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Abstract

The design of efficient representations is well established as a fruitful way to explore and analyze complex or large data. In these
representations, data are encoded with various visual attributes depending on the needs of the representation itself. To make coherent
design choices about visual attributes, the visual search field proposes guidelines based on the human brain perception of features.
However, information visualization representations frequently need to depict more data than the amount these guidelines have been
validated on. Since, the information visualization community has extended these guidelines to a wider parameter space.

This paper contributes to this theme by extending visual search theories to an information visualization context. We consider
a visual search task where subjects are asked to find an unknown outlier in a grid of randomly laid out distractors. Stimuli are
defined by color and shape features for the purpose of visually encoding categorical data. The experimental protocol is made of a
parameters space reduction step (i.e., sub-sampling) based on a machine learning model, and a user evaluation to validate hypotheses
and measure capacity limits. The results show that the major difficulty factor is the number of visual attributes that are used to encode
the outlier. When redundantly encoded, the display heterogeneity has no effect on the task. When encoded with one attribute, the
difficulty depends on that attribute heterogeneity until its capacity limit (7 for color, 5 for shape) is reached. Finally, when encoded
with two attributes simultaneously, performances drop drastically even with minor heterogeneity.

Keywords: Visual search, Outlier detection, User evaluation, Deep learning, Automated evaluation

1. Introduction

One of the main goals of the information visualization re-
search field is to ease the search for data that is not trivially
queryable. It is achieved by designing abstract representations
of these data that can easily be explored to enable users/experts
to extract knowledge they were not specifically looking for (oth-
erwise, a query in a database would be sufficient).

To design efficient representations, experts must optimize
how they encode data (i.e., select visual attributes and features).
As shown by Ware [1] or Healey and Enns [2], these visual
choices should be driven by visual search and perception guide-
lines. Since then, various recommendations about visual at-
tribute efficiency have been produced to help experts in their
choices when highlighting data in their representations [3, 4, 5,
6, 7].

Color [8, 9, 3] and shape [10, 11] are two widely used and
often combined visual attributes for encoding data in representa-
tions (e.g., scatter plots[12], geographic maps [13], graphs [14],
and parallel coordinates [15]). However, it is often unclear
how well these visual attributes remain efficient as visualiza-
tions become increasingly complex (e.g.,, the number of data
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items or classes to represent increases). For example, Percep-
tion researches [16] shown that color was a preattentive feature,
meaning that all colors of a representation could be processed in
parallel. Yet, heterogeneous representations tend to overwhelm
the search process at some point, even when data are encoded
with color. This point is known as the capacity limits of attention
and varies according to data encoding. For color, the capacity
limit is assumed to be around 7± 2, though we couldn’t find
any reference that support it. This seems to be a common misin-
terpretation of the Miller’s magic number [17] which measures
the number of categories we can distinguish but not necessar-
ily remember. We think this limit is over optimistic and that
the difficulty of a search task might significantly increase with
less colors in dense representations, especially when data are
encoded with combinations of visual attributes. This work aims
at verifying such assumption and more generally measure the
capacity limits of attention when data are encoded with color
and/or shape in dense representations. It is important to note that
we are interested in the maximum number of features a visual
attribute features can take in a representation, no matter what
the features of this attributes are. Since it is not feasible to test
every possible feature of the considered attributes, the results
of this work should be observed within the scope defined by its
experiment, i.e., its set of selected shapes and colors.

In this paper, we study how difficult it is to find an outlier in
representations with various heterogeneity and outlier encoded
using shape and color visual attributes. There is always exactly
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(a) color type; 3 shapes; 4 colors (b) shape type; 3 shapes; 4 colors (c) red. type; 3 shapes; 4 colors (d) conj. type; 3 shapes; 4 colors

Figure 1: Experimental object examples for the 4 possible types of outliers. The outlier is always at position 10 (i.e., second row, third column from the top left
corner) in these examples. (a) In color type images, the outlier color is unique; (b) in shape type images, the outlier shape is unique; (c) in redundant type images,
both the outlier color and shape are unique; and (d) in conjunction type images, the outlier combination of color and shape is unique.

one unknown outlier in each representation to reproduce a stan-
dard data exploration where ones would like to identify outlier
elements. Outlier encodings (later referred to as Type) are the
four possible combinations of color and shape dimensions (see
Figure 1) and we study the effect of heterogeneity within each
Type condition separately. Our results show that the level of
heterogeneity at which the task becomes significantly hard is
lower than one could expect and confirm that it depends on the
outlier encoding [18, 19].

As opposed to visual search researches, our work focuses
on the study of what makes the task becomes harder rather than
why. In fact, even forty years after the pioneer work of Treis-
man and Gelade [18] “Feature-Integration Theory of Attention”
(FIT), the Perception community still proposes several com-
peting templates to explain the brain strategy to process visual
search tasks [20, 21]. We are interested in studying how some
widely used visual attributes features in information visualiza-
tion actually make the task more complex for human subjects
from a practical point of view.

In the following, we adapt some terminology from the lit-
erature to align ourselves with the information visualization
community. We call parameters what Treisman (e.g., [19, 18])
calls dimensions, we use value instead of feature, outlier instead
of target and distractor instead of nontarget. A parameter there-
fore refers to either a visual attribute (e.g., color, shape) or any
other variable of the representation (e.g., number of shapes),
both of which having values (e.g., color: red, shape: circle,
number of shapes: 4).

In our work, we study the capacity limits of human attention
with varying heterogeneity in color and shape attributes, both
alone and combined. Among the information visualization field,
the closest work to this paper is Haroz and Whitney [3] who
studied the capacity limits of human attention on representations
with varying heterogeneity in terms of color or motion under
grouped or random layouts. However, they did not study the
combination of these two visual attributes, and results about
motion have limited application since many representations are
not dynamic. Even where conditions are the closest between
their study and ours (i.e., data encoded with color only, with an
unknown outlier in a random grid), our subjects performances

are significantly worse than theirs, which indicates that our task
is not at the same level of difficulty.

Another originality of our work is the use of a Deep Neu-
ral Network (DNN) as a metric to base the sub-sampling of
the experiment parameters on. As for many experiment, the
combination of all the considered parameters is too high to be
exhaustively studied through a user evaluation. In some research
fields, there are dedicated metrics to evaluate the readability
of a representation (e.g., graph drawing [22, 23]). But every
representation technique do not have a set of metrics to measure
its quality for solving various tasks. On the other hand, DNNs
have proven to be very efficient computer vision techniques and
are capable of learning to solve a wide variety of tasks on rep-
resentations. Here, we leverage DNNs as they can (and must)
process large datasets to learn a task. In fact, these models can
learn to solve any task on any representation, as long as both
can be programmatically expressed. Moreover, they get better
as they see more data samples, which enable to evaluate a high
number of combinations of parameters. The DNN predictions
are then statistically analyzed to identify the conditions of the
parameters space that make it consistently fail (resp. succeed) its
predictions. We interpret this as a difficulty metric based on the
assumption that easy (resp. hard) conditions for the DNN tend
do be easy (resp. hard) for users as well. Finally, this difficulty
metric is used to lead a parameters space pruning. The assump-
tion of correlations between DNNs and humans on perception
tasks was extensively studied in some works [24, 25, 26] and we
specifically validated it in our context in a separated study [27].
This assumption is also intrinsic to all aesthetic metrics as no
function can efficiently evaluate every task difficulty for humans
on every possible representation, which is why metrics results
should be interpreted by informed experts.

To summarize, the main contribution of this paper is the
study of the capacity limits of color and shape visual attributes
when mixed in representations with tens of stimuli. We also
propose the idea of a computable difficulty metric relying on
Deep Neural Networks to assess representations efficiency and
that can be adapted to any task-representation a DNN can learn.
Here, the difficulty metric is used to sub-sample a parameters
space. Finally, a user evaluation is conducted on the reduced
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space to study preliminary hypotheses about the outlier detection
task. The validity of using the statistical analysis of a Deep
Learning model performances to assess users performances was
the object of another paper [27] and is discussed in Section 4.1.

The remainder of this paper is structured as follows. Sec-
tion 2 presents related work from the visual search literature
and its relation to information visualization. Section 3 presents
the task parameters space definition and experimental objects
dataset generation, while Section 4 describes the sub-sampling
of this parameters space. Section 5 presents the experimental
evaluation setup and results. Finally, Section 6 discusses these
results, and Section 7 draws conclusions and presents future
work leads.

