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Abstract

The present work presents a comparison between the homogenization and the multiscale methods
applied to the compressible Reynolds equation with irregular coefficients. The equation models a
very thin compressible flow between rough surfaces. If the use of the homogenization method for
the Reynolds equation with irregular coefficients is not new, it is for the multiscale method. Indeed,
this last approach is borrowed from the flows in porous media (where only flows due to the pressure
gradients are present) and is here extended to also take into account the Couette terms. The paper
presents the detailed development of both methods and underlines similitudes and differences.
Illustrative results obtained for a realistic geometry show the impact of the coarse mesh, the
precision of the solution on the fine mesh and the computational effort of both methods compared
to the original compressible Reynolds equation. Both methods worked well and the results show that
they are reliable and efficient tools for the compressible Reynolds equation with irregular
coefficients.

Keywords: homogenization method, multiscale method, compressible Reynolds equation, irregular
coefficients

Introduction

The present work is focused on two methods (homogenization or two-scale method and the
multiscale method) that should systematically be used for the analysis of thin film rough surface
flows. One of the parameters conventionally accepted for delimiting the friction regimes is the
dimensionless thin film thickness [ 1]. This parameter is defined as the ratio between the mean thin
film height, h, and the combined standard deviation of the two surfaces, ge;. This is a very simple
parameter resulting from a model which considers that one of the two surfaces is smooth while the
other carries all the roughness. Combining the roughness of the two surfaces is strictly correct only
when both have a normal distribution of roughness heights but the model is tacitly applied for all
situations [ 2]. Its advantage is not only the simplicity but also discarding unsteady effects that would
naturally appear when a rough surface moves relative to another closely spaced rough surface.

It is generally accepted that for a dimensionless mean film thickness h,, /0., < 1, the probability of
sporadic contacts between surface asperities is greater than 95%. On the other hand, for h,, /0., >
3, the probability of sporadic contacts between asperities is less than 5%, meaning there is no
contact between the two surfaces. However, the surfaces roughness or texture will impact the thin
film pressure up to hm/aeq =7..10.

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
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The present work is focused on the last operating conditions, i.e. 3 < hm/aeq < 7..10 and on the
case of a compressible lubricant which separates the two surfaces. For an incompressible lubricant,
the models used for calculating the pressure field are either the Reynolds equation corrected with
flow factors or the homogenized Reynolds equation. The flow factors were introduced by Patir and
Cheng [ 3] years ago and were calculated from heuristic assumptions. They represent a very
convenient way of taking roughness into account because any kind of solver of the Reynolds
equation can be easily adapted. However, the approach lacks a rigorous mathematical foundation.

A model with a strong mathematical background is the homogenized Reynolds equation. Bayada and
Chambat [ 4] were among the first to introduce this approach for an incompressible thin film flow.
They were followed by Almqvist et al. [ 5], [ 6] and Fatu and Bonneau [ 7]. The two last references
discussed not only the homogenization of the incompressible Reynolds equation but also compared
its results with the approach based on the flow factors introduced in [ 3]. The conclusions were that
the flow factors were a rarely a satisfactory approach because they discard cross-coupling flow
effects. Moreover, the original flow factors are deduced for an isotropic roughness with a normal
height distribution and no control over its power spectrum.

Jai et al. [ 8], [ 9] extended the homogenization method to compressible flows with rarefaction
effects while Almqvist and [ 10] applied it to liquid lubricants characterized by a finite isothermal
compressibility modulus.

As underlined in [ 11], the homogenization of the Reynolds equation is a “disruptive approach”.
However, it requires simplifying assumptions. It is supposed that the local thin film flow is governed
by two, well separated length scales. The long scale is the length of the contact while the small scale
is linked to the roughness pattern. Moreover, the roughness pattern is periodic and characterized by
a small wavelength. In many cases, regular sinusoidal roughness patterns are used for validating the
numerical solution of the homogenized Reynolds equation. These roughness patterns are artificial
unless they do not mimic a textured surface.

The discussion can go further by recognizing that a third length scale is present in any rough
lubricated contact, i.e. the minimum film thickness. For smooth surfaces, the use of the Reynolds
equation is conditioned by a ratio of 103 between the minimum film thickness and the contact
length. For rough surfaces, the ratio between the minimum film thickness and the roughness
wavelength can only be larger than 1073; if the ratio is larger than 102 the Reynolds equation must be
replaced by Stokes model [ 12]. However, the latter approach is mathematically more complex.

The necessary conditions for the homogenization of the Reynolds equation can appear very severe
for surfaces with real roughness that don’t have a clear distinction between length scales nor a net
periodic pattern. However, the homogenized Reynolds equation was applied for the analysis of
general surfaces [ 6], [ 7]. One argument was that the autocorrelation length of the film thickness
was one order of magnitude less than the length scale of the domain of analysis, therefore a
periodicity pattern of roughness could be invoked. Nevertheless, the assumption of clearly separated
length scales in the homogenized model is still in the background.

