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Abstract 

The present work presents a comparison between the homogenization and the multiscale methods 

applied to the compressible Reynolds equation with irregular coefficients. The equation models a 

very thin compressible flow between rough surfaces. If the use of the homogenization method for 

the Reynolds equation with irregular coefficients is not new, it is for the multiscale method. Indeed, 

this last approach is borrowed from the flows in porous media (where only flows due to the pressure 

gradients are present) and is here extended to also take into account the Couette terms. The paper 

presents the detailed development of both methods and underlines similitudes and differences. 

Illustrative results obtained for a realistic geometry show the impact of the coarse mesh, the 

precision of the solution on the fine mesh and the computational effort of both methods compared 

to the original compressible Reynolds equation. Both methods worked well and the results show that 

they are reliable and efficient tools for the compressible Reynolds equation with irregular 

coefficients. 

Keywords: homogenization method, multiscale method, compressible Reynolds equation, irregular 

coefficients 

 

Introduction 

The present work is focused on two methods (homogenization or two-scale method and the 

multiscale method) that should systematically be used for the analysis of thin film rough surface 

flows. One of the parameters conventionally accepted for delimiting the friction regimes is the 

dimensionless thin film thickness [ 1]. This parameter is defined as the ratio between the mean thin 

film height, hm and the combined standard deviation of the two surfaces, σeq. This is a very simple 

parameter resulting from a model which considers that one of the two surfaces is smooth while the 

other carries all the roughness. Combining the roughness of the two surfaces is strictly correct only 

when both have a normal distribution of roughness heights but the model is tacitly applied for all 

situations [ 2]. Its advantage is not only the simplicity but also discarding unsteady effects that would 

naturally appear when a rough surface moves relative to another closely spaced rough surface. 

It is generally accepted that for a dimensionless mean film thickness ℎ� ���⁄ < 1, the probability of 

sporadic contacts between surface asperities is greater than 95%. On the other hand, for ℎ� ���⁄ >
3, the probability of sporadic contacts between asperities is less than 5%, meaning there is no 

contact between the two surfaces. However, the surfaces roughness or texture will impact the thin 

film pressure up to ℎ� ���⁄ = 7 … 10.  
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The present work is focused on the last operating conditions, i.e. 3 ≤ ℎ� ��� ≤ 7 … 10⁄  and on the 

case of a compressible lubricant which separates the two surfaces. For an incompressible lubricant, 

the models used for calculating the pressure field are either the Reynolds equation corrected with 

flow factors or the homogenized Reynolds equation. The flow factors were introduced by Patir and 

Cheng [ 3] years ago and were calculated from heuristic assumptions. They represent a very 

convenient way of taking roughness into account because any kind of solver of the Reynolds 

equation can be easily adapted. However, the approach lacks a rigorous mathematical foundation. 

A model with a strong mathematical background is the homogenized Reynolds equation. Bayada and 

Chambat [ 4] were among the first to introduce this approach for an incompressible thin film flow. 

They were followed by Almqvist et al. [ 5], [ 6] and Fatu and Bonneau [ 7]. The two last references 

discussed not only the homogenization of the incompressible Reynolds equation but also compared 

its results with the approach based on the flow factors introduced in [ 3]. The conclusions were that 

the flow factors were a rarely a satisfactory approach because they discard cross-coupling flow 

effects. Moreover, the original flow factors are deduced for an isotropic roughness with a normal 

height distribution and no control over its power spectrum.  

Jai et al. [ 8], [ 9] extended the homogenization method to compressible flows with rarefaction 

effects while Almqvist and [ 10] applied it to liquid lubricants characterized by a finite isothermal 

compressibility modulus.  

As underlined in [ 11], the homogenization of the Reynolds equation is a “disruptive approach”. 

However, it requires simplifying assumptions. It is supposed that the local thin film flow is governed 

by two, well separated length scales. The long scale is the length of the contact while the small scale 

is linked to the roughness pattern. Moreover, the roughness pattern is periodic and characterized by 

a small wavelength. In many cases, regular sinusoidal roughness patterns are used for validating the 

numerical solution of the homogenized Reynolds equation. These roughness patterns are artificial 

unless they do not mimic a textured surface.  

The discussion can go further by recognizing that a third length scale is present in any rough 

lubricated contact, i.e. the minimum film thickness. For smooth surfaces, the use of the Reynolds 

equation is conditioned by a ratio of 10-3 between the minimum film thickness and the contact 

length. For rough surfaces, the ratio between the minimum film thickness and the roughness 

wavelength can only be larger than 10-3; if the ratio is larger than 10-2 the Reynolds equation must be 

replaced by Stokes model [ 12]. However, the latter approach is mathematically more complex. 

The necessary conditions for the homogenization of the Reynolds equation can appear very severe 

for surfaces with real roughness that don’t have a clear distinction between length scales nor a net 

periodic pattern. However, the homogenized Reynolds equation was applied for the analysis of 

general surfaces [ 6], [ 7]. One argument was that the autocorrelation length of the film thickness 

was one order of magnitude less than the length scale of the domain of analysis, therefore a 

periodicity pattern of roughness could be invoked. Nevertheless, the assumption of clearly separated 

length scales in the homogenized model is still in the background.  

A different approach of the problem that doesn’t require the above mentioned simplifying 

assumptions is the multiscale method. This method is based on an approximation of the roughness 

height details on a fine grid and on their projection on a coarse grid. From this standpoint, the 

approach is similar to the homogenization method with a net separation of the domain and 

roughness length scales. However, in the multiscale method, all length scales are implicitly modeled 

and periodicity assumptions in the short length scale are not needed. The method is borrowed from 

porous media flow with irregular permeability ([ 13] - [ 15]). Indeed, Darcy and Reynolds equations 
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are similar excepting the shear flow (Couette) term in the latter equation. The multiscale method is 

therefore adapted in the present work for taking into account this term of the Reynolds equation.  