2. Related Work

The task in this experiment relates to the identification of
a target stimulus in a background of nontarget stimuli, and has
various application domains. In perception, researchers have
used this task to understand how the brain processes displays.
In the field of information visualization, studies are focused on
optimizing the time required to solve the task. In this section,
we present some literature on the two domains. We also present
recent works about the use of deep neural networks (DNNs) for
evaluating the readability of representations.

2.1. Visual Search in Perception

The seminal theory in the visual search research field is
the Feature-integration theory of attention (FIT) by Treisman
and Gelade [18]. It defines attention as a two-stages system
with a preattentive step followed by an attentive process. Some
visual attributes would then be considered preattentive if its
features could be processed in parallel [16]. The theory also
distinguishes feature search, where the brain looks for a feature
of a single attribute, from conjunction search, where combina-
tion of different visual attribute features are required to identify
a target (e.g., binding of features). However, this template is
now contested and the Guided Search of Wolfe [28], which has
been regularly updated (today version is 4.0), is now preferred.
Nonetheless, the FIT was essential and engaged researches on
perception and visual search as shown in the tribute to Treisman
contributions [20, 21].

Duncan and Humphreys [29] leveraged Treisman theory
to propose theirs, based on stimuli similarities and templates.
They showed that as the target to nontarget (T-N, i.e., outlier to
distractor) similarity increases, the task becomes more difficult.
This situation is even worse if the nontarget to nontarget (N-N)
similarity increases, except in cases where the T-N similarity
remains small. Furthermore, the number of possible nontargets
in the representation, which they called nontarget heterogeneity,
severely affects the task difficulty. Finally, they stated that if a
target can be identified by a specific dimension (i.e., a relevant
dimension), heterogeneity in other dimensions (i.e., irrelevant
dimensions) should only have a minor impact on the search task;
this corroborated the results of Treisman [19]. Pashler [30] also
studied heterogeneity in irrelevant dimensions and shown that

it had no effect even when the target was unknown. In view of
these two works, our experiment should enable to observe the
harmful effects of nontarget heterogeneity, which is attenuated
when it occurs in irrelevant dimensions.

Quinlan and Humphreys [31] found that the visual search of
a target defined by shape is slightly linearly related to the total
number of stimuli, whereas the latter has no impact on a target
defined by color. This corroborates that color is a preattentive
attribute and is more efficient to represent data than shape. For
conjunction search, they found that error rates increase with
the number of stimuli and that response time is linearly related
with it. Moreover, they showed that in conjunction search, T-N
similarities have more impact on subject performances than in
single feature search. Finally, they pointed out that the more
features the outlier shares with the distractors, the more difficult
the task is.

2.2. Visual Search in Information Visualization
If the perception research field is a cornerstone of the in-

formation visualization community, their results do not always
apply to information visualization. For example, Treisman and
Gelade [18] claimed that “we cannot normally locate an item
which differs from a field of distractors without also knowing at
least on which dimension (color or shape) that difference exists”,
but their experiment was made of trials for which the time limit
was set to 3 seconds. Such design scale is far from meeting the
complexity of most of the modern representations. To that extent,
Healey and Enns [2] drew a landscape of the visual perception
literature that was dedicated to computer graphics applications;
and the information visualization community has kept running
its own measurements of humans processing of representations
efficiency.

Haroz and Whitney [3] studied how colored groups and
motion influence the effectiveness of information visualizations.
They conducted several experiments on 5 subjects that had to
solve a target-present task on 960 trials each. Some parameters,
such as the number of colors or the layout of the color groups,
were studied. They found that grouping colors (i.e., classes)
significantly eased the task when the target to find was unknown.
Moreover, when colors were grouped, it was easier to access
overall information, such as the total number of colors/classes.
Inspired by [3], Gramazio et al. [4] studied how the same task
was sensitive to representation size by varying the number of
stimuli, their layout, their size and the number of colors in
representations. In our work, we study the same task when
stimuli are encoded with color, shape or a combination of both
in randomly laid out representations.

Demiralp et al. [32] introduced the notion of a perceptual
kernel, a distance matrix that represents the perceived distances
between members of a set of stimuli composed of one or sev-
eral visual attributes. In their experiment, they estimated the
perceptual kernels for the color, shape and size visual attributes,
as well as their pairwise combinations. They showed that color
and shape have very different kernels. In the shape kernel, we
observe several distant clusters of close shapes, whereas the
distances between colors are more evenly distributed. On the
other hand, all stimuli are close to many others in the color-shape
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kernel. Their experiment considered 4 colors and 4 shapes (i.e.,
16 stimuli), but only 4 clusters could be distinguished in the
kernel, meaning that all stimuli had high levels of similarity with
others. We expect that varying the number of shapes or colors
should not have the same effect on the performances in our ex-
periment as their kernels are different; and using conjunction of
both attributes should have a significant impact.

According to Mackinlay [7], position is the best parameter
for visually encoding data in representations. For example, in
Western culture, as one reads from left to right and top to bottom,
one could assume that cells placed in the top left corner of the
grid are processed first. On the other hand, a central fixation
bias [33] could favor stimuli in the middle of the grid. In this
experiment, the stimuli layout in the representations is fixed
(8× 8 regular grid) as we do not aim at studying the impact
of the outlier position on the participants performances. To
mitigate its impact on the results, outlier positions are uniformly
distributed in the dataset during both the deep neural network
model learning phase (see Figure 2a) and the user evaluation
(see Figure 5a).

2.3. Neural Networks for Visualization Evaluation
Behrisch et al. [34] conducted a recent survey on quality

metrics for information visualization and claimed that deep neu-
ral networks (DNNs) were a promising direction for evaluating
the quality of a representation. On the same line of research,
Haehn et al. [35] reproduced the Cleveland and McGill [36]
study with different convolutional neural networks (CNNs) to
evaluate how these networks performed compared to humans
on various elementary graphical perception tasks (e.g., position
relative to a scale, angle, or area). They found that CNNs and
humans behave differently on these elementary graphical per-
ception elements but were still enthusiastic about evaluating
representations with DNNs. Later, Haleem et al. [37] trained a
CNN to predict various graph node-link representation quality
metrics while feeding it with laid out graph images only (i.e.,
the CNN did not have access to the node coordinates, edges,
etc.). Their model reached an accuracy above 85% at a 95%
confidence level. These quality metrics were designed to encode
some graph readability information for humans (although we
already noted that they do not always accurately reflect human
perception capabilities). Their study proved that CNNs can
strongly approach them and thus efficiently estimate human per-
ception capabilities. Finally, Giovannangeli et al. [38] partially
reproduced two evaluations comparing node-link to adjacency
matrix graph representations [39, 40] with CNNs on counting
and connectivity tasks. They proposed an automated method to
compare visualization techniques and concluded that humans
and machine-learning-based computer vision techniques can be
correlated on the tasks they considered.

All these studies remained cautious about their results and
raised several limitations. The task definition, data generation
process, network architecture, hyperparameters, initial weights,
etc. can lead to different network strategies and performances.
As this research field was recently developed, it is still not well
understood how CNNs and humans can be correlated, and we
currently know more about their differences than correlations.

Table 1: All parameters values considered in this study. Color values are given
as hexadecimal RGB codes. Shape and color values can be used by either
the outlier, through the outlier color and outlier shape parameters, or by the
distractor stimuli.

Visual attribute values Image
Shape Color Position Type #colors #shapes

#1B9E77 0 color 1 1
#D95F02

... shape 2 2
#7570B3 63 redundant (red.) 3 3
#E7298A conjunction (conj.) 4 4
#66A61E 5 5
#E6AB02 6
#A6761D 7

3. Task and Parameters Space

This section details the parameters (and their values) consid-
ered in this study.

3.1. Task
The chosen task consists of identifying an outlier in an 8×8

grid of colored shapes drawn in an image of 256×256 pixels.
These image properties enable (i) the consideration of a rea-
sonable number of values for our key parameters (presented
immediately after) and (ii) a good trade-off between image read-
ability for a user and the possibility of feeding the image to a
standard deep learning model architecture. In such an image, a
colored shape (i.e., stimulus) is considered an outlier if there is
no other stimulus with the same color and shape visual attributes.
The dimension(s) on which the outlier is made unique varies
according to the type parameter.