A different approach of the problem that doesn’t require the above mentioned simplifying
assumptions is the multiscale method. This method is based on an approximation of the roughness
height details on a fine grid and on their projection on a coarse grid. From this standpoint, the
approach is similar to the homogenization method with a net separation of the domain and
roughness length scales. However, in the multiscale method, all length scales are implicitly modeled
and periodicity assumptions in the short length scale are not needed. The method is borrowed from
porous media flow with irregular permeability ([ 13] - [ 15]). Indeed, Darcy and Reynolds equations



are similar excepting the shear flow (Couette) term in the latter equation. The multiscale method is
therefore adapted in the present work for taking into account this term of the Reynolds equation.

The homogenization and the multiscale methods for the compressible Reynolds equation are then
presented and discussed highlighting similitudes and differences. They are applied to the calculation
of the pressure in very thin air films where the roughness height is 3 < hm/aeq < 7...10. Situations
when hm/aeq < 3 were not dealt with for avoiding contacts between asperities. Moreover, the
scope of this work is only the Reynolds roughness regime.

The two methods are thoroughly compared for the case of a 2D inclined slider with a stationary
rough surface. The thin film height has given height probability distribution, power spectrum and
standard deviation. A complete solution of the Reynolds equation considering all length scales is
considered the reference and serves for comparisons.

The results show the accuracy of the homogenization and of the multiscale methods on coarse grids
when compared to the solution of the original Reynolds equation obtained on very fine grids. The
two methods have similar precisions. The accuracy of the homogenization method when used
outside of its (apparent) domain of validity is an unexpected result. The pressure field reconstructed
on the fine mesh also has very good precision. Moreover, it is shown that the computational effort of
the two approximate methods is much lower than that required by the resolution of the original
Reynolds equation.

Résumé of the homogenization approach
The compressible Reynolds equation can be resumed as a mass conservation equation. For an ideal
gas and an isothermal flow regime this writes:

Vi = V(P§) = 0 (1)
where i = P§, § = (9, 9y) and
__ Ao h (2)
= "Tuox T2
PP
= 12u dy

This yields the dimensionless equation

O (prs 20 + 2 (prs 28) = 2 2 (R) o
ox ax) dy y] ox

where A = 6,uUL/Pah$m-n is the compressibility number associated with the sliding speed. For
simplicity, bars indicating dimensionless pressures and lengths will be discarded in the following.

The two length scales of the homogenization approach are x, and £x; with £ a small parameter and
x = (x,y). In a non-dimensional description of a rectangular domain of analysis , xy, x; € [0,1] X
[0,1]. The length coordinate is then:

X =Xy + x4, (4)



It is supposed that the pressure field follows the same description.

P =Py +eP; (5)
Replacing ( 4) and ( 5) in Reynolds equation ( 3) and separating the terms of order €72, e tand £°
yields three equations:
€72 AgPy =0 (6)
el APy + AgPy + AyPy = AA(Pyh)/0x, (7)
€% APy + APy + A1Py + AgP; = A[0(Pyh)/0xo + 0(Pyh)/0x4] (8)
Where
to =5 (Pok 5 ) + - (o1 ) (9)
= o (Poh 5 ) oo (ol 5=+ 5 (Pok o) + - (ot o) (10
Ay = (,)ixo(zﬁoh3 aixo) + (,)iyo(zﬁoh3 61)10) (11)
4y = (')ixl(le a%) + aiyl(mﬁ a%) (12)
A} =%(P1h3aih)+ai%(ah3aih) +aix1(P1hgaixo) +aiyl(P1hgaiyo) (13)
= () 2 () (19

Equations ( 6) - ( 8) are defined on an elementary cell defined by (x;,y;) € Q =[0,1] x [0,1].
Equation ( 6) can be written as:

0 (1B, 0 (1078 (15)
0xq 0xq oy, oy,

and its solution is:
Py = const. over Q. (16)

i.e. Py doesn’t depend on x; and y;. This results and the periodicity of P; and h over Q permits to
verify for eq. ( 7) that

(17)
f [AIP() + A()Pl + A:)PO - Aa(Poh)/axl]dxldyl - 0
Q
An equation for P; over the domain £ is then obtained from eq. ( 7) :
9 (28), 0 (1000 L _ORON_ ORI oh (1)
0xq 0x; 0y: ay, 0xy0x; 0y, 0y, dxq

with periodicity boundary conditions for P;. This equation has the same form as for the
incompressible homogenized Reynolds equation [ 7], the main reason being the solution given by eq.



( 16). If this solution doesn’t hold as for example in [ 9] where large Knudsen number effects were
considered, then eq. ( 6) is non-linear and the solution follows a different path.