The homogenization and the multiscale methods for the compressible Reynolds equation are then 

presented and discussed highlighting similitudes and differences. They are applied to the calculation 

of the pressure in very thin air films where the roughness height is 3 ≤ ℎ� ��� ≤ 7 … 10⁄ . Situations 

when ℎ� ��� ≤ 3⁄  were not dealt with for avoiding contacts between asperities. Moreover, the 

scope of this work is only the Reynolds roughness regime. 

The two methods are thoroughly compared for the case of a 2D inclined slider with a stationary 

rough surface. The thin film height has given height probability distribution, power spectrum and 

standard deviation. A complete solution of the Reynolds equation considering all length scales is 

considered the reference and serves for comparisons.  

The results show the accuracy of the homogenization and of the multiscale methods on coarse grids 

when compared to the solution of the original Reynolds equation obtained on very fine grids. The 

two methods have similar precisions. The accuracy of the homogenization method when used 

outside of its (apparent) domain of validity is an unexpected result. The pressure field reconstructed 

on the fine mesh also has very good precision. Moreover, it is shown that the computational effort of 

the two approximate methods is much lower than that required by the resolution of the original 

Reynolds equation. 

 

Résumé of the homogenization approach 

The compressible Reynolds equation can be resumed as a mass conservation equation. For an ideal 

gas and an isothermal flow regime this writes: 

 

∇����� = ∇����� = 0 ( 1) 

 

where ����� = ���, �� = ��� , ��� and 

 

 �� = − ℎ�
12!

"�
"# + % ℎ

2 

�� = − ℎ�
12!

"�
"& 

( 2) 

 

This yields the dimensionless equation 

 "
"#̅ (�)ℎ)� "�)

"#̅* + "
"& (�)ℎ)� "�)

"&)* = Λ "
"#̅ ��)ℎ)� 

( 3) 

 

where Λ = 6!%- �.ℎ�/01⁄  is the compressibility number associated with the sliding speed. For 

simplicity, bars indicating dimensionless pressures and lengths will be discarded in the following.  

The two length scales of the homogenization approach are 23 and 425 with 4 a small parameter and 

2 = �#, &�. In a non-dimensional description of a rectangular domain of analysis , 23, 25 ∈ 70,18 ×70,18. The length coordinate is then: 

 2 = 23 + 425, ( 4) 
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It is supposed that the pressure field follows the same description. 

 

� = �3 + 4�5 ( 5) 

 

Replacing ( 4) and ( 5) in Reynolds equation ( 3) and separating the terms of order 4:1, 4:5and 43 

yields three equations: 

 

4:1:   <3�3 = 0 ( 6) 4:5:   <5�3 + <3�5 + <3= �3 = Λ "��3ℎ� "#5⁄  ( 7) 43:   <1�3 + <5�5 + <5= �3 + <3= �5 = Λ7"��3ℎ� "#3⁄ + "��5ℎ� "#5⁄ 8 ( 8) 

 

Where 

 

<3 = "
"#5 >�3ℎ� "

"#5? + "
"&5 >�3ℎ� "

"&5? 
( 9) 

<5 = "
"#3 >�3ℎ� "

"#5? + "
"&3 >�3ℎ� "

"&5? + "
"#5 >�3ℎ� "

"#3? + "
"&5 >�3ℎ� "

"&3? 
( 10) 

<1 = "
"#3 >�3ℎ� "

"#3? + "
"&3 >�3ℎ� "

"&3? 
( 11) 

<3= = "
"#5 >�5ℎ� "

"#5? + "
"&5 >�5ℎ� "

"&5? 
( 12) 

<5= = "
"#3 >�5ℎ� "

"#5? + "
"&3 >�5ℎ� "

"&5? + "
"#5 >�5ℎ� "

"#3? + "
"&5 >�5ℎ� "

"&3? 
( 13) 

<1= = "
"#3 >�5ℎ� "

"#3? + "
"&3 >�5ℎ� "

"&3? 
( 14) 

 

Equations ( 6) - ( 8) are defined on an elementary cell defined by �#5, &5� ∈ Ω = 70,18 × 70,18. 
Equation ( 6) can be written as: 

 

"
"#5 (ℎ� "�31"#5 * + "

"&5 (ℎ� "�31"&5 * = 0 
( 15) 

 

and its solution is: 

 

�3 = BCDEF. over Ω. ( 16) 

 

i.e. �3 doesn’t depend on #5 and &5. This results and the periodicity of �5 and ℎ over Ω permits to 

verify for eq. ( 7) that 

 

G 7<5�3 + <3�5 + <3= �3 − Λ "��3ℎ� "#5⁄ 8H#5H&5I
= 0 

( 17) 

 

An equation for �5 over the domain Ω is then obtained from eq. ( 7) : 

 

"
"#5 >ℎ� "�5"#5? + "

"&5 >ℎ� "�5"&5? = − "�3"#3
"ℎ�
"#5 − "�3"&3

"ℎ�
"&5 + Λ "ℎ

"#5 
( 18) 

 

with periodicity boundary conditions for �5. This equation has the same form as for the 

incompressible homogenized Reynolds equation [ 7], the main reason being the solution given by eq. 
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( 16). If this solution doesn’t hold as for example in [ 9] where large Knudsen number effects were 

considered, then eq. ( 6) is non-linear and the solution follows a different path. 

Equation ( 18) is linear, therefore �5 can be described by terms of the same form as its right hand 

side: 

 

�5 = JKL
J�L M5 + JKL

J�L M1 + M�, M/ = M/�#3, &3, #5, &5�, N = 1,3)))) ( 19) 

 

where M/  are Ω periodic functions. Replacing ( 19) in the linear eq. ( 18) and identifying similar terms 

yields three differential equations. 