Type relates to the dimension(s) that makes the outlier unique.
It has 4 possible values: (i) color, when the color of the outlier
is unique in the grid; (ii) shape, when its shape is unique in the
grid; (iii) redundant, when both its color and shape are unique
in the grid, (this refers to redundant encoding [41]); and (iv)
conjunction, when its color-shape combination is unique in the
grid. Examples of type values are provided in Figure 1.

Each image contains exactly one outlier and 63 distractors.
A colored shape is considered a distractor if it appears at least
twice in the grid (otherwise, it is an outlier). There are at most
31 different color-shape combinations for distractors in a grid.

3.2. Data Space Definition
The experimental objects of this study are images repre-

senting a grid. They are defined by six parameter values (see
Table 1).

Outlier shape values are chosen among a set of shapes (see
Table 1 column 1). A shape can be defined by many sub-features
(e.g., lines, orientation, size). In this experiment, every shape
appears in a single orientation, and its size is set to the maximum
value to fit in a 32×32 pixels cell using a 3 pixels padding. Five
shapes are selected – Triangle , Circle , Square , Clover
and Diamond – to mix the use of straight vertical/horizontal,
diagonal and curved lines.

Outlier color values are chosen among a set of colors (see
Table 1 column 2). Some methods already exist for finding an
efficient color set to represent targets (e.g., [42], or more recently
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Colorgorical [43]). In this experiment, colors are considered as
basic features (i.e., we do not study the effects of hues or satura-
tion) and are chosen from the 7 qualitative classes palette named
Dark2 in the ColorBrewer1 tool [44], a well-known color palette
provider. The palette is qualitative as the colors should be as
independent as possible (i.e., categorical) in this experiment and
Dark2 was selected because it was one of the proposed sets with
highest saturation. From the beginning, we planned to exclude
colorblind individuals. It is complicated to find reliable color
palettes of this size and for which colors are as distinguishable
for non-colorblind individuals as they are for colorblind ones
(which can themselves be of different types).

The outlier position relates to the position of the outlier
in the experimental object. In this study, the position varies
between 0 and 63 corresponding to the row-major order of the
grid.

The type of an image relates to the outlier dimension(s) that
makes it unique in that experimental object (see Section 3.1).

The number of colors (#colors) relates to the total num-
ber of distinct colors used in an experimental object. In this
experiment, the number of colors varies between 1 and 7. It
is noteworthy that if an experimental object type is color or
redundant, the number of colors cannot be set to 1 as a color
must be reserved for the outlier.

The number of shapes (#shapes) relates to the total num-
ber of distinct shapes used in an experimental object. In this
experiment, the number of shapes is between 1 and 5. For an
experimental object of type shape or redundant, the number of
shapes cannot be set to 1 as one is reserved for the outlier.

3.3. Dataset Generation

The six parameter values were balanced to minimize distri-
bution bias and train the model correctly when generating the
experimental dataset. The main concern was to balance outlier
shape-color-position occurrences (see Figure 2a) to prevent the
deep learning model from learning to find some stimuli or loca-
tions more easily than others because they were more common
in the dataset.

The generation process also followed some constraints. Ob-
viously, images with 1 color and 1 shape could not be generated,
but less evident cases could not be generated either. Images of
type redundant cannot be generated with either 1 color and 2
shapes or 2 colors and 1 shape. For images of type conjunction,
the combinations of parameter values using 1 color or 1 shape
were not considered, as they would result in images of type
shape or color, respectively. In addition, type conjunction im-
ages cannot be generated using 7 colors and 5 shapes in an 8×8
grid. One of the 7∗5 = 35 combinations should be reserved for
the outlier, and 34 should appear twice (minimum condition to
be a distractor), so this would lead to at least 69 stimuli.

The configurations using[4 shapes, 7 colors] and [5 shapes,
6 colors] were removed. From our experience, knowledge of
the literature and pilot experiments, we strongly expect that the

1https://colorbrewer2.org/#type=qualitative&
scheme=Dark2&n=7, consulted on October 2021
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Figure 2: Parameter value distributions in the 210560 images.

capacity limits we aim to study will be reached before (i.e., with
less heterogeneity) these high-valued configurations.

These constraints explain why the type, #colors and #shapes
values are not fully balanced, as shown in Figures 2b, 2e and 2f.

By generating one image per combination of parameter val-
ues (see Table 1) while excluding those described above, we
ended up with 210560 different images. As stated in Section 1,
this study was not designed to investigate the effect of the outlier
position on the task. This parameter was only used to generate
several samples with other parameter value combinations and is
balanced uniformly to mitigate its consequences on the results.
Therefore, the experiment studies 3290 different parameter com-
binations, repeated 64 times each.

Finally, the dataset was randomly split into 3 subsets for
supervised learning purposes (hold-out validation [45]): train
(to learn the model), validation (to prevent overfitting during
training) and test (to evaluate the model on unseen data).

4. Parameters Space Reduction

The parameters space presented in Section 3 is too large
(3290 conditions × 64 positions) to directly evaluate the task
through a user evaluation. To overcome this, we sub-sample
the parameters space based on the analysis of a Deep Neural
Network (DNN) performances on the same task-representations.
This section presents the design of DNN as a metric and its
implementation: how we selected our network architecture and
trained it to solve the task. Then, it presents the trained model
results as well as the statistical study that drove us to refine our
hypotheses and sub-sample the parameters space.
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4.1. DNN as a metric

As we have seen in Section 3, the complete parameters space
is too large to conduct a user evaluation. A common approach
to overcome this issue is to sub-sample it so that we do not
need to evaluate the task on all possible conditions, and yet can
generalize the experiment results to the whole parameters space.
However, such approximation only remains correct if the sub-
sampling method is representative for the task, which is difficult
to know before conducting the experiment.

Two common sub-sampling approaches are usually accepted:
(i) arbitrary sampling (e.g., random, systemic) for which con-
ditions are pruned based on pilot experiments, literature and
beliefs ; and (ii) metric-based sampling. For reproducibility
and objectivity reasons, the second method seems preferable
to the first one. However, there rarely already exists a metric
designed to evaluate new representations effectiveness to solve
given tasks, unless the problematic is very specific (e.g., graph
aesthetic metrics for graph drawing [22, 23]).

Inspired by the Giovannangeli et al. [38] method and follow-
ing the recommendations of Haehn et al. [35] and Haleem et
al. [37] (see Section 2.3), we propose a novel approach based on
a deep neural network to compute a difficulty metric. It assesses
how difficult a task is to solve on a given representation, based
on the task and representation parameters themselves. The con-
cept of DNN as a metric is quite intuitive. The first step is to
generate annotated data for training the DNN model to learn to
solve the task (see Section 3.3). Following the recommendations
of [38], hundreds of thousands of data samples are generated
while trying to keep the parameters distribution uniform. The
objective is to ensure (i) that the model truly learns to solve the
task and does not learn the ground truth distribution, and (ii)
that the model does not perform better with a given parameter
value because it has been seen more often in the training dataset.
Then, a generic DNN architecture is trained solve the task, and
we keep its tuning to a minimum to avoid biasing the model with
any a priori belief we could have about the task difficulty. The
obtained model is then evaluated to ensure it learned to solve
the task so we can analyze its performances. Its performances
are aggregated in different ways to statistically study the effect
of each parameter on the task difficulty for the model. The out-
come of the statistical study is finally used as a difficulty metric.
Based on this metric, the parameters space is reduced for the
user evaluation (see Section 5).

The main advantages of this metric design are: (i) it fits any
task and representation that can be programmatically expressed,
and (ii) it does not require any a priori information about the task.
The model learns by itself what areas and graphical elements of
the representation are relevant for solving the task.

The major concern of this approach is that it considers the
DNN as a meta-user and assumes its performances are corre-
lated with human users ones. To study this assumption, we
conducted an a posteriori study of the correlations between the
DNN and human participants performances gathered in our ex-
periment. This correlations study was the object of an other
publication [27] and concluded that the DNN and human partici-
pants were strongly correlated (up to 0.988 correlation score, a

perfect correlation being a score of 1) and gave better insights
on how to interpret the model results to assess humans perfor-
mances. Yet, every aesthetic metric is sort of heuristic of human
perception and cannot always successfully model humans per-
ception system, and this approach is no exception in that matter.
It is neither more accurate or less correct than other sub-sampling
approaches, and should be interpreted by informed experts only.
Nevertheless, it does enable to study broad parameters space
of any task and representation that can be programmatically
expressed.

