1 0 • • • • • • 0 0 I t 2 1 0 • • • . . . 0 0 I t 3 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 0 I t n-1 1 1 • • • • • • 0 0 I t n            , M t =            1 0 0 • • • • • • V t N V t 1 1 0 0 • • • . . . 0 V t 2 1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 V t N -2 1 0 0 • • • • • • 0 V t N -1 1            (3.25)
then the discrete periodic flow is equivalent to the equation

M t+1 R t+1 = R t M t . (3.26)
When pJac N is viewed as phase space of the periodic discrete Toda flow, one uses matrices of the following form as coordinates. This is for example nicely explained in section 9 of [START_REF] Suris | Integrable discretizations for lattice system: local equations of motion and their Hamiltonian properties[END_REF].

L t = M t R t =            I t 1 + V t N 1 0 • • • • • • I t N V t N I t 1 V t 1 I t 2 + V t 1 1 0 • • • . . . 0 I t 2 V t 2 I t 3 + V t 2 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 • • • 0 I t N -2 V t N -2 I t N -1 + V t N -2 1 1 • • • • • • 0 I t N -1 V t N -1 I t N + V t N -1            . (3.27)
The Hirota bilinear equations for the periodic discrete Toda flow is the same as in 3.18, but with different boundary conditions. The construction of solutions/linearization of the pdToda flow is more difficult compared to the open case, usually this is done using θ-functions, see [START_REF] Kimijima | Initial-value problem of the discrete periodic Toda equation and its ultradiscretization[END_REF][START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF]. This is due to the immediate fact

I t+1 i = I t i + V t i - I t i V t i-1 I t i-1 + V t i-1 - I t i-1 V t i-2 I t i-2 + V t i-2 - I t i-2 V t i-3 . . . - I t i+1 V t i I t+1 i , (3.28)
i.e., I t+1 i satisfies a quadratic equation (in contrast to the open case, where linear equations appear). One solution of this quadratic equation is not admissible, the other one is given by

I t+1 i = V t i + I t i 1 - V t 1 V t 2 •••V t N I t 1 I t 2 •••I t N 1 + V t i-1 I t t-1 + V t i-1 V t i-2 I t i-1 I t i-2 + • • • + V t i-1 V t i-2 •••V t i+1 I t i-1 I t i-2 •••I t i+1 . (3.29)
Remark 3.4. Solutions in the periodic case are related to periodic continued fractions, whereas solutions in the open case are related to finite continued fractions.

3.5.1. Spectral curves of pdToda. For our purposes it is crucial to study spectral curves of the pdToda system. We follow the approach from [START_REF] Date | Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice[END_REF][START_REF] Date | Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice[END_REF][START_REF] Kodama | Topology of the real part of the hyperelliptic Jacobian associated with the periodic Toda lattice[END_REF][START_REF] Kimijima | Initial-value problem of the discrete periodic Toda equation and its ultradiscretization[END_REF][START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF] where the spectral curve C L of a periodic Jacobi matrix L = L 0 ∈ pJac N is defined by the hyperelliptic curve of genus g = N -1 defined by

C L : µ 2 = ∆(λ) 2 -4m 2 , (3.30) with ∆(λ) = 1 + m 2 + χ L (λ) and m 2 = N i=1 I i V i .
Here χ L (λ) denotes the characteristic polynomial of L. A recursive algorithm for ∆(λ) is given in [START_REF] Kimijima | Initial-value problem of the discrete periodic Toda equation and its ultradiscretization[END_REF][START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF] as follows. If we define the recursions 10

x n+1 = x n (λ -(I n+1 + V n )) -x n-1 (I n V n ), (3.31) y n+1 = y n (λ -(I n+1 + V n )) -y n-1 (I n V n ), (3.32)
with initial conditions (x 0 , x 1 ) = (0, 1), (y 0 , y 1 ) = (1, 0), we obtain

∆(λ) = x N +1 + y N . (3.33)
Further, the roots {µ 1 , . . . , µ g } of the polynomial y N +1 (λ) define a natural divisor D L on C L .

Observe that the spectral curve C L is invariant under the dpToda flow, i.e., for all t ∈ N, we have

C L0 = C Lt . (3.34)
The pdToda flow is encoded in the dynamics of the divisor D Lt .