 
J

J�O Pℎ� JQR
J�OS + J

J�O Pℎ� JQR
J�OS = TUV/, N = 1,3)))) ( 20) 

TUV5 = − "ℎ� "#5⁄ , TUV1 = − "ℎ� "&5⁄ , TUV� = "ℎ "#5⁄   

 

Finally, equation ( 8) is integrated over Ω and following the previous assumptions (�5 and h are Ω 

periodic) and results (�3 is constant over Ω) and yields: 

 

    "
"#3 X�3 (G ℎ�HΩ

I
* "�3"#3Y + "

"#3 X�3 (G ℎ� "�5"#5 HΩ
I

* "�3"&3Y 

+ "
"&3 X�3 (G ℎ�HΩ

I
* "�3"&3Y + "

"&3 X�3 (G ℎ� "�5"&5 HΩ
I

* "�3"#3Y = Λ "
"#3 (�3 G ℎHΩ

I
* 

 

( 21) 

 

The homogenized compressible Reynolds equation is obtained after injecting �5 given by ( 19) in eq. ( 

21). 

 

    "
"#3 >�3<55

"�3"#3? + "
"#3 >�3<51

"�3"&3? 

+ "
"&3 >�3<11

"�3"&3? + "
"&3 >�3<15

"�3"#3? + "
"#3 ��3Z5� + "

"#3 ��3Z1� = 0 

 

( 22) 

 

and the homogenized coefficients are calculated with the solutions of eqs. ( 20): 

 

       <55 = [ ℎ� P1 + JQO
J�OS HΩI    ,         <51 = [ ℎ� JQ\

J�O HΩI     
      <15 = [ ℎ� JQO

J�O HΩI    ,                     <11 = [ ℎ� P1 + JQ\
J�OS HΩI     

     Z5 = [ ℎ� JQ]
J�O HΩI − Λ [ ℎHΩI   , Z1 = [ ℎ� JQ]

J�O HΩI    

 

 

( 23) 

 

The homogenized compressible Reynolds equation ( 22) is different from eq. ( 3) because it contains 

cross coupling derivatives. For example, the homogenized mass and volume fluxes are: 

 

�� � = �3��, �� = <55 JKL
J�L + <51 JKL

J�L + Z5 + Z1 

�� � = �3��, �� = <15 JKL
J�L + <11 JKL

J�L 

 

( 24) 

 

Equation ( 22) is solved on a coarse grid made of all macro-cells Ω of the analyzed domain while eqs. 

( 20) are solved on fine grids discretizing every macro-cell. The most convenient discretization 
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(although not the single possible) is to consider the coarse grid and the fine grids as subdomains of a 

single fine grid. The situation is depicted in Figure 1 for a rectangular grid. 

 

 
Figure 1. Coarse and fine rectangular grid discretization 

 

Equation ( 22) yields a nine point stencil discretized equation for every coarse grid cell Ω when 

discretized with the finite volume method on a rectangular grid. The solution of this non-linear 

system of equations will be discussed after presenting the multiscale method. 

 

The multiscale method 

The multiscale method was introduced for the analysis of porous media flow equations with “rough” 

coefficients, i.e. for with rapidly varying permeability. It was first presented in the context of the 

finite element method [ 13] and then for the finite volume method [ 14]. The equation of porous 

media flow is identical with the Reynolds eq. ( 3) excepting the Couette mass flow rate expressed by 

the right hand side term. As in the homogenized method, the pressure is defined on both a coarse 

grid and on a fine grid but its description is different.  

Following [ 13] and [ 14], the multiscale approximation of the pressure in porous media flows is 

based on shape functions associated with the nodes of the discretization. On a rectangular, 2D grid 

this yields: 

 

��2^, 2_� = ` �/�2^�a/�2^, 2_�
b

/c5
 

 

( 25) 

 

The formula given by eq. ( 25) was used in [ 13] for three-nodes triangular finite elements and in [ 14] 

for four-nodes finite volumes. It should hold for any finite element or finite volume as long as all 

degrees of freedom (i.e. the number of nodes) are taken into account. A supplementary shape 

function will be added in the following for taking into account Couette part of the flow. 

The multiscale method makes no distinction between long, short or intermediate scales. The 

coordinates 2^ and 2_ in eq. ( 25) identify the position on the coarse and on the fine grid, 

respectively, while �/�2^� are the pressures in the nodes of the coarse grid. 
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Figure 2. The basic and the dual (rectangular) coarse grid 

 

The finite volume approach described in [ 14] requires two coarse grids, a basic and a dual one as 

depicted in Figure 2. Continuous lines indicate the basic grid and dotted lines indicate the dual grid. 

The centers of the basic, coarse grid are indicated by capital letters (P, E, W, etc.) while the vertices 

are indicated by sw, se, ne and nw.  

The dual, coarse grid is x- and y-staggered relative to the basic grid. Figure 2 depicts four cells of the 

dual coarse grid surrounding the P-centered basic grid cell. The centers of the dual grid cells are sw, 

se, ne and nw.  