4.2. Model Selection and Training

As mentioned in [38], a generic deep neural network (DNN)
should be used rather than an architecture dedicated to the task(s)
(or visualization technique(s)) to be studied. To that extent and
following the recommendation of [35], we tried several network
architectures (e.g., LeNet [46] or VGG-16/19 [47]) and finally
selected ResNet [48] as it correctly learned to solve the task.
The default weights of ResNet were set to their pretrained values
on ImageNet [49]. He et al. [50] showed that such a model
pretrained for image recognition already encodes some saliency
information, which is expected to speed up the learning process
with regard to spatial identification.

The ResNet architecture was slightly tuned [48]: its input
layer was set to fit the generated image resolution, and two
successive dense (i.e., fully connected) layers were added after
its output to fit the required number of classes for prediction.
We consider the identification of the outlier as a classification
problem rather than a regression problem, where there would be
a notion of distance between the predictions and their ground
truths. The size of the last dense layer was therefore set to
predict the outlier position (i.e., to predict 64 classes) and the
size of the penultimate dense layer was set to 1024.

While the optimizer and default tuning of the learning phase
were not modified, the batch size was set to 64 (instead of 256).
We used the early stopping function of the Keras library [51]
with a patience of 15 epochs to end the training process.

4.3. Results

At the end of the learning phase, the best epoch accuracy
rates on the validation and test sets reached 74% and 76%,
respectively, showing that the model has not overfitted and is
able to generalize. A Matthews correlation coefficient [52] of
0.754 on the test set confirms that the model learned to solve the
task. Thus, we can expect that incorrect predictions are not due
to hazards but rather combinations of parameter values from the
data.

A Kruskal-Wallis ANOVA test [53] was conducted on each
parameter value prediction sequence to verify whether they had
significant effects on the performances (overall or on a specific
Type value). For the parameters found to have significant ef-
fects (opaque plots in Figure 4), pairwise Wilcoxon rank-sum
tests were conducted to check if their values led to significantly
different performances. The significance level for the overall
studies was set to α = 0.05. When splitting the data by type,
a Bonferroni correction was applied, reducing the significance

6



color
*

shape red. conj.
*

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r r
at

e

0.149

0.003 0.001

0.905
and * : Significant to all
: Pairwise significant

Figure 3: Trained ResNet error rates (ER) on the test set for the type values.
An arc between two labels means that the pairwise comparison between the
ER of the two parameter values is significant (p-value < 0.05) according to a
Wilcoxon rank-sum test. When performances associated to a label are signifi-
cantly different to all others: the bar is colored orange and the symbol * is added
below the label. Reading example: the color type is significantly easier than the
conjunction type and significantly harder than the shape and redundant types.
There is no significant difference between the redundant and shape types.

level to α = 0.025. All parameters showed to have a significant
effect under at least one condition, except outlier shape which
will not be studied further in this section.

For the remaining parameters, Figures 3 and 4 present the
trained model error rates (ERs) on the test set. Next, we describe
the main insights we can learn from these results.

Type: As we could expect, type is a key parameter relative
to the task difficulty, as shown by the large differences between
the ERs in Figure 3. The conjunction type led to significantly
more errors than other values. The color type is significantly
harder than both shape and redundant; these last two not being
significantly different from each other. The significant gaps
between the type values motivated the study of other parameters
for each type value separately (see Figure 4). We also see that
experimental objects of the color type led to a significantly
higher ER than those of the shape type, which is surprising in
view of the visual search literature that considers shape as a
harder visual attribute than color. This is most likely induced
by the design of ResNet architecture and will be discussed in
Section 4.4.1.

Number of colors: Overall, the ER almost linearly increases
as #colors increases, as shown in Figure 4. A significant shift in
performance between 1 and 2 #colors (and basically, between 1
and any other value) can be observed. This shift was probably
induced by a bias in our data generation process, which will be
discussed in Section 4.4.1. The increase in difficulty is even
stronger as #colors raises on experimental objects where color is
the only relevant dimension for identifying the outlier (i.e., color
type). When color is not a relevant dimension (i.e., type shape),
#colors does not have any significant effect on the task difficulty.
Finally, for experimental objects of type conjunction, the only
significant differences in performances are between exactly 2
and > 2 #colors, meaning that the task difficulty is thresholded.
Beyond 2 colors, it seems that the task is already so hard to solve
that further increasing the number of colors does not make the
task significantly harder.

Number of shapes: Figure 4 shows that, overall, there is

a significant ER shift between 1 and higher values of #shapes,
as it was observed with #colors. Again, this will be discussed
in Section 4.4.1. This value set aside, there remains only one
significant difference between the other #shapes values. Hence,
we can assume that, overall, increasing the number of shapes
does not significantly increase the task difficulty. When shape
is an irrelevant dimension for identifying the outlier (i.e., type
color), the ANOVA test reveals that error rate differences be-
tween #shapes values are significant. This result is counterintu-
itive as the outlier cannot be guessed using the shape dimension
in color type images. It might reveal some sort of overfitting
from the Deep Neural Network, and we must be careful while
using the DNN results on that condition. When shape is the only
relevant dimension (i.e., shape type), the ANOVA test indicates
that ER differences are significant between #shapes values, but
no pairwise significant difference is found with post-hoc test.
Since ERs remains under 1%, we could assume that the task is
very easy on shape type images whatever the number of shapes
is (i.e., heterogeneity in a relevant dimension has no effect).
However, this is most likely not how human participants would
perceive the task difficulty and is probably the source of the
uncorrelation between the DNN and the participants that was
observed in [27] on shape type images; and which we discuss in
Section 4.4.1. Finally, the ER of #shapes follows the same trend
as that of #colors for experimental objects of the conjunction
type: the difficulty is thresholded between exactly 2 and > 2
#shapes.

Outlier color: The outlier color, unlike outlier shape, does
impact the task difficulty in some conditions. However, as we
can see in Figure 4, ANOVA tests only indicate that outlier color
variations impact the task Overall and on color type images.
The Overall data being the aggregation of the 4 type values,
it mostly means that outlier color only had an effect on color
type images, which makes sense as color is the only relevant
dimension on that condition. On the opposite, when color is an
irrelevant dimension (i.e., shape type), outlier color variations
has no significant effect. On redundant type images, the outlier
can be found using either its color or its shape (or both). As
presenter earlier, outlier shape never had any effect on the DNN
performances. Since outlier color does not have any significant
effect on redundant type condition either, it means the task is
very easy, no matter what the attributes that define the outlier are.
With the same reasoning, we can conclude for conjunction type
images that the task is very hard, no matter what the attributes
of the outlier are.

In this section, we did not focus on parameter value effects
on the experimental objects of the redundant type. As we can
see in Figure 4, no parameter had any effect on the experimental
objects of this type. The overall ER of the redundant type is
1%, and all #colors, #shapes and outlier color ER values are
under 1%. We conclude that there is no univariate condition that
affects experimental objects of type redundant.

4.4. Results Interpretation
4.4.1. Limitations

As mentioned in Section 4.1, aesthetic metrics cannot ex-
actly model human perception of a task difficulty on some rep-
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Figure 4: Trained ResNet error rates (ER) on the test set. The first row shows the overall parameters ERs, while the next rows present the parameters ERs by type. A
plot is faded if the ANOVA test on its given parameter and type aggregation failed, meaning the parameter values variations did not have any significance effect on
the condition; otherwise, it is opaque. An arc between two labels means that the pairwise comparison between the ERs of the two parameter values is significant
according to a Wilcoxon rank-sum test. When performances associated to a label are significantly different to all others: the bar is colored orange and the symbol * is
added below the label. The significance threshold was p-value < 0.05 for the ANOVA and pairwise tests in the overall studies, while it was p-value < 0.025 in the
per type studies. A reading example is given in the caption of Figure 3.
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resentations and there most likely exist conditions for which
the metric diverges from what humans would effectively be ca-
pable of achieving. In the study of correlations we conducted
separately [27], we also found that the DNN Error Rate was not
the best correlated metric with the participants performances,
though the correlation scores with participants Error Rate and
Response Time remained significantly high enough (respectively
0.806 and 0.903) to validate the DNN based metric in this ex-
periment. Since the computation of correlations requires both
the model and human participants performances, it could not be
done a priori and such conclusion was expected.