Equation ( 18) is linear, therefore P; can be described by terms of the same form as its right hand
side:

P, aP

P = . X1 +ﬁ)(2 + X3, Xi = Xi(X0,Y0,X1,¥1), i = 1,3 (19)
0 0

where y; are Q periodic functions. Replacing ( 19) in the linear eq. ( 18) and identifying similar terms
yields three differential equations.

5 (n*55) + 5= (h*52) = RHS, i =13 (20)

RHSI = _ah /axl,RHSZ = _ah3/ay1, RHS3 = ah/axl

Finally, equation ( 8) is integrated over Q and following the previous assumptions (P; and A are Q
periodic) and results (P, is constant over £) and yields:

P fh%m 9|, 9 p f p3 20 g P
axo 0 axo axo 0 dx,q ayo (21)

P(f h3dﬂ>a ] [ <f h3ap1dn>apo] A 9 <Pf th)
5)’0 0 Yo 5)’0 oy, 0xy 0xg 0 Q

The homogenized compressible Reynolds equation is obtained after injecting P; given by ( 19) in eq. (
21).

a (PA 6P0)+ a (PA c’)PO)
9xo \ O M ax,) T ax, \ 2129y, (22)

J (PA aP°)+ g (PA ap") (PB)+ (PB) 0
ay 0 226y0 ayo 0 21ax0 0”1 0”2

and the homogenized coefficients are calculated with the solutions of eqgs. ( 20):

A11 = f h3 (1 +%) dQ ) A12 = fQ h3g_i{idﬂ
) a
Agy = [, WE2da A= Jp 131 +a—)yfj)dn (23)

_ 35)( _ 30X
Bl—fﬂ h a—x:dQ—AfQ hdQ ,Bz—fﬂ h a—yidﬂ

The homogenized compressible Reynolds equation ( 22) is different from eq. ( 3) because it contains
cross coupling derivatives. For example, the homogenized mass and volume fluxes are:

6P0 apO
my, = Pyqy, 4y = A21 226_}/0

My = Poqyx, Qx = A11 —+B; + B,

(24)

Equation ( 22) is solved on a coarse grid made of all macro-cells Q of the analyzed domain while egs.
( 20) are solved on fine grids discretizing every macro-cell. The most convenient discretization



(although not the single possible) is to consider the coarse grid and the fine grids as subdomains of a
single fine grid. The situation is depicted in Figure 1 for a rectangular grid.
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T m =
. | I
O O (€]
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Q
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~

Figure 1. Coarse and fine rectangular grid discretization

Equation ( 22) yields a nine point stencil discretized equation for every coarse grid cell 2 when
discretized with the finite volume method on a rectangular grid. The solution of this non-linear
system of equations will be discussed after presenting the multiscale method.

The multiscale method

The multiscale method was introduced for the analysis of porous media flow equations with “rough”
coefficients, i.e. for with rapidly varying permeability. It was first presented in the context of the
finite element method [ 13] and then for the finite volume method [ 14]. The equation of porous
media flow is identical with the Reynolds eq. ( 3) excepting the Couette mass flow rate expressed by
the right hand side term. As in the homogenized method, the pressure is defined on both a coarse
grid and on a fine grid but its description is different.

Following [ 13] and [ 14], the multiscale approximation of the pressure in porous media flows is
based on shape functions associated with the nodes of the discretization. On a rectangular, 2D grid
this yields:

4
P(x9,x1) = Z Pi(x0)pi(x0,x1) (25)
i=1

The formula given by eq. ( 25) was used in [ 13] for three-nodes triangular finite elements and in [ 14]
for four-nodes finite volumes. It should hold for any finite element or finite volume as long as all
degrees of freedom (i.e. the number of nodes) are taken into account. A supplementary shape
function will be added in the following for taking into account Couette part of the flow.

The multiscale method makes no distinction between long, short or intermediate scales. The
coordinates xg and x4 in eq. ( 25) identify the position on the coarse and on the fine grid,
respectively, while P;(xq) are the pressures in the nodes of the coarse grid.
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Figure 2. The basic and the dual (rectangular) coarse grid

The finite volume approach described in [ 14] requires two coarse grids, a basic and a dual one as
depicted in Figure 2. Continuous lines indicate the basic grid and dotted lines indicate the dual grid.
The centers of the basic, coarse grid are indicated by capital letters (P, E, W, etc.) while the vertices
are indicated by sw, se, ne and nw.