Let us mention two important results. 10 With the obvious conventions on the indices of In and Vn. Theorem 3.1 ([61] Theorem 2.3). Assume that L ∈ pJac N comes from a state ν = {(Q i ), (W i )} ⊂ N 2N of the tpToda system, and assume that the roots of ∆(λ) 2 -4m 2 are simple 11 , then all the roots are positive, and the tropical limit of the roots gives rise to the Young diagram Y ν of ν, see 2.2.

This shows how the spectral curve encodes the fundamental period per(ν) of ν in terms of its branch points. The next theorem indicates how the solutions L t of the pdToda can be written in terms of the θ-function of C L0 . The divisor D L plays a central role in this construction. Theorem 3.2 ([61] Theorem 2.2). Given L 0 ∈ pJac N , the time evolution L t can be obtained from

I t n+2 + V t n+1 = g j=0 λ j - g j=1 aj λω j - g j=1 c j,g-1 d du j log( θ(nr + tν + c; B) θ((n + 1)r + tν + c; B)
), (3.35) where we refer to [START_REF] Iwao | Ultradiscretization of the theta function solution of pdToda[END_REF] for the exact notations.

3.5.2.

The transfer function of periodic Jacobi matrices. Brockett explained in [START_REF] Brockett | A rational flow for the Toda lattice equations. In Operators, systems, and linear algebra. Three decades of algebraic systems theory[END_REF] that the periodic analogue of the Rutishauser-Moser map is given by defining the transfer function f L (z) of a periodic Jacobi matrix L by

f L (z) = [e 1 , e N ] t (zE N -L) -1 [e 1 , e N ], (3.36)
which is a 2 × 2 matrix with rational function entries (with coefficients in some commutative ring R), i.e.,

f L (z) ∈ M 2 (W 0 (R)). (3.37)
The framework of discrete dynamical systems from [START_REF] Le | Canonical systems and non-commutative geometry[END_REF][START_REF] Le | Motivic measures and F 1 -geometries[END_REF] is able to handle this more general situation as well. In [START_REF] Le | Canonical systems and non-commutative geometry[END_REF] it is explained how to embed the phase space of pdToda into Gr 4 (∞), analogously to (3.22). As far as the author knows, this approach to the periodic discrete Toda system has not been studied in the literature. Question 3.2. Can we linearize in some natural way the discrete periodic Toda flow in M 2 (W 0 (R))? Is there a nice relation with spectral curves and θ-functions?

From periodic Toda flows to knots

We now come to the most surprising aspect of our idea to view the pBB flow as a candidate for the elusive Frobenius flow of Q. So far, we've studied tropical and discrete (periodic) Toda flows with a view towards number theory. Now we'll pass to the framework of the continuous periodic Toda flow, cf., [START_REF] Date | Analogue of inverse scattering theory for the discrete Hill's equation and exact solutions for the periodic Toda lattice[END_REF][START_REF] Date | Periodic multi-soliton solutions of Korteweg-de Vries equation and Toda lattice[END_REF][START_REF] Suris | Integrable discretizations for lattice system: local equations of motion and their Hamiltonian properties[END_REF][START_REF] Suris | Discrete time Toda systems[END_REF][START_REF] Krichever | The periodic and open Toda lattice[END_REF], but with a twist, as we will view the periodic Toda flow as part of the Toda-NLS hierarchy 12 , which can be viewed as

A (1)
1 -reduction of the 2D-Toda hierarchy, see, e.g., [START_REF] Ape Ten | The homogeneous realization of the basic representation of A (1) 1 and the Toda lattice[END_REF][START_REF] Maarten | τ -functions and zero curvature equations of Toda-AKNS type[END_REF][START_REF] Ikeda | Polynomial τ -functions of the NLS-Toda hierarchy and the Virasoro singular vectors[END_REF][START_REF] Rumanov | The correspondence between Tracy-Widom and Adler-Shiota-van Moerbeke approaches in random matrix theory: the Gaussian case[END_REF]. For a description of the phase space in terms of Sato Grassmannians and flag varieties, we refer the reader to [START_REF] Adler | Limit matrices for the Toda flow and periodic flags for loop groups[END_REF][START_REF] Wilson | The τ -functions of the gAKNS equations[END_REF][START_REF] Dickey | On Segal-Wilson's definition of the τ -function and hierarchies AKNS-D and mcKP[END_REF][START_REF] Bergvelt | Partitions, vertex operator constructions and multi-component KP equations[END_REF][START_REF] Malcolm | Heisenberg algebras, Grassmannians and isospectral curves[END_REF]. Let us recall that Sato Grassmannians and flag varieties are of central importance in the theory of integrable systems and all integrable systems can be obtained from suitable reductions of the KP/Toda lattice hierarchies. Remark 4.1. See [START_REF] Katsura | Formal groups and conformal field theory over Z[END_REF][START_REF] Kaledin | Universal Witt vectors and the "Japanese cocycle[END_REF] for interesting links between the Sato Grassmannian and Witt vectors.