Another limitation comes from the performances we observe
on Type shape objects and that do not corroborate with human
participants performances, as shown in [27]. The model learned
a strategy that does not correlate with human behaviors. We
suspect that when the outlier was identifiable by its shape, the
model simply estimated the number of colored pixels in each
cell (regardless of the color itself) and predicted the only colored
pixel counts that did not appear at least twice, which greatly
favored Type shape and redundant objects. This is why we need
to monitor correlations with humans performances and take them
into consideration when interpreting the metric results.

It can also be noted that the black-box effect of CNNs makes
us unable to explain why outlier color had a significant effect
on color type images, while outlier shape did not significantly
affect shape type images; especially considering that the model
achieved better performances on shape type images (see Fig-
ure 3). In addition, since we consider colors as basic features
in this study (i.e., do not decompose into hue, saturation, etc.),
we are not interested in “what” makes an outlier color better
than another to efficiently solve the task. Moreover, the easier
outlier colors for the DNN would be based on divergences in
RGB space, whereas we know RGB is not a good representation
of the human perception of colors.

Finally, as stated in Section 3.3, some parameter configu-
rations could not be generated. The bars corresponding to the
error rates for both 1 #colors and 1 #shapes were only computed
from a specific type value (respectively shape and color type).
In the Overall, #colors, ER plot in Figure 4, “1” has a lower
ER than other values since it is only composed of experimental
objects of the shape type, whereas other values are computed
from experimental objects of all type values.

Thus, we should bear in mind these limitations when inter-
preting the model performances for assessing the task difficulty.

4.4.2. Hypotheses
In the next, we present the hypotheses studied in the user

evaluation with human participants, partly inferred from the
model performances. They are built based on knowledge from
the literature and include some of the DNN metric results to
confront them with human participants performances. Again, the
study of correlations between the DNN and human participants
performances [27] has been done a posteriori since it required to
gather human participants data, which is why knowledge about
these correlations could not be taken into account at the time we
built the hypotheses. Nevertheless, as for any metric we expected

it to have pitfalls where its results would not corroborate with
human perception.

Htype: The type difficulty should follow the order (eas-
iest to hardest): redundant, shape and color, conjunction.
This refers to the contribution of Quinlan and Humphreys [31],
who showed that the more features the target shares with the
nontargets, the more difficult the task is.

Hconj: The search task on experimental objects of type
conjunction is the hardest among all types. The task difficulty
increases with both #colors and #shapes and quickly caps
(i.e., the difficulty no longer increases when there are more than
2 shapes and colors, see Section 4.3). The fact that conjunction
search is harder than feature search was confirmed by prior
work [29, 18].

Hred: The search task on experimental objects of type
redundant is the easiest among all types. The task difficulty
is not affected by neither #colors nor #shapes, as shown by
Nothelfer et al. [41] and according to the results in Section 4.3.

Hcolor: When color is the only relevant dimension, the
task difficulty increases with #colors, whereas #colors has no
effect when color is not a relevant dimension. These assump-
tions corroborate both the DNN results and statements from the
literature, hence we expect this hypothesis to be accepted.

Hshape: When shape is the only relevant dimension, the
task difficulty increases with #shapes. When it is not a rel-
evant dimension, #shapes should have no significant effect.
These assumptions follow statements from the literature and go
against the DNN results as we have seen that the DNN behavior
on experimental objects of shape type could hardly be trusted.

4.4.3. Parameter Space Sub-sampling
As we have seen earlier, the whole point of computing the

DNN difficulty metric was initially to have some criteria to sub-
sample the parameters space. The sub-sampling process has to
verify two main concerns [54]. First, the sub-sampled set of
trials (i.e., experimental objects on which subjects are asked to
solve the task) should be small enough so that the completion
time of the evaluation with human participants remains reason-
able. Second, the sub-sampled set should be large enough to re-
main representative of the task parameters space. Eventually, the
goal is to find an optimal medium-sized set of trials that makes it
practical to conduct the evaluation while still enabling to study
the research question finely enough. This Section presents the
design choices of the parameters space sub-sampling for this
experiment, which fairly rely on the metric results.

As opposed to the study of Haroz and Whitney [3] (see Sec-
tion 2.1), we target a diverse sample of participants for a limited
sample of trials. In their experiment, their population was made
of 5 subjects which answered 960 trials in each of their three
experiments. Their participants response time to each trial was
always below 10 seconds. According to the pilot experiments
we conducted to assess the mental effort required to solve the
task with our representations, we know that even 30 seconds
might not be enough to solve the task on some trials. Hence, the
task considered in this study is at a completely different level of
difficulty. This is why we aim at having more participants that
answer less trials to prevent them from becoming tired, which
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would bias the results. Based on the pilot experiments feedbacks
on the mental efforts required to solve our trials, we planned to
give participants 30 seconds to solve each trial, and aim for a
total of about 50 trials to keep the evaluation duration reasonable
(i.e., about half an hour).

The type, #shapes and #colors values distribution in the sub-
sampled parameters space should remain uniform among the
selected values since they are the main conditions upon which
the hypotheses are built. Each value of each parameter should
also occur more than once. The values of other parameters are
distributed as uniformly as possible within the selected combina-
tions of types, #shapes, and #colors. But following this condition
still leads to too many trials. To further reduce the parameter
space, some #shapes and #colors values are removed from the
study. First, the value “1” is removed from both the #shapes
and #colors parameters. As previously seen (Section 4.4.1), the
value “1” leads to type distribution imbalances. As the num-
bers of trials would still be too large, we applied a strategy that
prunes values so as to minimize the loss of pairwise signifi-
cances (arcs below bars in the plots) in the complete parameters
space while maximizing their conservation in the sub-sampled
space. Following this strategy, we filtered out the values 3 and
6 from #colors, which loses 9 pairwise significant differences
for Overall, 7 on Type color and 0 otherwise (count the arcs of
pairwise significance in Figure 4 #colors column). For #shapes,
we filtered out the value 4; which removes 2 pairwise significant
differences for Overall, 1 on Type color and 0 otherwise.

The #colors values are thus reduced from {1, 2, 3, 4, 5, 6,
7} to {2, 4, 5, 7}, and the #shapes values are reduced from {1,
2, 3, 4, 5} to {2, 3, 5}. Still excluding the combination [7, 5] for
(#colors; #shapes), we end up with (|#colors| ∗ |#shapes|−1)∗
|type|= 11∗4 = 44 trials for the user evaluation. The parameter
value distributions within these 44 trials are shown in Figure 5.

Finally, these choices represent one of the possible uses of
the metric results, but we expect that following them when suited
definitely helps keeping the reduced space representative of the
complete one. Other choices of interpretation could have been
done to reduce the parameters space. For example, one could
have assumed that as the DNN was almost always correct on
redundant type experimental objects, keeping the distribution
of Type parameter values uniform was not necessary as only a
few samples of redundant objects would suffice to validate its
simplicity.

5. User Evaluation

This section presents the setup, choices, constraints and
results of the user evaluation. The evaluation aims at studying
the capacity limits of color and shape visual attributes as well
as the hypotheses defined in Section 4.4.2.

5.1. Experimental Setup

5.1.1. The Task
As mentioned in Section 3.1, the task consists of identifying

an outlier stimulus in an 8× 8 grid of distractor stimuli. A
time limit for each trial is included to encourage participants
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Figure 5: Parameter value distributions in the 44 selected trials of the end-user
evaluation.

to solve the task as quickly as possible. Based on the pilot
experiments, this time limit is set to 30 seconds and leads to a
good compromise between the evaluation completion time and
the error rates. When participants exceeded the time limit to
answer a trial, their non-answer was registered as Out of time,
later referred to as OOT.

5.1.2. Dataset and Order
The data used in this experiment are randomly extracted from

the test set defined in Section 3.3 to fit the reduced parameter
space defined in Section 4.4.3.

A random order of the trials is set, and every participant runs
the trials following this order but with a random shift so that
they do not all start with the same trial.

5.1.3. Evaluation Protocol
The participants are first asked to read and understand the

task statements. These statements present all the colors, shapes
and types that can occur during the experiment and provide a
grid example. Participants are free to ask any question, and
we, in return, make sure they understand the task. Then, they
have to follow an 8-trials tutorial. The first 4 trials are shown
already solved, along with information about their parameters.
Each of them represents a different type value. In the next 4
tutorial trials, they are asked to solve the task without a time limit
and are given feedback about the correctness of their answers.
Again, the 4 trials each represent a different type value. Once
a participant has completed the tutorial, he/she can replay it or
start the evaluation.