The dual, coarse grid is x- and y-staggered relative to the basic grid. Figure 2 depicts four cells of the
dual coarse grid surrounding the P-centered basic grid cell. The centers of the dual grid cells are sw,
se, ne and nw.
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Figure 3. The ne cell of the dual coarse grid

Figure 3 details the ne-dual coarse grid cell. The approximation of the local pressure field on this cell
P(xo,xl) is given by eq. ( 25) where the indexes i = 1,4 are associated with P, E, NE, N, i.e. the
centers of the basic coarse grid. The shape functions ¢; are obtained by solving four local problems
on the dual coarse grid. The local problems originate from the pressure equation in porous media or
from the Reynolds equation without the Couette transport term. For example, for the cell depicted in
Figure 3:



9 (13990 L 9 (39%:) _ | = (26)
P (h ax) + 3y (h ay) =0,x € [xp,xgl,y € lyp,yn], i = 1,4
These equations are solved on a fine grid discretization of the dual coarse grid cell with the following

boundary conditions:

i=L¢p=1¢r=dyg =0y =0 (27)
i=2,¢p=1L¢p =Py =dy=0
=3, ¢ng =L Pp =g =dy=0
i=4¢y=1¢p =g =g =0

It is supposed that the ¢; shape functions have a linear variation between successive vertices. This
would imply a linear variation of the pressure between the nodes of the coarse grid and could be a
rough approximation when coefficients 4’ vary very rapidly on the fine grid. Reference [ 14] suggests
that the approximation can be improved by estimating the boundary conditions of eq. ( 26) from the
solutions of 1D partial differential equations along the corresponding coordinate line

22 -0 (%) @

with the boundary conditions ( 27). The shape functions along a boundary can then be analytically
estimated; a.e. on a local fine grid with ¢ ; = ¢(x = 0,1), hy; = h(x = 0,1)

$(x) = boh§ — ¢1hf  (Po — P1)hGhi 1 (29)
- Ri-R hZ —h?  h(x)?

The approximation described by eq. ( 25)-( 27) based on solutions superposition is possible because
the pressure equation of the incompressible flow in a porous media is linear. It can be therefore
extended to the case of the Reynolds equation by adding a fifth shape function, ¢s.

) : (30)
P(x0,%1) = ) Pilo)bi(xo, x1) + s (xo, x1)
i=1

This latter shape function takes into account the Couette transport term in the RHS of Reynolds
equation and is the solution on the fine grid of the differential equation:

2005+ 3 (°28) -2 oo

with ¢ = 0 on all boundaries.

The approximation ( 30) enables then the estimation of the fluxes depicted in Figure 3:*

Xnee .
, 9P -
Ane/1 = —h @ dx = 2 PiAne/l,i + Ane/l,S
Xne =1

1 A double node numbering, i=1,2,3,4 or i=P,E,NE,N is used in Figure 2 and eq. ( 32).



Ynne ap 4 ( 32)
— 3 —
Anej2 = f <_h a + Ah) dy - Z PiAne/Z,i + Ane/2,5
Yne =1
Xne N
, 9P .
Ane/3 = —h a_ dx = z PiAne/3,i + Ane/3,5
% Y i=1
Yne ~
, 9P .
Anej/a = —h a + Ah ) dy = z PiAne/4,i + Ane/4,5
Ye i=1

The coefficients Ape/ji (j = 1,4 and i = 1,5) are detailed in the Appendix. They are calculated with
the derivatives of the shape functions, d¢;/dx and d¢;/dy and are similar to the coefficients 4;;
and B;, i,j = 1,2 obtained in the homogenization method. This becomes more clear when writing
the discretized Reynolds equation as a flux conservation equation and with the aid of Figure 4. For
the incompressible Reynolds equation this yields:

.NW .N o NE
(7) 1(8) 9)
Gine/1 T I Tq;1e"3 ne
3 1 4
m o : o
| 'n I
Qinvia : Qne/4
—> : >
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[ ] [ J
1) (2) 3)

Figure 4. Flux balance on the basic coarse grid cell

Qse/2 + Ane/4 — 9nw/4 — Gsw/2 + Ane/3 + Anw/1 — 9sw/1 — Gse/3 = 0 ( 33)

The step toward the compressible Reynolds equation is straightforward. Reference [ 15] indicates
that in the multiscale method, the approximations of the volume fluxes for the compressible
Reynolds equation are the same as for the incompressible one. The explanation for this
approximation is the weak variation of the pressure on a cell of the coarse mesh compared with the
rest of the domain. This was rigorously proved for the homogenization method where eq. ( 15) and
its solution ( 16) showed that the approximation P, = const. holds over a cell of the coarse grid and,
as a consequence, the coefficients A;; and B;, i,j = 1,2 used for expressing the compressible
volume fluxes ( 24) had the same form as for the incompressible fluxes. It could be argued that eq. (
15) and its solution ( 16) were obtained under the assumption of two different, distinct scales but the
numerical results presented in this paper will show that the assumption is fully justified in a general
case.



The compressible Reynolds equation approximated by the multiscale method is then:

Pe(Qse/Z + Qne/4) - Pw(an/4 + qSW/Z) + Pn(Qne/3 + an/l) - Ps(st/l + QSe/3) =0 ( 34)

A nine point stencil discretized equation is obtained after replacing the fluxes given by ( 32) in eq. (
34). Again, a double node numbering, i=1...9 or i=SW... NE (indicated in Figure 4) is used for
simplicity.