For us, the relevant part of the Toda-NLS hierarchy, which we take from [START_REF] Rumanov | The correspondence between Tracy-Widom and Adler-Shiota-van Moerbeke approaches in random matrix theory: the Gaussian case[END_REF], is given by the following system of equations

∂ 2 lnτ n ∂t 2 1 = q n r n , (4.1) 
∂q n ∂t 2 = - ∂ 2 q n ∂t 2 1 -2r n q 2 n , (4.2) - ∂r n ∂t 2 = - ∂ 2 r n ∂t 2 1 -2q n r 2 n (4.3)
with the variables related by

q n = τ n+1 τ n , r n = τ n-1 τ n . (4.4)
The first equation is immediately seen to be equivalent to Hirota's bilinear equation for the τ -function of the (continuous) Toda flow and the last two equations describe a system of complex NLS (cNLS) equations, where usually the variables t 1 = x and t 2 = it (4.5) are considered.

The main application for us is that we can now, starting from a periodic Jacobi matrix L ∈ pJac N , not only attach a finite-gap solution of the periodic (discrete or continuous) Toda flow, see (3.2) and (4.13), but also a finite-gap solution (or rather N finite-gap solutions) of the complex NLS flow, cf., [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF][START_REF] Previato | Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Kodama | Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function[END_REF][START_REF] Kodama | Topology of the real part of the hyperelliptic Jacobian associated with the periodic Toda lattice[END_REF][START_REF] Previato | Geometry of the modified KdV equation[END_REF][START_REF] Hp Mckean | Hill and Toda curves[END_REF] 

∂γ ∂t = ∂γ ∂x × ∂ 2 γ ∂x 2 (4.6)
and describes a (universal) integrable motion of a curve γ in R 3 , cf., [START_REF] Renzo | Rediscovery of da Rios equations[END_REF][START_REF] Doliwa | An elementary geometric characterization of the integrable motions of a curve[END_REF][START_REF] Kleckner | Creation and dynamics of knotted vortices[END_REF]. In the case of closed curves one is led to the study of integrable motion of knots in R 3 . The VFE appears prominently in Brylinksi's study of the space of singular knots, see [START_REF] Brylinski | Loop spaces, characteristic classes and geometric quantization[END_REF]. We mostly follow the works of Callini et al. on the interplay between VFE and knot theory, see [START_REF] Calini | Bäcklund transformations and knots of constant torsion[END_REF][START_REF] Calini | Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions[END_REF][START_REF] Calini | Finite-gap solutions of the vortex filament equation: isoperiodic deformations[END_REF][START_REF] Calini | Squared eigenfunctions and linear stability properties of closed vortex filaments[END_REF].

The relevance for our approach comes from Hasimoto's result in [START_REF] Hasimoto | A soliton on a vortex filament[END_REF] showing that the VFE is actually equivalent to the focusing NLS (fNLS) equation

iq t + q xx + 2|q| 2 q = 0 (4.7)
via the map H defined by

q(x, t) = H(γ) = 1 2 κ(x, t)e i x τ (x,t)ds , (4.8) 
where κ denotes the curvature and τ the torsion of the curve γ.

The defocusing NLS (deNLS) equation is given by iq t + q xx -2|q| 2 q = 0. (4.9)

Under the reality conditions q = ±r (4.10) solutions (q, r) of the cNLS give rise to solutions of the fNLS (deNLS) equations. 4.1.1. Finite-gap solutions and reality conditions. Let us sketch the construction of finite-gap solutions for the cNLS following [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF][START_REF] Previato | Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation[END_REF][START_REF] Calini | Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions[END_REF]. In principle, to any spectral curve C, a hyperelliptic curve of genus g defined by