 

 
Figure 3. The ne cell of the dual coarse grid 

 

Figure 3 details the ne-dual coarse grid cell. The approximation of the local pressure field on this cell 

�d�2^, 2_� is given by eq. ( 25) where the indexes N = 1,4)))) are associated with P, E, NE, N, i.e. the 

centers of the basic coarse grid. The shape functions a/ are obtained by solving four local problems 

on the dual coarse grid. The local problems originate from the pressure equation in porous media or 

from the Reynolds equation without the Couette transport term. For example, for the cell depicted in 

Figure 3: 
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J
J� Pℎ� JfR

J� S + J
J� Pℎ� JfR

J� S = 0, # ∈ 7#K , #g8, & ∈ 7&K , &h8, N = 1,4)))) ( 26) 

 

These equations are solved on a fine grid discretization of the dual coarse grid cell with the following 

boundary conditions: 

 

N = 1, aK = 1, ag = ahg = ah = 0 N = 2, ag = 1, aK = ahg = ah = 0 N = 3, ahg = 1, aK = ag = ah = 0 N = 4, ah = 1, aK = ag = ahg = 0 

( 27) 

 

It is supposed that the a/ shape functions have a linear variation between successive vertices. This 

would imply a linear variation of the pressure between the nodes of the coarse grid and could be a 

rough approximation when coefficients h3 vary very rapidly on the fine grid. Reference [ 14] suggests 

that the approximation can be improved by estimating the boundary conditions of eq. ( 26) from the 

solutions of 1D partial differential equations along the corresponding coordinate line 

 
J

J� Pℎ� JfR
J� S = 0, 

J
J� Pℎ� JfR

J� S = 0 ( 28) 

 

with the boundary conditions ( 27). The shape functions along a boundary can then be analytically 

estimated; a.e. on a local fine grid with a3,5 = a�# = 0,1�, ℎ3,5 = ℎ�# = 0,1� 

 

a�#� = a3ℎ31 − a5ℎ51ℎ31 − ℎ51
− �a3 − a5�ℎ31ℎ51ℎ31 − ℎ51

1
ℎ�#�1 

( 29) 

 

The approximation described by eq. ( 25)-( 27) based on solutions superposition is possible because 

the pressure equation of the incompressible flow in a porous media is linear. It can be therefore 

extended to the case of the Reynolds equation by adding a fifth shape function, ai. 

 

�d�2^, 2_� = ` �/�2^�a/�2^, 2_�
b

/c5
+ ai�2^, 2_� 

( 30) 

 

This latter shape function takes into account the Couette transport term in the RHS of Reynolds 

equation and is the solution on the fine grid of the differential equation: 

 
J

J� Pℎ� Jfj
J� S + J

J� Pℎ� Jfj
J� S = Λ Jk

J�  ( 31) 

 

with a = 0 on all boundaries. 

The approximation ( 30) enables then the estimation of the fluxes depicted in Figure 3:1 

 

 

�0�/5 = G (−ℎ� "�d
"&* H#

�mnn

�mn
= ` �/<0�/5,/

b

/c5
+ <0�/5,i 

 

 

 

 

 

                                                           
1 A double node numbering, i=1,2,3,4 or i=P,E,NE,N is used in Figure 2 and eq. ( 32). 
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�0�/1 = G (−ℎ� "�d
"# + Λℎ* H&

�mmn

�mn
= ` �/<0�/1,/

b

/c5
+ <0�/1,i 

�0�/� = G (−ℎ� "�d
"&* H#

�mn

�m
= ` �/<0�/�,/

b

/c5
+ <0�/�,i 

�0�/b = G (−ℎ� "�d
"# + Λℎ* H&

�mn

�n
= ` �/<0�/b,/

b

/c5
+ <0�/b,i 

( 32) 

 

The coefficients <0�/o,/  (p = 1,4)))) and N = 1,5))))) are detailed in the Appendix. They are calculated with 

the derivatives of the shape functions, "a/ "#⁄  and "a/ "&⁄  and are similar to the coefficients </o  

and Z/, N, p = 1,2 obtained in the homogenization method. This becomes more clear when writing 

the discretized Reynolds equation as a flux conservation equation and with the aid of Figure 4. For 

the incompressible Reynolds equation this yields: 

 

 
Figure 4. Flux balance on the basic coarse grid cell 

 

�r�/1 + �0�/b − �0s/b − �rs/1 + �0�/� + �0s/5 − �rs/5 − �r�/� = 0 ( 33) 

 

The step toward the compressible Reynolds equation is straightforward. Reference [ 15] indicates 

that in the multiscale method, the approximations of the volume fluxes for the compressible 

Reynolds equation are the same as for the incompressible one. The explanation for this 

approximation is the weak variation of the pressure on a cell of the coarse mesh compared with the 

rest of the domain. This was rigorously proved for the homogenization method where eq. ( 15) and 

its solution ( 16) showed that the approximation �3 = BCDEF. holds over a cell of the coarse grid and, 

as a consequence, the coefficients </,o  and Z/, N, p = 1,2 used for expressing the compressible 

volume fluxes ( 24) had the same form as for the incompressible fluxes. It could be argued that eq. ( 

15) and its solution ( 16) were obtained under the assumption of two different, distinct scales but the 

numerical results presented in this paper will show that the assumption is fully justified in a general 

case. 
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The compressible Reynolds equation approximated by the multiscale method is then: 

 

����r�/1 + �0�/b� − �s��0s/b + �rs/1� + �0��0�/� + �0s/5� − �r��rs/5 + �r�/�� = 0 ( 34) 

 

A nine point stencil discretized equation is obtained after replacing the fluxes given by ( 32) in eq. ( 

34). Again, a double node numbering, i=1…9 or i=SW… NE (indicated in Figure 4) is used for 

simplicity. 