9
ZCLPL+D=O
i=1

;= _PWASW/Z,SW - PsAsw/l,SW
C; = PeAse/Z,S - PWASW/Z,S - PS(ASW/l,S + Ase/3,S)
C; = PeAse/Z,SE - PsAse/3,SE

(35)

Cy=—Py (Anw/4,W + Asw/Z,W) + BuAnwiw — BsAsw/aw
Cs = Pe(Ase/Z,P + Ane/4,P) - PW(Anw/4,P + Asw/Z,P) + Pn(Ane/3,P + Anw/1,P)
- Ps(Asw/l,P + Ase/3,P)
Ce = Pe(Ase/Z,E + Ane/4,E) + PnAne/3,E - PsAse/3,E (36)
C; = _PwAnw/4,NW + PnAnw/l,NW
Cg = PeAne/4,N - PwAnw/4,N + B, (Ane/3,N + Anw/l,N)
Co = PoAnejane + PoAne/zne
D= Pe(Ase/Z,S + Ane/4,5) - Pw(Anw/4,5 + Asw/2,5) + Pn(Ane/3,5 + Anw/1,5)
- Ps(Asw/l,S + Ase/3,5)

The cells of the dual grid situated on the boundaries can not be obtained by staggering the cells of
the basic grid. Their size is therefore adapted in order to cover the domain of analysis as shown in
Figure 5. The discretized Reynolds equation on these cell has the same form as eq. ( 35) and the
pressure marked with “o” carry boundary conditions.
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Figure 5. Boundary cells of the dual coarse grid

The discretized eq. ( 35) is non-linear because its coefficients depend on the unknown pressure on
the faces of the basic grid cell. It is therefore solved with a Newton-Raphson algorithm using an



analytically calculated Jacobian. In order to avoid spurious oscillations of the solution or diverging
algorithms for high 4 values, the pressures on the e and w faces of the grid cell are approximated by
an “upwind” approach [ 16], [ 17], P, = P, and P, = Py, while B, = (Py + Pp)/2 and P, =
(Ps + Pp)/2.

In all cases, the solution of the linear systems associated with the Newton-Raphson algorithm on the
coarse grid or arising from the discretization of eqs. ( 20) for the homogenization method or of egs. (
26) and ( 31) is solved with the Pardiso algorithm [ 18].

Numerical results

Numerical results are obtained for the 2D inclined slider depicted in Figure 6. The lower surface is a
flat wall sliding in x direction with velocity U. The upper surface is the wall carrying an irregular
surface. The inlet, exit and the lateral surfaces of the domain carry the same constant pressure
boundary conditions, P,.

Figure 6. The 2D inclined slider; the upper surface is irregular

The generation of the irregular film thickness starts with a flat upper wall inclined from the left hand
side (inlet plane) to the right hand side (outlet plane); the film thickness of the outlet and inlet
sections are h, and hy = 2h,, respectively. The sliding and the transversal distances have the same
length L and h, /L = 1073,

There are many algorithms in the literature for generating an irregular surface [19]. The algorithm
given [ 20] in enables the control of the power spectral density and of the surface heights distribution
and was therefore used. In the present analysis, the height of the surface follows a Weibull
distribution with a shape parameter of 3. This is considered to be very close to a normal distribution.
The power spectrum of the surface heights corresponds to an isotropic autocorrelation length of
2.5%L. With these two information (height distribution and power spectrum) and with ISEED=1? for
the height distribution, the algorithm described in [ 20] generates the surface heights in 257x257
points of the xy plane. These surface heights have zero mean and unit standard deviation. They are
then scaled with a standard deviation 0 = 20%h, and are added to the inclined top surface
described by h; and h,. A surface plot is depicted in Figure 7 and shows the irregular character of the
film heights progressing from a mean dimensionless inlet height h; = 2 toward an mean exit height

h2=1.

2 Used in the random number generation subroutine of IMSL[ 21].



Figure 7. Surface plot of the dimensionless film heights

Reference results were obtained from the direct numerical solution of the Reynolds equation ( 3) on
a fine mesh of 1024 equally spaced control volumes in each direction. Figure 8 depicts the
dimensionless load capacity of the 2D slider obtained by integrating the pressures:

11
W= Of Of (P* — 1)dxdy (37)

Due to compressibility, the load tends to an asymptotic value. As shown in Figure 8 the regime
characterized by A = 1000 corresponds to a strong compressible regime and the load is close to an
asymptotic value. A value of A = 10 corresponds to a mild compressible regime while flow regimes
with A < 1 are virtually incompressible.