C : µ 2 = 2g+2 j=1 (λ -E j ), (4.11) 
E i = E j for i = j, together with a divisor D = g i=1 P i (subject to some genericity conditions), one can construct a finite-gap solution of the cNLS with q of the following form

q(x, t) = Ae -iE+iN tx θ(iV x + iW t -D + r) θ(iV x + iW t -D), (4.12) 
where we refer to [START_REF] Belokolos | Algebro-geometric approach to nonlinear integrable equations[END_REF][Section 4.1] for the exact notations. Moreover, the reality conditions q = ±r translate into the following statement about the branch points:

If the branch points {E j } are all real numbers, one obtains a solutions of deNLS, if the branch points are all non-real numbers, one obtains a solutions of the fNLS. 4.1.2. Finite-gap solutions of the periodic (continuous) Toda flow. Let us also briefly recall the formula for finite-gap solutions of the periodic (continuous) Toda flow. Starting again from a spectral curve C with a divisor D (coming from a periodic Jacobi matrix), the corresponding solution (satisfying Hirota's bilinear equation (4.13)) has the form

τ n (x) = θ(c x + cn + δ 0 ), (4.13) 
where we refer to [START_REF] Kodama | Topology of the real part of the hyperelliptic Jacobian associated with the periodic Toda lattice[END_REF] for the exact notations. 4.1.3. The inverse of H. Let us now sketch, following [START_REF] Pg Grinevich | Closed curves in R 3 : a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the Filament Equation[END_REF][START_REF] Calini | Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions[END_REF], the inverse of the Hasimoto map which plays a crucial role in our story. The zero curvature representation of cNLS is given by the following first-order linear system

ψ x = U ψ ψ t = V ψ, (4.14) for ψ(x, t) ∈ C 2 and U = -iλ iq iq iλ , V = i(|q| 2 -2λ) 2iλq -q x 2iλq + q x -i(|q| 2 -2λ)
.

One can show the following Theorem 4.1 (Sym-Pohlmeyer Reconstruction formula). Let q(x, t) be a solution of fNLS, let ψ(x, t, λ) be a fundamental solution of (4.14), such that ψ(0, 0, λ) is a fixed matrix in SU (2), then13 

γ Λ0 = γ Λ0 (x, t) = ψ -1 dψ dλ λ=Λ0 , for Λ 0 ∈ R, (4.15) 
satisfies the VFE (4.6) with corresponding potential

H(γ Γ0 ) = e i(ax-a 2 t) q(x -2at, t), for a = -2Λ 0 . (4.16)
Remark 4.2. Formulas for fundamental solutions ψ (coming from finite-gap potentials) can be found in [START_REF] Calini | Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions[END_REF][START_REF] Calini | Finite-gap solutions of the vortex filament equation: isoperiodic deformations[END_REF]. 4.1.4. Closure condition. It is a non-trivial problem to decide whether a solution q of the fNLS corresponds corresponds to a knot under the Hasimoto map. For example, periodicity of q in the x-variable is not sufficient, as the Hasimoto map, in general, sends a knot to a quasi-periodic (with respect to x) solution of fNLS. Recall that in general finite-gap solutions of the fNLS are quasi-periodic with respect to x. In [START_REF] Piotr | Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations[END_REF][START_REF] Pg Grinevich | Closed curves in R 3 : a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the Filament Equation[END_REF] Grinevich and Schmidt found characterizations of (i) when a finite-gap solution q of the fNLS is periodic (with respect to x) and (ii) when it gives rise to a knot under the Hasimoto map. Both characterizations are based on properties of the following Definition 4.1 ([50, 16]). The quasimomentum differential dΩ is defined as the meromorphic differential Remark 4.3. The quasimomentum differential can also be defined using Floquet theory, see, e.g., [START_REF] Calini | Finite-gap solutions of the vortex filament equation: isoperiodic deformations[END_REF].

dΩ = λ g+1 + β g λ g + • • • + β 0 µ dλ (4.
With this definition we can give the following two characterizations of Grinevich and Schmidt.

Criterion 4.1 (Lemma 6, [START_REF] Pg Grinevich | Closed curves in R 3 : a characterization in terms of curvature and torsion, the Hasimoto map and periodic solutions of the Filament Equation[END_REF],Characterization of periodic solutions). A finite-gap solution q of fNLS is periodic (with respect to x → x + L) if (i) c dΩ ∈ 1 L Z, for every closed cycle c on C, and (ii) Ω(P ) = λ -E 2 + o(1), as P → ∞ -, with E ∈ Z. Question 4.1. Are solutions of the fNLS coming from the tropical periodic Toda system periodic (with respect to x)?