 

` t/�/
u

/c5
+ v = 0 

( 35) 

t5 = −�s<rs/1,wx − �r<rs/5,wx 

t1 = ��<r�/1,w − �s<rs/1,w − �r�<rs/5,w + <r�/�,w� 

t� = ��<r�/1,wg − �r<r�/�,wg 

tb = −�s�<0s/b,x + <rs/1,x� + �0<0s/5,x − �r<rs/5,x 

ti = ���<r�/1,K + <0�/b,K� − �s�<0s/b,K + <rs/1,K� + �0�<0�/�,K + <0s/5,K�
− �r�<rs/5,K + <r�/�,K� 

ty = ���<r�/1,g + <0�/b,g� + �0<0�/�,g − �r<r�/�,g 

tz = −�s<0s/b,hx + �0<0s/5,hx 

t{ = ��<0�/b,h − �s<0s/b,h + �0�<0�/�,h + <0s/5,h� 

tu = ��<0�/b,hg + �0<0�/�,hg 

v = ���<r�/1,i + <0�/b,i� − �s�<0s/b,i + <rs/1,i� + �0�<0�/�,i + <0s/5,i�
− �r�<rs/5,i + <r�/�,i� 

 

 

 

 

 

 

 

( 36) 

 

The cells of the dual grid situated on the boundaries can not be obtained by staggering the cells of 

the basic grid. Their size is therefore adapted in order to cover the domain of analysis as shown in 

Figure 5. The discretized Reynolds equation on these cell has the same form as eq. ( 35) and the 

pressure marked with “○” carry boundary conditions. 

 

 
Figure 5. Boundary cells of the dual coarse grid 

 

The discretized eq. ( 35) is non-linear because its coefficients depend on the unknown pressure on 

the faces of the basic grid cell. It is therefore solved with a Newton-Raphson algorithm using an 
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analytically calculated Jacobian. In order to avoid spurious oscillations of the solution or diverging 

algorithms for high Λ values, the pressures on the e and w faces of the grid cell are approximated by 

an “upwind” approach [ 16], [ 17], �� = �K and �s = �x while �0 = ��h + �K� 2⁄  and �r =��w + �K� 2⁄ .  

In all cases, the solution of the linear systems associated with the Newton-Raphson algorithm on the 

coarse grid or arising from the discretization of eqs. ( 20) for the homogenization method or of eqs. ( 

26) and ( 31) is solved with the Pardiso algorithm [ 18]. 

 

Numerical results 

Numerical results are obtained for the 2D inclined slider depicted in Figure 6. The lower surface is a 

flat wall sliding in x direction with velocity U. The upper surface is the wall carrying an irregular 

surface. The inlet, exit and the lateral surfaces of the domain carry the same constant pressure 

boundary conditions, Pa.  

 

 
Figure 6. The 2D inclined slider; the upper surface is irregular 

 

The generation of the irregular film thickness starts with a flat upper wall inclined from the left hand 

side (inlet plane) to the right hand side (outlet plane); the film thickness of the outlet and inlet 

sections are ℎ1 and ℎ5 = 2ℎ1, respectively. The sliding and the transversal distances have the same 

length - and ℎ1 -⁄ = 10:�. 

There are many algorithms in the literature for generating an irregular surface [19]. The algorithm 

given [ 20] in enables the control of the power spectral density and of the surface heights distribution 

and was therefore used. In the present analysis, the height of the surface follows a Weibull 

distribution with a shape parameter of 3. This is considered to be very close to a normal distribution. 

The power spectrum of the surface heights corresponds to an isotropic autocorrelation length of 

2.5%-. With these two information (height distribution and power spectrum) and with ISEED=12 for 

the height distribution, the algorithm described in [ 20] generates the surface heights in 257x257 

points of the #& plane. These surface heights have zero mean and unit standard deviation. They are 

then scaled with a standard deviation � = 20%ℎ1 and are added to the inclined top surface 

described by ℎ5 and ℎ1. A surface plot is depicted in Figure 7 and shows the irregular character of the 

film heights progressing from a mean dimensionless inlet height ℎ)5 = 2 toward an mean exit height 

ℎ)1 = 1. 

 

                                                           
2 Used in the random number generation subroutine of IMSL[ 21]. 
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Figure 7. Surface plot of the dimensionless film heights 

 

Reference results were obtained from the direct numerical solution of the Reynolds equation ( 3) on 

a fine mesh of 1024 equally spaced control volumes in each direction. Figure 8 depicts the 

dimensionless load capacity of the 2D slider obtained by integrating the pressures: 

 

} = G G��∗ − 1�H#̅H&)
5

3

5

3
 

 

( 37) 

 

Due to compressibility, the load tends to an asymptotic value. As shown in Figure 8 the regime 

characterized by � = 1000 corresponds to a strong compressible regime and the load is close to an 

asymptotic value. A value of � = 10 corresponds to a mild compressible regime while flow regimes 

with � < 1 are virtually incompressible. 

In the following, the pressures �)∗ obtained by solving Reynolds eq. ( 3) on the fine grid for � = 10 

and 1000 will be considered as reference values for characterizing the results of the homogenization 

and the multiscale methods. For example, Figure 9 depicts the surface plot of the dimensionless 

pressures for these two values of �. 

 

 
Figure 8. Dimensionless load of the compressible 2D slider (ℎ5 = 2ℎ1, - = Z) 
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Figure 9. Surface plot of the dimensionless pressure 

 

Three computational grids were used for the homogenization and the multiscale method: 32x8, 64x8 

and 128x8 equally spaced control volumes in each direction. The first grid had NxCG=NyCG=32 CV in 

the coarse grid and NxFG=NyFG=256 CV of the fine grid corresponding to the nodes used for 

generating the film heights. The last grid had NxCG=NyCG=128 CV in the coarse grid and 

NxFG=NyFG=1024 CV of the fine grid corresponding to the discretization cells used for obtaining the 

reference solution �∗. 

Figure 10 depicts the pressure variation in the mid-plane of the 2D slider for a mild compressible 

regime (� = 10) along the interrupted line contour depicted in Figure 6. This kind of presentation 

was preferred to surface plots for the visual inspection of the results. The dots correspond to the 

results on the coarse grid while the interrupted line corresponds to the results on the fine grid 

obtained by using eqs. ( 5), ( 19) and 4 = 1 ����⁄  (or NyCG) for the homogenization method and eq. ( 

30) for the multiscale method. 