In the following, the pressures P* obtained by solving Reynolds eq. ( 3) on the fine grid for 4 = 10
and 1000 will be considered as reference values for characterizing the results of the homogenization
and the multiscale methods. For example, Figure 9 depicts the surface plot of the dimensionless
pressures for these two values of A.
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c
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5 1E-02 ¢
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Compressibility number (lambda)

Figure 8. Dimensionless load of the compressible 2D slider (hy = 2h,, L = B)

12



Figure 9. Surface plot of the dimensionless pressure

Three computational grids were used for the homogenization and the multiscale method: 32x8, 64x8
and 128x8 equally spaced control volumes in each direction. The first grid had Nycg=Nycc=32 CV in
the coarse grid and Nirc=N,rc=256 CV of the fine grid corresponding to the nodes used for
generating the film heights. The last grid had Nicg=N,c6=128 CV in the coarse grid and
Nyr=Nyr6=1024 CV of the fine grid corresponding to the discretization cells used for obtaining the
reference solution P*.

Figure 10 depicts the pressure variation in the mid-plane of the 2D slider for a mild compressible
regime (A = 10) along the interrupted line contour depicted in Figure 6. This kind of presentation
was preferred to surface plots for the visual inspection of the results. The dots correspond to the
results on the coarse grid while the interrupted line corresponds to the results on the fine grid
obtained by using egs. ( 5), ( 19) and € = 1/N,¢¢ (or Nycg) for the homogenization method and eq. (
30) for the multiscale method.
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Figure 10. Pressure variation in the mid-plane of the 2D slider (A = 10, CG=32 CV, FG=32x8 CV)
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Figure 11. Pressure variation in the mid-plane of the 2D slider (A = 10, CG=128 CV, FG=128x8 CV)
Figure 11 depicts the same pressure variation for A = 10 but for N,c; = 128. The results coincide

with the reference solution P*. The accuracy is also enlightened by the error between the
homogenized (or the multiscale) results and the reference values.

(38)

1
error = ——— /Z(P — P*)?
Nxcg,Fe

Table 1 shows that the errors for the homogenization and the multiscale methods are very much the
same, either on the coarse, or on the fine grid. The errors are one or two orders of magnitude
smaller on the fine grid compared to the coarse grid. If depicted in logarithmic coordinates both the
coarse and the fine grid errors would show a linear decrease with the grid density.

Table 1 Accuracy of the homogenization and multiscale methods relative to the reference solution

Lambda=10 (mild compress.) Lambda=1000 (strong compress.)
Nyy Coarse Grid (CG) Fine Grid (FG) Coarse Grid (CG) Fine Grid (FG)
Hmgn Mitscl Hmgn Miltscl Hmgn Miltscl Hmgn Miltscl
32x8 2.01E-3 1.39E-3 6.66E-4 3.92E-4 1.84E-2 1.72E-2 8.35E-3 1.39E-2
64x8 7.17E-4 4.63E-4 2.50E-4 1.56E-4 9.60E-3 8.77E-3 3.74E-3 4.26E-3
128x8 2.27E-4 1.60E-4 7.87E-5 5.46E-5 3.72E-3 3.40E-3 1.36E-3 1.40E-3

The results for the strong compressible regime, A = 1000, are depicted in Figure 12 and Figure 13.
The pressure variations are much more rapid than for the mild-compressible regime, therefore, as
shown in Table 1, the errors obtained with the same grid densities are larger. Figure 12 depicts the
results on the coarse grid (left) and on the fine grid (right) for Ny ,,c¢ = 32. The results obtained with
the homogenization and the multiscale method on the coarse grid are close (Figure 12, left). This is
not the case for the results estimated on the fine grid (Figure 12, right) were the homogenization
method underestimates the reference values, while the multiscale method overestimates them.
However, Figure 13 obtained for Ny ,c; = 128 shows that when the errors on the coarse grid are
reduced then the estimations on the fine grid raise no problems.
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Figure 13. Pressure variation in the mid-plane of the 2D slider (A = 1000, CG=128 CV, FG=128x8 CV)

The accuracy of both methods for A = 10...1500 and for the mid-plane pressures is depicted in
Figure 14. The accuracies of the two methods are very close excepting the results obtained with the
multiscale method on the fine grid FG=32x8 CV. This finding is consistent with the results depicted on
the right part of Figure 12 showing large variations of the multiscale pressure on the fine grid. The
conclusion is that 32 CV of the coarse grid are not sufficient for the multiscale method for obtaining a
good enough solution on the fine grid starting with A = 500. For higher coarse grid densities, the
accuracy of the two methods is similar.
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Figure 14. Errors of the pressure variation in the mid-plane of the 2D slider (coarse grid-left, fine grid-
right)