For our purpose, the following criterion is of central importance, as it characterizes those solutions of the fNLS that give rise to knots. Criterion 4.2 ([18, 16],Closure condition). A solution γ Λ0 (4.15) of the VFE with Λ 0 = λ(P ), coming from a finite-gap solution q of fNLS, gives rise to a knot 14 (of length L) if and only if (i) dΩ(P ) = 0 and (ii) e iLΩ(P ) ∈ {±1}.

So, to summerize this interlude: The closure condition tells us exactly when a finite-gap solution of the fNLS equation gives rise -under the Hasimoto map -to a knot in R 3 . 4.2. Back to Toda. Ignoring for the moment the technical issue of the closure condition (4.2), we're faced with another obstacle. The branch points of the spectral curves attached to lifts of the pBB flow, see Theorem 3.1, are positive real numbers, i.e., these spectral curves do not give rise to solutions of the fNLS flow but to solutions of deNLS. So a priori it's unclear how to relate the pBB flow to knots. 4.2.1. A wonderful involution. We will show that there's a natural way out of this dilemma. Our idea is to find a natural involution on the phase space pJac N which induces (on the level of spectral curves) a map from deNLS to fNLS, i.e., it maps spectral curves with real spectrum to spectral curves with non-real spectrum. Our definition is, on the one hand, inspired by the works [START_REF] Casian | Toda lattice, cohomology of compact Lie groups and finite Chevalley groups[END_REF][START_REF] Casian | Singular structure of Toda lattices and cohomology of certain compact lie groups[END_REF] of Casian and Kodama, who introduced a natural (affine) Weyl group action on (p)Jac N which interpolates the Toda flow and, on the other hand, by Manin's idea of the dual F 1 -motive of the Γ-function. Before we give a more precise explanation let us first give our Definition 4.2. For j ∈ {0, 1} denote by ι j the involution on pJac N which switches the sign of V i for every i ∈ {1, . . . , N -j} (in the coordinate system (3.27)). Further we define

ι = ι CKM = ι 0 , if N odd, ι 1 , if N even. (4.18)
The involution ι CKM is part of the following symmetry group of the phase space of discrete Toda flows. Definition 4.3. Denote by W N the group generated by the involutions r i and s i , for i ∈ {1, . . . , N }, where r i switches the sign of I i and s i switches the sign of V i , cf., (3.27).

Remark 4.4. This group action of W N on the phase space of the dpToda flow has been used by Nobe in [START_REF] Nobe | A geometric realization of the periodic discrete Toda lattice and its tropicalization[END_REF] to express the discrete and tropical periodic Toda flows in terms of curve intersections. The importance of distinguishing the cases of even and odd N appears in [START_REF] Nobe | A geometric realization of the periodic discrete Toda lattice and its tropicalization[END_REF] as well.

The next observation is not difficult to prove, but nevertheless central to our story. Theorem 4.2. Let L ν = L ν ( ) ∈ pJac N be a lift of a tpToda state ν ∈ T N ∩ R 2N + as in (3.6). Then the spectral curve C ι CKM (Lν ) satisfies the fNLS reality condition.

Proof. This follows directly from looking at the factors of (3.30) or by using Laguerre's generalization of Descartes' rule of signs, cf., [START_REF] Dr Curtiss | Recent extensions of Descartes' rule of signs[END_REF].

The definition of our involution is inspired by the following works. First, Casian and Kodama, see [START_REF] Casian | Toda lattice, cohomology of compact Lie groups and finite Chevalley groups[END_REF][START_REF] Casian | Singular structure of Toda lattices and cohomology of certain compact lie groups[END_REF], found a natural (affine) Weyl group action on the phase space (p)Jac N of the continuous (periodic) Toda flow. Their action, which approximates the Toda flow, changes the signs of the entries of the b i 's, see (3.8) and (3.24) in a very subtle way. Quite surprisingly, as shown in [START_REF] Casian | Toda lattice, cohomology of compact Lie groups and finite Chevalley groups[END_REF], the (open) Toda flow counts |Fl n (F q )| the number of points of flag varieties in a finite field F q and the Weyl group action plays an important role in this fascinating story. Our involution ι CKM (in the continuous limit) is not part of their Weyl group, but their Weyl group action can be expressed in terms of W N (in the continuous limit).