 

 
Figure 10. Pressure variation in the mid-plane of the 2D slider (� = 10, CG=32 CV, FG=32x8 CV) 

Lambda=10

Lambda=1000
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Figure 11. Pressure variation in the mid-plane of the 2D slider (� = 10, CG=128 CV, FG=128x8 CV) 

 

Figure 11 depicts the same pressure variation for � = 10 but for ���� = 128. The results coincide 

with the reference solution �∗. The accuracy is also enlightened by the error between the 

homogenized (or the multiscale) results and the reference values.  

 

���C� = 1
����,�� �`�� − �∗�1 

( 38) 

 

Table 1 shows that the errors for the homogenization and the multiscale methods are very much the 

same, either on the coarse, or on the fine grid. The errors are one or two orders of magnitude 

smaller on the fine grid compared to the coarse grid. If depicted in logarithmic coordinates both the 

coarse and the fine grid errors would show a linear decrease with the grid density. 

 

Table 1 Accuracy of the homogenization and multiscale methods relative to the reference solution 

 

Nx,y 
Lambda=10 (mild compress.) Lambda=1000 (strong compress.) 

Coarse Grid (CG) Fine Grid (FG) Coarse Grid (CG) Fine Grid (FG) 

Hmgn Mltscl Hmgn Mltscl Hmgn Mltscl Hmgn Mltscl 

32x8 2.01E-3 1.39E-3 6.66E-4 3.92E-4 1.84E-2 1.72E-2 8.35E-3 1.39E-2 

64x8 7.17E-4 4.63E-4 2.50E-4 1.56E-4 9.60E-3 8.77E-3 3.74E-3 4.26E-3 

128x8 2.27E-4 1.60E-4 7.87E-5 5.46E-5 3.72E-3 3.40E-3 1.36E-3 1.40E-3 

 

The results for the strong compressible regime, � = 1000, are depicted in Figure 12 and Figure 13. 

The pressure variations are much more rapid than for the mild-compressible regime, therefore, as 

shown in Table 1, the errors obtained with the same grid densities are larger. Figure 12 depicts the 

results on the coarse grid (left) and on the fine grid (right) for ��,��� = 32. The results obtained with 

the homogenization and the multiscale method on the coarse grid are close (Figure 12, left). This is 

not the case for the results estimated on the fine grid (Figure 12, right) were the homogenization 

method underestimates the reference values, while the multiscale method overestimates them. 

However, Figure 13 obtained for ��,��� = 128 shows that when the errors on the coarse grid are 

reduced then the estimations on the fine grid raise no problems. 
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Figure 12. Pressure variation in the mid-plane of the 2D slider (� = 1000, CG=32 CV, FG=32x8 CV) 

 
Figure 13. Pressure variation in the mid-plane of the 2D slider (� = 1000, CG=128 CV, FG=128x8 CV) 

 

The accuracy of both methods for � = 10 … 1500 and for the mid-plane pressures is depicted in 

Figure 14. The accuracies of the two methods are very close excepting the results obtained with the 

multiscale method on the fine grid FG=32x8 CV. This finding is consistent with the results depicted on 

the right part of Figure 12 showing large variations of the multiscale pressure on the fine grid. The 

conclusion is that 32 CV of the coarse grid are not sufficient for the multiscale method for obtaining a 

good enough solution on the fine grid starting with � = 500. For higher coarse grid densities, the 

accuracy of the two methods is similar. 

 

 
Figure 14. Errors of the pressure variation in the mid-plane of the 2D slider (coarse grid-left, fine grid-

right) 

 

The relative errors for the load and the friction force of the slider calculated with the homogenization 

and the multiscale methods with respect to the reference results are depicted in Figure 15. In all 

cases, the density of fine grid is NxCGx8. The relative errors are comprised between 10-1 and 10-2 or 
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less with lower values for the multiscale method although the differences between the two methods 

are not significant. However, the results depicted in Figure 14 and in Figure 15 show that relative 

errors of the order of 10-2 can not be obtained with the coarse grid of 32 CV and in this case higher 

coarse grid densities should be privileged for � > 500. 

 

 

 
Figure 15. Relative error of the load and friction force (the density of the fine grid is 8 times the 

density of the coarse grid) 

 

The computational effort required by the homogenization and multiscale method is depicted in 

Figure 16a,b. The computational effort is here measured by the ratio between the CPU time required 

for a full solution divided by the CPU time of the full Reynolds equation on the same grid. The CPU 

function was preferred to the SYSTEM_CLOCK function because the latter depends on the number of 

threads used. Indeed, both the homogenization and the multiscale method can be easily parallelized 

with the OMP option. This is an important advantage because the local solutions on the fine grid 

described either by eqs. ( 20) or by eqs. ( 26) and ( 31) can be dispatched on many threads. However, 

the result of CPU function is independent of the number of threads. Figure 16a shows the ratio 

CPU/CPU(Reyn1024) for different grid densities. The homogenization method is slightly more 

efficient because it requires the solution of four discretized eqs. ( 20) on the local fine grid instead of 

five eqs. ( 26) and ( 31) for the multiscale method. However, the difference is small. The ratio 

increases to 30…40% of CPU(Reyn1024) with the density of the fine grid. However, a fine grid density 

of 10242 cells is not large and Figure 16b shows that smaller CPU ratios are obtained when increasing 

the fine grid density. The homogenization and the multiscale methods have a net advantage in terms 

of CPU for very large size fine grids (two orders of magnitude reduction for the 40962 fine grid) when 

the numerical solution of the full Reynolds equation must use the hard memory for solving the linear 

system. 
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Figure 16. Computational effort of the homogenization and multiscale methods relative to the 

reference solution of the Reynolds equation 

 

Another point under discussion is the accuracy of the reconstructed solution on the fine grid when 

the coarse grid discretization has different number of cells in x and y direction. For the multiscale 

method, eq. ( 30) operates on all kind of coarse grids but this can raise questions for the 

homogenization methods. Indeed, the key point for the reconstruction of the fine grid solution of the 

homogenization method is the definition of the small parameter 4 = 1 ���⁄  in eq. ( 5). This raises no 

problem when ���� = ����  but is not well defined if ���� � ���� . A heuristic approach case would 

be: 

 

4 = 1 ����������  
( 39) 

 

This is verified in the following. The accuracy of the results obtained with different coarse grids is 

given in Table 2. Different NxCG and NyCG were combined but the resulting fine grid always had a 

density of 1024 cells. There is a very slight increase of the error given by the homogenization method 

compared to the multiscale method but the difference is quite small and shows that the heuristic eq. 