Following the recommendations of Purchase [54], we de-
signed an additional 8 trials for practice before starting the 44
evaluated trials. Participants are not aware that there are practice
trials, and we do not consider them during the results study. This
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ensures that all participants are at peak performance when the
real evaluation (with monitored trials) starts. The 44 experi-
mental trials are then displayed one after another with a three
seconds break between each trial (either validated or skipped
due to the time limit). During the three seconds break, the space
reserved for the trial images is filled with white (the background
color). For each trial, participants response times and answers
are recorded. After the 26th trial, a one minute long pause is
given, with the possibility of resuming the evaluation before the
pause period expires. When all trials are completed, they are
asked to fill out a questionnaire about what, according to them,
made the task easier (or harder) to solve. The whole protocol
lasts approximately 20 to 30 minutes for each participant.

5.1.4. Evaluation User Interface
The evaluation tool consists of a website specifically imple-

mented for this study. The website is displayed in a full-screen
browser on a 1920×1080 resolution monitor. Every trial image
is displayed with a 1:1 ratio (256× 256 pixels) in the middle
of the screen, with a black border to bring it out of the white
background. The task statements and the advancement of the
evaluation are succinctly written above the trial image. Below
the image, the remaining time for the current trial and a valida-
tion button are displayed. To solve the task, participants have
to select their answer by clicking directly on the corresponding
stimulus on the image, which surrounds it with a black border.
An answer can then be validated by clicking the validation but-
ton. The validation button is set wide enough so that it does not
require any specific focus to be clicked on.

5.1.5. Involved Participants
The participants of this experiment are 18 men and 6 women,

all of whom are undergraduate students, research staff or engi-
neers in computer science. All of them are between 21 and 50
years old with an average age of 24.8. They all reported having
a perfect or corrected-to-perfect visual acuity, and none reported
suffering from colorblindness.

5.2. Results

During the evaluation, participants response times (RTs) and
answers are recorded. In the next, their performances are studied
with regard to their RTs and error rates (ERs). The results are
computed for 21 out of the 24 participants; after looking at the
participants performances and answers to the questionnaire, we
removed 2 participants for whom RTs were lower than average
by more than 1.5 times the standard deviation. In addition,
these two participants had ERs lower than average and were
therefore considered outliers. We also removed 1 participant
for which both ER and RT were higher than average plus 1.5
times the standard deviation. We also found evidence in his/her
questionnaire answers that the task was either misunderstood or
not seriously solved.

5.2.1. Quantitative Results
In the following, we describe the participants results and in-

terpret them in regard of the hypotheses defined in Section 4.4.2.
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Figure 6: Number of trials for which the participants ran out of time (OOT) per
type, #colors and #shapes. There are 116 OOT trials in total (5.5 per participant
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Figure 7: participants ERs and mean RTs with standard deviation bars for type
values. ANOVA tests showed that type had a significant effect on the ERs and
RTs. An arc between two labels means that the pairwise comparison between
the corresponding performance values is significant (p-value < 0.05) according
to a Wilcoxon rank-sum test. When performances associated to a label are
significantly different to all others: the bar is colored orange and the symbol * is
added below the label. Reading example: the redundant type is the condition
that is fastest to solve as its RT is significantly lower than other conditions. No
pairwise significance test could be run for the redundant type ER since no error
was ever made on these trials.

Similar to the DNN results analysis, we first run Kruskal-
Wallis ANOVA tests[53] on all considered parameters for the
ER and RT measures. For the RTs, only validated answers are
considered (i.e., participants did not run out of time, OOT). On
average, OOT trials account for 5.5 trials out of the 44 of the
evaluations per participant, 74% of which are of type conjunc-
tion, and their distribution among type, #colors and #shapes
is shown in Figure 6. Again, results were studied overall and
per type value. The significance level was the same as those
of the DNN results analysis: α = 0.05 for the overall studies
and α = 0.025 for the per type studies. These tests showed that
the three considered parameters presented significant effects on
performance. The results are presented in Figures 7 and 8.

We accept Htype since the results plainly corroborate its state-
ment. We can see in Figure 7 that the ER and RT performances
show the same trend in terms of type value difficulty, although
there are fewer significant pairwise differences in the ERs than in
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Figure 8: participants ERs and mean RTs with standard deviation bars measured during the evaluation. The first row shows the overall performances in terms of the
parameter values, while the next rows present the parameter values achieved by type. A plot is faded if the ANOVA test on its given parameter and type aggregation
failed; otherwise, it is opaque. An arc between two labels means that the pairwise comparison between the corresponding performance values is significant according
to a Wilcoxon rank-sum test. When performances associated to a label are significantly different to all others: the bar is colored orange and the symbol * is added
below the label. The significance threshold is p-value < 0.05 for the ANOVA and pairwise tests in Overall studies, while it is p-value < 0.025 in the per type studies.
A reading example is given in the caption of Figure 7. In this table of plots, columns are given letters and rows are given numbers for ease of reference.
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the RT results. The redundant type led to the best performances,
as all participants answered correctly on all type redundant tri-
als with a mean RT below 3 seconds. Although the color and
shape type ERs are not significantly different (6.5% and 8.7%,
respectively), type color (4.5s) trials were significantly faster
to solve than shape (5.5s) trials, though such a small difference
might not be relevant in an information visualization context.
Finally, type conjunction is hardest, with an ER of 41.1% and an
average RT of 15.5s, and it accounts for 74% of the OOT trials
(see Figure 6).

We also accept Hconj, although the results are not straightfor-
ward to read. In Figure 7, the conjunction type is the condition
that significantly led to the worst performances in terms of both
the ERs and RTs. In this regard, we validate that the conjunc-
tion type is the hardest type value. In Figure 8 A-5 and B-5,
we see that #colors has a significant effect on type conjunction
trials with respect to the ERs and RTs. The effect is only signifi-
cant between exactly 2 (11% ER; 11.8 s RT) and more than 2
(>42% ER; >16.6 s RT) #colors. This confirms that the task
difficulty of type conjunction trials increases with #colors but
caps very quickly (i.e., the task difficulty no longer significantly
increases with more than 2 #colors). In Figure 8 C-5 and D-5,
no threshold effect on neither the ERs nor RTs can be directly
observed as #shapes varies. As mentioned above, the RT results
on OOT trials were not considered since it would have been in-
correct to interpret them as wrong answers in 30 seconds. Since
86 type conjunction trials were OOT (see Figure 6), 86 out of
11∗21 = 231 answers were not considered in the computation
of the type conjunction RT performances, and these 86 trials
would have had RTs above 30 seconds. These missing points
make the RT results look less “poor” than they truly are and
hide the threshold effect we expected to observe for Hconj. The
same interpretation can be made with the conjunction type and
#colors performances, and strengthens the threshold effect that
can already be observed as there are less OOT trials with 2 than
with 4, 5 and 7 #colors.

We accept Hred with a restriction regarding its context. Fig-
ure 7 shows that all answers are correct for type redundant trials
(i.e., 0% ER) and that they are significantly faster to solve than
any other type value. Hence, the redundant type is the easiest
type value. All answers being correct, we validate that #colors
and #shapes variations do not affect the ERs. For the RT results,
#colors is shown to have a significant effect on type redundant
trials (see Figure 8 B-4). The RT variations have small am-
plitudes, and the results remain between 1.9 and 3.4 seconds.
Such RTs are more than acceptable, and their variations do not
denote a significant loss of performance with respect to solving
an outlier detection task in an information visualization context.

We accept Hcolor as both its assumptions are verified by
the participants performances. When color is the only relevant
dimension (i.e., color type), we can see in Figure 8 A-2 that the
ER remains low until 7 #colors, where it dramatically increases.
The same behavior can be observed for the RTs (Figure 8 B-2).
When color is not a relevant dimension (i.e., shape type, Figure 8
A-3 and B-3), it has no significant effect on performance.