Second, an influential idea of Manin is to realize (duals) of Γ-functions as zeta functions of F 1 -motives (which are not defined yet). We've seen that in the set-up of the (open) discrete Toda flow, Le Bruyn found a candidate M Γ , see (3.22), giving rise to the dual Γ-function in form of the regularized product k≥0 s-k 2π . In this philosophy the actual Γ-function, corresponding to k≥0 s+k 2π , should appear when passing to the non-existent dual motive MΓ . We argue that the involution ι CKM gives (in some sense) a realization of the envisioned duality of Manin in the framework of Toda systems. To see this, recall that the quantum cohomology of the flag variety, cf., [START_REF] Givental | Quantum cohomology of flag manifolds and Toda lattices[END_REF][START_REF] Kim | Quantum cohomology of flag manifolds G/B and quantum Toda lattices[END_REF][START_REF] Koroteev | Quantum K-theory of quiver varieties and many-body systems[END_REF], is naturally related to the (classical) open continuous Toda flow, except for a mismatch of the sign of the potential in the Hamiltonian, namely

H QH = 1 2 i p 2 i -i e xi-xi-1 instead of H Toda = 1 2 i p 2 i + i e xi-xi-1
, as explained in [START_REF] Givental | Quantum cohomology of flag manifolds and Toda lattices[END_REF]. It is immediate to see that these two Hamiltonians correspond to each other under the involution ρ which 14 i.e., a smoothly closed curve in our context.

switches the sign of every b i in (3.8), cf., [START_REF] Kodama | Topology of the real part of the hyperelliptic Jacobian associated with the periodic Toda lattice[END_REF]. Our involution ι CKM , which switches the signs of the V i , is a discrete (periodic) analogue of this involution, relating H QH and H T oda . Remark 4.5. In the limit from the discrete to the continuous Toda flow, see [START_REF] Inoue | Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry[END_REF][START_REF] Suris | Integrable discretizations for lattice system: local equations of motion and their Hamiltonian properties[END_REF], our involution ι CKM becomes exactly the involution ρ which maps H QH to H T oda .

From the works [START_REF] Gerasimov | Baxter operator and Archimedean Hecke algebra[END_REF][START_REF] Gerasimov | On Baxter Q-Operators and their Arithmetic Implications[END_REF] we know that the Γ-function appears as eigenvalue of the Q-operator of the quantum Toda system (which is based on a quantization of H QH ), thus linking M Γ and the actual Γ-function.

Main conjectures.

Let us now state our main conjecture which predicts the existence of an actual link between prime numbers and knots. Conjecture 4.1. 1) The solutions of the fNLS equation coming from P N (for suitably specialized temperature ) satisfy the closure condition (4.2) and thus give rise to knots.

2) The corresponding map (a priori depending on the temperature )

P N -→ {knots in R 3 } (4.19)
is faithful (on the orbits of the tpToda flow).

It is is a very important and delicate problem to understand the dependence on the temperature . Is the map 4.19 independent of (in some sense)? 4.3.1. An action of the absolute Galois group. Let us point out that Furusho [START_REF] Furusho | Galois action on knots. I: Action of the absolute Galois group[END_REF] has defined a natural action of the absolute Galois group Gal(Q/Q) on knots by exploiting the fascinating actions of the Grothendieck-Teichmüller group on Drinfeld associators and knots invariants, as discovered by Drinfeld and Kontsevich, cf., [START_REF] Furusho | Galois action on knots. I: Action of the absolute Galois group[END_REF][START_REF] Drinfel'd | On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(Q/Q)[END_REF][START_REF] Quoc | The universal Vassiliev-Kontsevich invariant for framed oriented links[END_REF]. This leads naturally to Conjecture 4.2. The orbits of the tpToda flow in P N give rise to (non-trivial) Galois representations 15of Gal(Q/Q). This is of course analogous to the case of curves over finite fields, where interesting representations of Gal(F q /F q ) naturally appear.