( 39) for reconstructing the fine grid solution of the homogenization method performs very well. 

 

Table 2 Accuracy of the homogenization and multiscale methods relative to the reference solution (NxCG�NyCG and 

NxFG=NyFG=1024) 

 

Nx 

 

 

Ny 

 

Lambda=10 (mild compress.) Lambda=1000 (strong compress.) 

Coarse Grid (CG) Fine Grid (FG) Coarse Grid (CG) Fine Grid (FG) 

Hmgn Mltscl Hmgn Mltscl Hmgn Mltscl Hmgn Mltscl 

128/8 128/8 2.27E-4 1.60E-4 7.87E-5 5.46E-5 3.72E-3 3.40E-3 1.36E-3 1.40E-3 

128/8 64/16 3.10E-4 1.76E-4 1.10E-4 5.94E-5 5.13E-3 4.21E-3 1.84E-3 1.69E-3 

128/8 32/32 4.61E-4 2.49E-4 1.61E-4 8.38E-5 8.35E-3 7.07E-3 2.94E-3 2.51E-3 

64/16 128/8 5.86E-4 4.34E-4 1.43E-4 1.04E-4 8.60E-3 8.09E-3 2.38E-3 2.39E-3 

64/16 64/16 6.78E-4 4.68E-4 1.67E-4 1.12E-4 9.66E-3 8.77E-3 2.64E-3 3.02E-3 

64/16 32/32 8.64E-4 5.50E-4 2.12E-4 1.29E-4 1.26E-2 1.14E-2 3.40E-3 3.83E-3 

32/32 128/8 1.61E-3 1.25E-3 2.65E-4 1.93E-4 1.61E-2 1.59E-2 3.88E-3 3.77E-3 

32/32 64/16 1.67E-3 1.36E-3 2.74E-4 2.04E-4 1.64E-2 1.61E-2 3.92E-3 4.41E-3 

32/32 32/32 1.86E-3 1.41E-3 3.01E-4 2.01E-4 1.83E-2 1.72E-2 4.30E-3 7.03E-3 

 

Summary and conclusions 

The present work compares the homogenization and the multiscale methods applied to the 

compressible Reynolds equation in a very narrow channel with rough (irregular) walls. The article 

details all the stages of development of the homogenization method and underlines that under 
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certain conditions the local problems have the same formulation as for an incompressible fluid. This 

treatment of local problems greatly simplifies the resolution. Then the multiscale method inspired 

from porous media flow is adapted for taking into account the Couette part of the flow. This 

extension of the algorithm is not present in the literature. According to the homogenization method, 

the local problem is then treated as for an incompressible fluid. 

Examples of the numerical solutions are given for a convergent, two-dimensional narrow slider with 

a realistic, irregular gap height typical for gas lubrication problems. The results were compared with 

the solution of the original Reynolds equation. 

Several points were analyzed: the influence of the density of the coarse mesh, the precision of the 

solution obtained on the fine mesh and the computational effort. The results obtained for mild and 

strong compressible regimes showed that the two methods are very similar in terms of accuracy and 

computational effort. One could underline that the multiscale method has a slight advantage in 

terms of accuracy while the computational effort of the homogenization method is slightly less but 

these differences are quantitatively not important.  

Both methods worked well for this realistic calculation case compared to the original Reynolds 

equation. This was to be expected for the multiscale method that has no a priori limitations in terms 

of irregularity of its coefficients or on the number of coarse grid cells in x and y directions. The results 

obtained with the homogenization method were also accurate both on the coarse mesh and on the 

fine mesh, although the irregular channel height had not an exact periodic pattern. The heuristic 

equation used to define the small parameter 4 when the coarse grid has different x and y densities 

works well for obtaining the solution on the fine grid. 

Within the limits of the simplifying assumptions given in the introduction, the two methods are 

equivalent. What could make the difference in the future is the ease of integrating additional non-

linear effects such as taking into account sporadic contacts between asperities or the superposition 

of a temperature field. 

 

Nomenclature 

A0,1,2, A’0,1,2,  operators defines by eqs. ( 9)-( 14) 

Aij,   coefficient of the homogenized eq. ( 22) or of the multi-scale eq. ( 36) 

B,   width of the domain of analysis, [m] 

Ci, D,   coefficients of the multi-scale Reynolds eq. ( 39) 

h,   thin film thickness (gap height), [m] 

hm,   average film height, [m] 

hmin,   minimum gap height, [m] 

h1, h2,   inlet and exit height of the inclined slider 

L,   length of the domain of analysis, [m] 

�� ,   local mass flow rate, [kg/m/s] 

P,   pressure, [Pa] 

P*,   reference solution for pressure, [Pa] 

�d,   approximation of the pressure in the multi-scale method, [Pa] 
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Pa,  atmospheric pressure, [Pa] 

q,  local flow rate, [m2/s] 

U,   wall velocity, [m/s] 

}� ,   dimensionless load 

x, y,   distances, [m] 

 

�,   standard deviation of gap height, [m] 

µ ,   dynamic viscosity, [Pas] 

�,   compressibility number 

4,   small parameter (ratio of the short and long length scale) 

�,   domain of analysis 

a/,   shape functions used in the multi-scale method 

M/,   functions used in the homogenization method and defined by eq. ( 20) 

 

Indice: 

0, 1,   long and short length scales 

eq,   equivalent 

x, y,   axis of the coordinate system 

 

References 

[ 1] Hansen J., Bjorlong M., Larsson, R. A New Film Parameter for Rough Surface EHL Contacts with 

Anisotropic and Isotropic Structures. Tribology Letters 2021; 69:37. 