We accept Hshape as both its assumptions are verified as well.
When shape is a relevant dimension (i.e., shape type), we can

see in Figure 8 C-3 and D-3 that participants performances are
significantly affected by #shapes variations, though ER and RT
do not follow the same trend. In fact, participants never failed
to solve the task when shape was the only relevant dimension
and there were less than 5 #shapes. On the other hand, the RT
performances seem to increase linearly with #shapes. However,
Figure 6 shows that participants ran out of time 18 times on
trials of the shape type, always with 5 #shapes. With the same
reasoning as that of Hconj, we know that the 5 #shapes column
in Figure 8 D-3 is missing 18 (out of (|#colors|−1)∗21 = 63)
data points that would have taken more than 30 seconds, and
this is a significant number since it represents 28.6% of the data
points in that column. When shape is not a relevant dimension
(i.e., color type, Figure 8 C-2 and D-2), it has no significant
effect on the task difficulty.

5.2.2. Qualitative Results
The qualitative results of this evaluation are built upon the

participants answers to the questionnaire.
The first question was to order, from easiest to hardest, the

different type values. For this question, almost all participants
(20 out of 21) ranked the redundant type as the easiest and
conjunction as the hardest. More than half of the participants
(14 out of 21) ranked the color type as easier than shape. This
result corroborates their performances (see Figure 7), as the
conjunction type has the highest ER and RT; the redundant
type is significantly faster to answer than color, which is also
significantly faster to answer than shape.

The second question was to report whether an outlier color
was easier to find than others. Ten participants clearly identi-
fied #E7298A as easier than others, and few participants found
that #66A61E and #1B9E77 made the task more difficult to
solve when both were present in a trial. Only a few participants
reported #D95F02 to be an easy color, and neither #A6761D
nor #E6AB02 were cited as hard-to-find colors. Finally, some
participants reported that the outlier color did not matter as long
as the contrast between stimuli colors remained high enough.
Although our experiment did not aim to measure the impact of
outlier saturation on the task, it would be an interesting exten-
sion of the works by Camgöz et al. [55, 56] about the effects of
saturation on attention.

Then, participants were asked the same question about shapes.
The answers were more varied than those for the color question,
and only the Square and Circle were commonly reported
to be easier than average. On the other hand, the Diamond
was never reported as an easy shape, which suggests that partici-
pants found it harder to find. More than half of the participants
reported that the difficulty of finding the outlier using its shape
dimension was dependent on the trial distractors. Many answers
were similar to the following example: “triangle among circles
is pretty easy to find, whereas triangle among diamonds is hard”.

We then asked the participants to provide estimations of the
number of colors and shapes from which they found the task to
become hard. The answers were spread out between 3 and 6
colors and between 2 and 5 shapes, meaning that the perception
of difficulty truly varied from one participant to another. A
majority of answers reported a #colors value right above that
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of #shapes (e.g., (3-2), (4-3) or even (5-4)), which allows us to
think that the capacity limit of color is higher than that of shape.
It is important to note participants were not told the #colors
and #shapes values of the trials and did not know either that we
preemptively pruned some parameter values (see Section 4.4.3).
Hence, they sometimes answered with values they never saw but
which represent their feelings.

The penultimate question asked the participants to report
their strategy for solving the task. The main reported strategy
was: first, observe if an outlier pops out of the image. If not,
identify the colors and shapes in the trial; then, for each color,
browse all the shapes of that color to find if there are two oc-
currences of the same stimulus. Finally, repeat the process until
the outlier is found. This strategy is a typical behavior in visual
search tasks, where the representation is first processed preat-
tentively, then by sections (i.e., texture segregation [57]), and if
no “match” has still been found, the representation is eventually
processed serially.

Ultimately, participants were asked what, overall, made a
trial hard to solve. Two main factors came out of their an-
swers. The first is the similarity between all the distractors in a
grid. This corroborates the Duncan and Humphreys [29] theory
about target-nontarget and nontarget-nontarget similarity (see
Section 2). The second reason is the direct neighborhood of
the outlier in a trial. This may refer to the feeling that illusory
conjunctions arose when the outlier was visually close to its
distractor neighbors.

5.2.3. Capacity Limits of the Color and Shape Dimensions
As a reminder, what we call the capacity limit of color (or

shape) is the maximum number of different features of that
dimension that can be present in a representation before a visual
search task for an outlier becomes too arduous. Hence, we want
to answer the following question: “how many colors can one
use in a representation before it becomes too complex to find an
outlier?” when univariate or bivariate data are encoded with the
color and shape dimensions.

We observed with Hcolor and Hshape that #colors and #shapes
do not have significant effects on performance when their re-
spective dimensions are not relevant. Next, a dimension capacity
limit will only be considered when the dimension is relevant with
regard to identifying the outlier. With Hred, we saw that type
redundant trials were not affected by #shapes and that #colors
variations led to small RT fluctuations that are not significant in
an information visualization context. We assume that either the
maximum values of these parameters in this experiment (7 #col-
ors or 5 #shapes) are too small to observe a loss of performance
or that the visual search process does not suffer from the noise
induced by distractor heterogeneity when data are redundantly
encoded. We believe that the latter assumption is correct since
redundant encoding has been shown to make visual search tasks
significantly easier [41].

Color: When color is the only relevant dimension for identi-
fying the outlier (color type), we observe (see Figure 8 A-2 and
B-2) that all #colors values led to ERs of less than 3% and RTs
of less than 4 seconds on average, except for the value 7, which
reached a 29% ER in over 11 seconds. We believe this kind of

shift in performance is the consequence of exceeding the capac-
ity limit of the color dimension in this experiment. Hence, when
color is the only relevant dimension for representing data, its
capacity limit is strictly less than 7. In conjunction search (type
conjunction), the capacity limit is strictly less than 4 since we
can see that the performances do not worsen as #colors increases
from a value of 4.

Shape: When shape is the only relevant dimension (shape
type), the participants did not make any errors when there were
less than 5 shapes. At 5 shapes, the ER reached 32%, which is
close to the ER obtained for 7 #colors when color was a relevant
dimension. As observed in Section 5.2.1, the RT measures do
show significant variations between every pair of values, though
these differences remain linear and no threshold effect can di-
rectly be observed. However, we also observed in Figure 6 that
there were several OOT trials when there were 5 shapes in the
type shape trials, and these represent 28.6% of the total trials of
this variety. We conclude that the shape capacity limit is strictly
less than 5 when it is a relevant dimension. For conjunction
search (type conjunction), no threshold effect can be observed as
#shapes varies. As the number of OOT trials on type conjunction
trials is even among the #shapes values (see Figure 6), there is
no “hidden” threshold effect due to missing data points either.
Finally, no information about the capacity limit of shape can
be determined from the results for the type conjunction trials.
Either 2 #shapes is already over the capacity limit, 5 #shapes is
still under the limit, or the search task for an outlier in this case
is actually linearly related to #shapes.

Therefore, the capacity limit of color is found to be higher
than that of shape. This assumption reflects what participants
reported in the questionnaire (see Section 5.2.2). Moreover, we
can see in Figure 8 that 5 #colors in type color (1.5% ER; 4s RT)
trials led to significantly better performances than those obtained
with 5 #shapes in type shape trials (31% ER; 9.5s RT). Such a
difference confirms that the shape dimension is more sensitive
to heterogeneity than color when each is the relevant dimension
for identifying an outlier.

5.3. Results Sensitivity
Similar to Demiralp et al. [32], we tested the robustness of

our results to participant removal. We expect that more robust
results in this sense have a greater ability to be generalized. To
this end, we extracted random subsets of participants of different
sizes (from 10% to 95% of the full dataset) and computed the
ER and RT performances from these subsets with each param-
eter. That is, for each parameter, we computed its mean ER
and RT values on the subsets of participants. Then, we used the
Spearman correlation coefficient [58] to quantify the correlation
between the performances of a subset of participants with the
performances of all the participants. To reduce sampling-related
uncertainties, each subset size was sampled 10 times so that the
correlation coefficients reported in Figure 9 were averaged over
10 computations. Spearman correlation coefficients range be-
tween -1 and 1, where 1 is a positive correlation, -1 is a negative
correlation and 0 means no correlation. Figure 9 shows that the
correlation coefficients are over 0.5 with 25% of the participant
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Figure 9: Spearman correlation coefficients [58] between random subsets of par-
ticipants (of different sizes) and all participant performances for each parameter.
The X-axis corresponds to the size (percentage of the full dataset, from 10% to
95% with a 5% step) of the subset of participants for which their performances
are compared to those of all participants (100%). Coefficients are averaged over
10 samplings for each subset size to minimize sampling-related uncertainties.

data, indicating that some information is preserved. With 40% to
50% of the data, the correlation coefficients are all between 0.8
and 1, meaning that most of the information is preserved with
only 50% of the participants. Such high correlation coefficients
with only half the participants show that the results of these
experiments are not very sensitive to participant removal. Hence,
they are not biased by some participant-specific behaviors.