Towards the geometry of Γ-functions

So far, we've only made use of the geometry of classical integrable systems in form of Toda flows. In order to understand Γ-functions properly in our framework, it's necessary to include the framework of quantum Toda systems as well. In a series of interesting papers, see [START_REF] Gerasimov | Baxter operator and Archimedean Hecke algebra[END_REF][START_REF] Gerasimov | On Baxter Q-Operators and their Arithmetic Implications[END_REF], it was shown how Γ-functions appear naturally as eigenvalues of the Baxter Q-operator of quantum Toda systems (in the framework of (big) quantum cohomology of flag varieties) and how this leads to the idea of archimedean Hecke algebras (controlling Euler factors at ∞).

Remark 5.1. To put things into perspective, let us recall that the tropical periodic Toda system -or the equivalent pBB system -can also be obtained as crystallization of the XXZ quantum spin model, see [START_REF] Inoue | Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry[END_REF]. In this case the pBB flow is induced by the crystal limit of XXZ transfer matrices constructed out of quantum R-matrices. Going further in that direction, the tropical periodic Toda flow is lifted to the rich framework of quantum groups, Bethe algebras, (q)KZ equations, q-deRham cohomology, (big) quantum cohomology/K-theory and (quantum) geometric Langlands correspondence. Let us mention a couple of interesting works that are of relevance and contain further interesting links with number theory, such as [START_REF] Varchenko | Asymptotic solutions to the Knizhnik-Zamolodchikov equation and crystal base[END_REF][START_REF] Kapranov | Eisenstein series and quantum affine algebras[END_REF][START_REF] Kapranov | Spherical Hall Algebra of Spec(Z)[END_REF][START_REF] Brubaker | A Yang-Baxter equation for metaplectic ice[END_REF][START_REF] Lam | The mirror conjecture for minuscule flag varieties[END_REF][START_REF] Kostant | On Whittaker vectors and representation theory[END_REF][START_REF] Koroteev | Quantum K-theory of quiver varieties and many-body systems[END_REF][START_REF] Gerasimov | Baxter operator and Archimedean Hecke algebra[END_REF][START_REF] Gerasimov | On Baxter Q-Operators and their Arithmetic Implications[END_REF][START_REF] Frenkel | q-Opers, QQ-systems, and Bethe ansatz[END_REF][START_REF] Tarasov | Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups[END_REF][START_REF] Nishizawa | Integral solutions of hypergeometric q-difference systems with |q| = 1[END_REF][START_REF] Wadati | From solitons to knots and links[END_REF][START_REF] Mimachi | The Jones polynomial and the intersection numbers of twisted cycles associated with a Selberg type integral[END_REF].

As far as we know, classical Toda systems are related in two ways to the quantum framework, a surprising connection known as classical-quantum duality, cf., [START_REF] Krichever | Quantum integrable models and discrete classical Hirota equations[END_REF][START_REF] Koroteev | qKZ/tRS duality via quantum K-theoretic counts[END_REF], and the standard connection, via the usual quantization formalism which in the case of the Toda system can be viewed as passing from small to big quantum cohomology of flag varieties, cf., [START_REF] Givental | Quantum cohomology of flag manifolds and Toda lattices[END_REF][START_REF] Kim | Quantum cohomology of flag manifolds G/B and quantum Toda lattices[END_REF][START_REF] Braverman | Quantum cohomology of the Springer resolution[END_REF]. It is a very important problem to understand how the Γ-function appearing on the quantum side is related to the (dual) realization M Γ of Γ in terms of L, see section 3.3. The immediate goal -to keep in mind -is the following Problem 5. Give a conceptual proof of Shintani's conjecture for Q in terms of classical and quantum Toda systems.

Let us mention more problems in this direction. Faybusovich has shown how solutions of the classical Yang-Baxter equation give rise to Toda-type flows, see [START_REF] Faybusovich | QR-type factorizations, the Yang-Baxter equation, and an eigenvalue problem of control theory[END_REF]. Problem 6. Express and study the (discrete) periodic Toda flow in the quantum setting. Is it possible to extend the theorem of Faybusovich to the quantum Yang-Baxter equation?

From the point of view of our conjecture 4.1, the following problem is obviously important. Problem 7. How do the knots, conjecturally related to states of the tropical periodic Toda flow, appear on the quantum side? (Is there a direct characterization in terms of quantum Toda theory?)