The relative errors for the load and the friction force of the slider calculated with the homogenization
and the multiscale methods with respect to the reference results are depicted in Figure 15. In all
cases, the density of fine grid is N.cx8. The relative errors are comprised between 10! and 1072 or
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less with lower values for the multiscale method although the differences between the two methods
are not significant. However, the results depicted in Figure 14 and in Figure 15 show that relative
errors of the order of 102 can not be obtained with the coarse grid of 32 CV and in this case higher
coarse grid densities should be privileged for A > 500.
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Figure 15. Relative error of the load and friction force (the density of the fine grid is 8 times the
density of the coarse grid)

The computational effort required by the homogenization and multiscale method is depicted in
Figure 16a,b. The computational effort is here measured by the ratio between the CPU time required
for a full solution divided by the CPU time of the full Reynolds equation on the same grid. The CPU
function was preferred to the SYSTEM_CLOCK function because the latter depends on the number of
threads used. Indeed, both the homogenization and the multiscale method can be easily parallelized
with the OMP option. This is an important advantage because the local solutions on the fine grid
described either by egs. ( 20) or by egs. ( 26) and ( 31) can be dispatched on many threads. However,
the result of CPU function is independent of the number of threads. Figure 16a shows the ratio
CPU/CPU(Reyn1024) for different grid densities. The homogenization method is slightly more
efficient because it requires the solution of four discretized egs. ( 20) on the local fine grid instead of
five egs. ( 26) and ( 31) for the multiscale method. However, the difference is small. The ratio
increases to 30...40% of CPU(Reyn1024) with the density of the fine grid. However, a fine grid density
of 10242 cells is not large and Figure 16b shows that smaller CPU ratios are obtained when increasing
the fine grid density. The homogenization and the multiscale methods have a net advantage in terms
of CPU for very large size fine grids (two orders of magnitude reduction for the 4096 fine grid) when
the numerical solution of the full Reynolds equation must use the hard memory for solving the linear
system.

16



0.5 0.35
B Hmgn, Lmbd=1000 0.3 o~

F04 ——— = RN

S m Miltscl, Lmbd=1000 2 0.25 >

203 L — = 0.2 BN

2 Hmgn, Lmbd=10 ‘ 2 N

£0.2 . g 015 >

S Mitscl, Lmbd=10 S 1

3 ’ & 0.1 | —_e—cpu(Mmitscl)/CPU(Reyn) Y

001 M+ H T ©C905 \

0 !‘ ‘ ! ( ( : 5 -e CPU(Hmgn)/CPU(Reyn) e
2562 5122 10242 500 1500 2500 3500 4500

Ny yec Fine grid density

Figure 16. Computational effort of the homogenization and multiscale methods relative to the
reference solution of the Reynolds equation

Another point under discussion is the accuracy of the reconstructed solution on the fine grid when
the coarse grid discretization has different number of cells in x and y direction. For the multiscale
method, eq. ( 30) operates on all kind of coarse grids but this can raise questions for the
homogenization methods. Indeed, the key point for the reconstruction of the fine grid solution of the
homogenization method is the definition of the small parameter € = 1/N in eq. ( 5). This raises no
problem when Nycs = N,¢¢ but is not well defined if Nycq # N, - A heuristic approach case would
be:

(39)

This is verified in the following. The accuracy of the results obtained with different coarse grids is
given in Table 2. Different Nicc and N,cc were combined but the resulting fine grid always had a
density of 1024 cells. There is a very slight increase of the error given by the homogenization method
compared to the multiscale method but the difference is quite small and shows that the heuristic eq.
( 39) for reconstructing the fine grid solution of the homogenization method performs very well.

Table 2 Accuracy of the homogenization and multiscale methods relative to the reference solution (Nxcé#Nycc and
Nxrc=Nyrc=1024)

Lambda=10 (mild compress.) Lambda=1000 (strong compress.)
N; Ny Coarse Grid (CG) Fine Grid (FG) Coarse Grid (CG) Fine Grid (FG)
Hmgn Miltscl Hmgn Miltscl Hmgn Miltscl Hmgn Miltscl