6. Discussion

This evaluation enabled us to study some hypotheses as
well as the capacity limits of color and shape. Nevertheless, its
results can only be generalized in view of the evaluation design,
alongside its limitations. This section presents these limitations
as well as some interesting other outcomes of the experiment.

6.1. Limitations

As for any experiment, its results have to be considered
within the limitations induced by its protocol.

First, our participants are taken from a noticeably educated
population in computer science. Hence, they are used to com-
puter devices and are familiar with visualizations (as users or
experts). The results of this experiment must be used with cau-
tion if one is to generalize them to a more generic population.
However, most of the population is now used to computers and
visualizations, and we expect that computer science background
of the participants have helped them understand faster what the
concept of the task was, but did not made them better at actually
solving the task.

In the experimental design, we selected the color set from a
color palette provider (see Section 3.3) so that all colors could
be as distinguishable as possible. Since the experiment aimed
to study the capacity limit of color (and not to find which color
set is best for representing categorical data), we mitigated the
effect of the color set on the performances. However, some

participants found that the differences in saturation between
some colors had impacts on their performances. Interestingly the
participants did not mention any similar observation concerning
the shapes used in the experiment. Again, the experiment results
are coupled with the selected colors and shapes set. For instance,
the results may have been different using another color palette.
Recent tools such as Colorgorical [43] are more dedicated to
alleviate the impact of a specific color palette, but we used
ColorBrewer in this experiment as it is well-established in the
community. Anyway, results should be interpreted in view of
the scope defined by the experiment. Nevertheless, the selected
shapes are remain very common and we think the results about
color are generalizable to other categorical palettes which are
widely used to represent data classes.

Another limitation is that the observed #colors performance
variations are limited by an aspect of the experimental design.
When generating an image with 5 colors, these are not taken
from a designed set of 5 categorical colors but are picked from
the 7 color set defined in Section 3.2. It is then important to
note that the performances observed on trials with less than 7
colors were not measured from trials with an optimal color set
fitted to their #colors. The same limitation could be stated for
shapes, although the notion of distance between shapes is more
complex. Nevertheless, it was necessary to define a static set of
colors and shapes so that we could keep track of the outlier color
distribution and be able to aggregate them to study our results.
Having a different and optimal set for each #colors value would
also have made the participants able to infer properties of the
display from the color set of a trial, and this could bias the ways
in which they built their strategies.

Finally, as stated in Section 3.2, we balanced our shape
sub-features (i.e., straight horizontal and vertical lines, curves,
tilted lines) to try not to favor any particular kind. However,
such a definition leads to imbalances between shape areas. The
Triangle has a smaller area than the Square , so the colors
they are filled with are not represented by the same number of
pixels. Thus, when color is a relevant dimension for identifying
the outlier, it may be harder to solve the task if the outlier shape
is a Triangle than if it is a Square . Although our study does
not enable us to validate this assumption, it would be interesting
to experiment whether, when considering a large number of
colored shapes, the shape areas are (or become) more important
than the shapes themselves.

6.2. Feedback on DNN as a metric
The motivation to design novel sub-sampling approaches

emerged from the need to improve the reproducibility of eval-
uations parameters space sub-sampling since the newcoming
representations aim at visualizing data of increasing complexity.
Being able to evaluate these complex representation techniques
become a challenge as the consideration of all the combinations
of their parameters leads to a combinatorial explosion of the
number of experimental objects to test. Having objective ways
to sub-sample such broad parameters space while preserving
representativity of the complete space is clearly a concern.

In this experiment, we interpreted the performances of a
DNN as those of a meta-user to assess the task difficulty, al-

15



though we have no reason to think that the DNN strategy to
solve the task would corroborate the human perception system.
The intuition is that making a representation more complex will
affect both the DNN and humans strategies to solve the task,
even though their strategies would be different. With knowledge
from the literature, we can assess when the DNN is (or not) a
good model of human perception. This is typically what we
have done in Section 4.4.2, when we sometimes used the DNN
results to refine hypotheses, and sometimes discarded them since
we had several indicators that they were not a good model of
human perception. The a posteriori study of correlations [27]
between the DNN and humans showed that our assumption was
correct. Such a study of correlations is not necessary nor com-
mon to evaluate the sampling technique used in an experiment.
Yet, since the approach we propose is novel, we conducted it to
emphasize the strong correlations between the DNN and human
participants and anticipate necessary and constructive criticisms
inherent to new methods, as there was no objective reason to
think they would be correlated (other than belief).

6.3. Common Assumption about Color Capacity Limit

It is commonly assumed that the maximum number of colors
in a representation that humans can efficiently handle is 10±2.
This common assumption seems to be used by many color palette
providers, as many palettes are built for up to 12 classes. For
example, the ColorBrewer tool [44] recommends using between
5 and 7 classes for choropleth maps, while isoline maps can
safely use more; the online tool provides color palettes with up
to 12 classes. To the best of our knowledge, no study has verified
this assumption. As our experiment showed the capacity limit of
color to be strictly less than 7 for a feature search, it shows that
the commonly assumed limit of 10±2 colors is overoptimistic.
It could be even worse in some contexts as more and more
modern representation techniques depict more than 64 stimuli
and do not organize them into a regular grid, which further
increase the complexity of representations. Color remains an
efficient visual attribute for encoding data, but its limit is lower
than assumed in many representation tools. Some strategies,
such as color grouping [3], can be used to increase this limit but
are not suited for all representation designs.

7. Conclusion

This paper has presented a study of the capacity limits of
attention on representations with varying heterogeneity where
data are encoded with color and/or shape visual attributes.

We proposed an approach that leverages Deep Learning tech-
niques to drive the sub-sampling of the experiment parameters
space by interpreting its results as a metric. As many metric
designed to assess human perception system, we have seen that
the DNN metric also has the common pitfalls that should be
carefully addressed when using its results to assess human be-
haviors. Nevertheless, this automated method is reproducible
and enables to evaluate any task–representation that can be ex-
pressed programmatically. This experiment and the study of
correlation between the DNN and human performances [27],

showed that a DNN based approach is a promising means to
refine user evaluation designs when parameters variations lead
to a combinatorial explosion in the number of configurations.

Then, the study of capacity limits was conducted on the
reduced parameters space through a user evaluation on 21 par-
ticipants. The task consisted in identifying an outlier defined
by its color and/or shape in a regular grid of randomly laid out
distractors stimuli. The results of the experiment confirm that
the task difficulty is highly dependant on the way the outlier
is encoded (i.e., easiest with redundant encoding, hardest with
conjunction encoding). Results also show that color is more
efficient than shape to encode data in simple feature search and
confirm that variations in irrelevant dimensions have no effect
on the task difficulty. Finally, we have seen that the capacity
limits of color and shape are not as high as we could expect,
especially for the color dimension for which we found the limit
to be significantly lower than what is assumed in many tools.

Many future work ideas have emerged throughout this study.
Regarding the experiment itself, a first line of future work could
be to search for a set of outlier stimuli instead of a single outlier
stimulus. That is, find an outlier cluster in a grid of random
stimuli (or random clusters). This problem is also common in
information visualization and involves other visual search strate-
gies, such as texture segregation [30, 57]. Moreover, researches
about other commonly used visual attributes (e.g., position, size)
could be conducted. One could study the different effects of
mixing these dimensions to represent data and measure which
dimensions are least harmful to representation readability when
joined together. Although conjunction search has been shown to
make visual search tasks much harder, visualization designers
cannot always afford not to mix their visual attributes when rep-
resenting tens of data classes. However, our experiment showed
that mixing colors and shapes quickly made representations ardu-
ous to read. Hence, finding conditions that optimize conjunction
search in complex displays would be valuable.

Regarding the Deep Learning based difficulty metric, it
would be interesting to see how well we could trust the model
performances to assess humans performances on unseen condi-
tions (e.g., new colors or new shapes). One could also study how
bio-inspired models behave compared to standard CNNs and
whether they are closer to human behaviors on visual search
tasks. To improve correlations between the Deep Learning
model and human behavior, we could also try to inject human
saliency information in the model training [59]. Finally, con-
sidering an ensemble of networks instead of relying on a single
one could help minimizing the bias induced by specific DNN
architectures.
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