There are beautiful p-adic and l-adic variants of Γ-functions, which are closely related to (p-adic and l-adic variations of) Grothendieck-Teichmüller theory, Drinfeld's associators and KZ equations, see [START_REF] Ihara | Braids, Galois groups, and some arithmetic functions[END_REF][START_REF]The hyperadelic gamma function[END_REF][START_REF] Ihara | On beta and gamma functions associated with the Grothendieck-Teichmüller group[END_REF][START_REF] Furusho | p-adic multiple zeta values I[END_REF][START_REF] Furusho | p-adic multiple zeta values II. Tannakian interpretations[END_REF]. From this perspective one should view the appearence of Γ-functions in the Toda framework as an ∞-adic (or de-Rham analogue) of the p-adic and l-adic theories.

Problem 8. Understand how the p-adic and l-adic stories are related to Γ-functions appearing in the Toda framework. Is there a natural motivic framework? (Is there a motivic KZ equation?)

In particular, in analogy with the p-adic and l-adic stories, one should understand the following important Problem 9. Clarify the relationship, if any, between classical Γ-functions and Grothendieck-Teichmüller theory.

Further directions

More general number fields. Another difficult problem is to generalize our approach to more general number fields, say quadratic ones like Q(i) or Q( √ 2). For imaginary quadratic number fields, this amounts to lifting our approach to the framework of elliptic Toda flows and elliptic quantum groups. The case of real quadratic number fields is yet more complicated. The double Γ-function, which appears in Shintani's conjecture for real qudratic number fields, appears naturally in the framework of modular doubles of quantum groups. So one should try to develop Toda flows in this framework, but hardly any result in this direction appears in the literature so far.

Relation with other proposals. It would be very interesting to understand properly the link between out approach and the recent observation of Cotti, see [START_REF] Cotti | Coalescence phenomenon of quantum cohomology of Grassmannians and the distribution of prime numbers[END_REF], showing how the Riemann hypothesis can be expressed in terms of the quantum cohomology QH * (Gr k,n ) of Grassmannians. Further, It is an obvious problem to ask if our proposal can be related to the works of Connes and Consani, as explained in [START_REF] Connes | An essay on the Riemann Hypothesis[END_REF][START_REF] Connes | BC-system, absolute cyclotomy and the quantized calculus[END_REF][START_REF] Connes | Spectral Triples and Zeta-Cycles[END_REF], or the recent proposal, cf., [START_REF] Deninger | Dynamical systems for arithmetic schemes[END_REF], of Deninger. Rational Witt vectors appear prominently in both approaches. The appearence of prolate spheroidal operators in [START_REF] Connes | Spectral Triples and Zeta-Cycles[END_REF] and the natural links of prolate spheroidal operators to bispectrality and adelic Grassmannians, see [START_REF] Casper | Reflective prolate-spheroidal operators and the KP/KdV equations[END_REF][START_REF] Casper | Reflective prolate-spheroidal operators and the adelic Grassmannian[END_REF][START_REF] Grünbaum | Commuting integral and differential operators and the master symmetries of the Korteweg-de Vries equation[END_REF]], seems to be another possible point of contact. Further, it would be interesting to understand how Butler's work, see [START_REF] Leo | Toda lattices and positive-entropy integrable systems[END_REF], on regulators for (arbitrary) number fields and topological entropy of (sub-flows) of the periodic Toda flow is connected to our framework.

Question 3 . 1 .

 31 Is there an interesting interpretation of the discrete Toda system over Z[T ] or Q(T ) in terms of analytic algebraic geometry?

  .

4. 1 .

 1 Interlude: NLS and knots. The vortex filament equation (VFE) discovered originally by da Rios is given by
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 2 on the spectral curve C (4.11), characterized by having vanishing a-periods and β g = -2g+2 j=1

In[START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF] the authors rather use the periodic box-ball system, which is equivalent to the tpToda system.

We always assume that the number of balls is less than half the number of boxes.

A technical condition explained in[START_REF] Tokihiro | Fundamental cycle of a periodic box-ball system: a number theoretical aspect[END_REF]. In case of internal symmetry, per(ν) only divides lcm(Yν ).

With appropriate boundary conditions.

One can always chose a tropical lift, such that this condition holds.

Usually this hierarchy is called Toda-AKNS heirarchy.

under the identification su(2) ∼ = R 3 described in[START_REF] Calini | Finite-gap solutions of the vortex filament equation: genus one solutions and symmetric solutions[END_REF] 

It would be very interesting to link these conjectural Galois representations to the fantastic recent work[START_REF] Petrov | Universality of the Galois action on the fundamental group of P 1 \ {0[END_REF].