128/8 | 128/8 2.27E-4 1.60E-4 | 7.87E-5| 5.46E-5| 3.72E-3 | 3.40E-3 | 1.36E-3 | 1.40E-3

128/8 | 64/16 3.10E-4 1.76E-4 | 1.10E-4 | 5.94E-5| 5.13E-3 | 4.21E-3 | 1.84E-3 | 1.69E-3

128/8 | 32/32 4.61E-4 2.49E-4 | 1.61E-4 | 8.38E-5| 835E-3 | 7.07E-3 | 2.94E-3 | 2.51E-3

64/16 | 128/8 5.86E-4 4.34E-4 | 1.43E-4 | 1.04E-4 | 8.60E-3 | 8.09E-3 | 2.38E-3 | 2.39E-3

64/16 | 64/16 6.78E-4 4.68E-4 | 1.67E-4 | 1.12E-4 | 9.66E-3 | 8.77E-3 | 2.64E-3 | 3.02E-3

64/16 | 32/32 8.64E-4 5.50E-4 | 2.12E-4 | 1.29E-4 | 1.26E-2 | 1.14E-2 | 3.40E-3 | 3.83E-3

32/32 | 128/8 1.61E-3 1.25E-3 | 2.65E-4 | 1.93E-4 | 1.61E-2 1.59E-2 | 3.88E-3 | 3.77E-3

32/32 | 64/16 1.67E-3 1.36E-3 | 2.74E-4 | 2.04E-4 | 1.64E-2 1.61E-2 | 3.92E-3 | 4.41E-3

32/32 | 32/32 1.86E-3 1.41E-3 | 3.01E-4 | 2.01E-4 | 1.83E-2 | 1.72E-2 | 4.30E-3 | 7.03E-3

Summary and conclusions

The present work compares the homogenization and the multiscale methods applied to the
compressible Reynolds equation in a very narrow channel with rough (irregular) walls. The article
details all the stages of development of the homogenization method and underlines that under
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certain conditions the local problems have the same formulation as for an incompressible fluid. This
treatment of local problems greatly simplifies the resolution. Then the multiscale method inspired
from porous media flow is adapted for taking into account the Couette part of the flow. This
extension of the algorithm is not present in the literature. According to the homogenization method,
the local problem is then treated as for an incompressible fluid.

Examples of the numerical solutions are given for a convergent, two-dimensional narrow slider with
a realistic, irregular gap height typical for gas lubrication problems. The results were compared with
the solution of the original Reynolds equation.

Several points were analyzed: the influence of the density of the coarse mesh, the precision of the
solution obtained on the fine mesh and the computational effort. The results obtained for mild and
strong compressible regimes showed that the two methods are very similar in terms of accuracy and
computational effort. One could underline that the multiscale method has a slight advantage in
terms of accuracy while the computational effort of the homogenization method is slightly less but
these differences are quantitatively not important.

Both methods worked well for this realistic calculation case compared to the original Reynolds
equation. This was to be expected for the multiscale method that has no a priori limitations in terms
of irregularity of its coefficients or on the number of coarse grid cells in x and y directions. The results
obtained with the homogenization method were also accurate both on the coarse mesh and on the
fine mesh, although the irregular channel height had not an exact periodic pattern. The heuristic
equation used to define the small parameter € when the coarse grid has different x and y densities
works well for obtaining the solution on the fine grid.

Within the limits of the simplifying assumptions given in the introduction, the two methods are
equivalent. What could make the difference in the future is the ease of integrating additional non-
linear effects such as taking into account sporadic contacts between asperities or the superposition
of a temperature field.

Nomenclature
Aoi2, A’o12 ~ operators defines by egs. ( 9)-( 14)

Ajj, coefficient of the homogenized eq. ( 22) or of the multi-scale eq. ( 36)
B, width of the domain of analysis, [m]

C, D, coefficients of the multi-scale Reynolds eq. ( 39)

h, thin film thickness (gap height), [m]

Hum, average film height, [m]

Ronin, minimum gap height, [m]

hy, h, inlet and exit height of the inclined slider

L, length of the domain of analysis, [m]

m, local mass flow rate, [kg/m/s]

P, pressure, [Pa]

P, reference solution for pressure, [Pa]

P, approximation of the pressure in the multi-scale method, [Pa]



P, atmospheric pressure, [Pa]

q, local flow rate, [m?%/s]

U, wall velocity, [m/s]

w, dimensionless load

X, 9, distances, [m]

o, standard deviation of gap height, [m]

U, dynamic viscosity, [Pas]

A, compressibility number

g, small parameter (ratio of the short and long length scale)
0, domain of analysis

obi, shape functions used in the multi-scale method

Xi» functions used in the homogenization method and defined by eq. ( 20)
Indice:

0,1, long and short length scales

eq, equivalent

X, 9, axis of the coordinate system
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Appendix
The coefficients A, /;; obtained after injecting eq. ( 30) in the fluxes given by eq. ( 32) are:

Xnee Xnee
0¢; d¢s
Ane/li = - f hg_dx: Ane/15 = - f h3_dx
, 9 , P)
Xne Y Xne Y
Ynne Ynne Ynne

09; d¢
Ane/Z,iz_f h axld% Ane/2,5=_f h3a—x5dy+Af hdy

(40)
Yne Yne Yne



Xne
d¢ 10,
Ane/3l - f h3a_yld ) Ane/3,5 = - f h3 3 > d
Xn Xn
Yne ad) Yne ad) Yne
Anejai = f h? axl dy, Ane/as = — f h3a—xsdy +A f hdy
Ye Ye Ye

for i = 1,4. These definitions hold for the control volume ne of the dual grid detailed in Figure 3. The
coefficients for the control volumes nw, sw, se of the dual grid depicted in Figure 2a are obtained in a

similar manner.