[ 2] Bhushan B. Principles and Applications of Tribology 2nd Edition 2013, John Wiley & Sons, Ltd. 

[ 3] Patir N., Cheng H.S. An Average Flow Model for Determining Effects of Three-Dimensional 

Roughness on Partial Hydrodyanmic Lubrication. J Lubric Tech 1978; 100(1):12-17. 

[ 4] Bayada G., Chambat M. New Models in the Theory of the Hydrodynamic Lubrication of Rough 

Surfaces. J Tribol 1988; 110(3): 402-407. 

[ 5] Almqvist A., Dasht J. The homogenization process of the Reynolds equation describing 

compressible liquid flow. Tribol Int 2006; 39(9): 994-1002. 

[ 6] Sahlin F., Almqvist A., Larsson R., Glavatskih S. Rough surface flow factors in full film lubrication 

based on a homogenization technique. Tribol Int 2007; 4(7): 1025-1034. 

[ 7] Fatu A., Bonneau D., Fatu R. Computing hydrodynamic pressure in mixed lubrication by modified 

Reynolds equation. Proc. IMechE Part J J Eng Tribol 2012; 226(12): 1074-1094. 

[ 8] Buscaglia G.C., Jai M. Homogenization of the Generalized Reynolds Equation for Ultra-Thin Gas 

Films and Its Resolution by FEM. J. Tribol. 2004; 126 (3): 547-552. 



20 

 

[ 9] Jai M. Homogenization and two-scale convergence of the compressible Reynolds lubrication 

equation modelling the flying characteristics of a rough magnetic head over a rough rigid-disk. 

Modélisation mathématique et analyse numérique 1995; 29(2): 199-233. 

[ 10] Almqvist A., Fabricius J., Wall P. Homogenization of a Reynolds equation describing 

compressible flow. J Math Anal Appl 2012; 390(2): 456-471 

[ 11] Rom M., Konig F., Muller S. , Jacobs G. Why homogenization should be the averaging method of 

choice in hydrodynamic lubrication. Applications in Engineering Science 2021; 7(9): 100055. 

[ 12] Yildiran I. N., Temizer I., Cetin B. Homogenization in Hydrodynamic Lubrication: Microscopic 

Regimes and Re-Entrant Textures. J Tribol 2018; 140(1): 011701. 

[ 13] Hou T. Y., Wu, X.-H. A Multiscale Finite Element Method for Elliptic Problems in Composite 

Materials and Porous Media. J. Comp Phys 1997; 134(1): 169-189. 

[ 14] Jenny P., Lee S. H., Tchelepi H. A. Multi-scale finite-volume method for elliptic problems in 

subsurface flow simulation. J Comp Phys 2003; 187(1): 47-67. 

[ 15] Lunati I., Jenny P. Multiscale finite-volume method for compressible multiphase flow in porous 

media. J Comp Phys 2006; 216(2): 616-636. 

[ 16] Arghir M., Le Lez S., Frêne J. Finite volume solution of the compressible Reynolds equation - 

linear and non linear analysis of gas bearings. Proc. IMechE Part J J Eng Tribol 2006; 220(7): 617-627. 

[ 17] Faria M. T. C., San Andrés L. On the Numerical Modeling of High-Speed Hydrodynamic Gas 

Bearings. J. Tribol 2000; 122(1):124-130. 

[ 18] Schenk O., Gartner K. Solving unsymmetric sparse systems of linear equations with PARDISO. 

Future Gener Comp Sy 2004; 20(3): 475-487. 

[ 19] Pawlus P., Reizer R., Wieczorowski M. A review of methods of random surface topography 

modeling. Tribol Int 2020; 152 (12): 106530. 

[ 20] Pérèz-Ràfols F., Almqvist A. Generating randomly rough surfaces with given height probability 

distribution and power spectrum. Tribol Int 2019; 131(3); 591-604. 

[ 21] IMSL® Fortran Subroutines for Mathematical Applications Volumes 1 and 2, Copyright 1997, by 

Visual Numerics, Inc. 

 

Appendix 

The coefficients <0�/o,/  obtained after injecting eq. ( 30) in the fluxes given by eq. ( 32) are: 

 

 

<0�/5,/ = − G ℎ� "a/"& H#
�mnn

�mn
, <0� 5⁄ ,i = − G ℎ� "ai"& H#

�mnn

�mn
 

<0�/1,/ = − G ℎ� "a/"# H&
�mmn

�mn
, <0� 1⁄ ,i = − G ℎ� "ai"# H&

�mmn

�mn
+ Λ G ℎH&

�mmn

�mn
 

 

 

 

 

 

( 40) 
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<0�/�,/ = − G ℎ� "a/"& H#
�mn

�m
, <0� �⁄ ,i = − G ℎ� "ai"& H#

�mn

�m
 

<0�/b,/ = − G ℎ� "a/"# H&
�mn

�n
, <0� b⁄ ,i = − G ℎ� "ai"# H&

�mn

�n
+ Λ G ℎH&

�mn

�n
 

 

for N = 1,4)))). These definitions hold for the control volume ne of the dual grid detailed in Figure 3. The 

coefficients for the control volumes nw, sw, se of the dual grid depicted in Figure 2a are obtained in a 

similar manner. 

 

 




