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Remarks on compactness results for variable exponent spaces L p(•)

Given the Lebesgue space with variable exponent L s(•) (Ω) whose norm is denoted by || • || s(•) , we show the following equivalence : lim

1 p - Ω s(x) p dx 1 p
= 0, where χ E is the characteristic function of the measurable set E and |E| its Lebesgue measure. We apply such results to characterize compactness of some inclusions.

Résumé

Etant donné l'espace de Lebesgue à exponent variable L s( 

Motivation

The main motivation of this paper comes from a gap found in [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] . The problem can be stated as follows :

Let s (•) be a variable exponent on a bounded set Ω whose range is in ]1, α[, α = ess sup Ω s < +∞. Then its conjugate s = s s -1 is only finite almost everywhere in Ω. Therefore, if E ⊂ Ω and χ E its characteristic function then

||χ E || s(•) = Inf λ > 0 : Ω χ E (x) λ s(x) dx 1
does not necessarily tends to zero as the measure of E, which is denoted by |E|, tends to zero. So the main purpose of the Theorem 2.1 below is to give a necessary and sufficient condition to have lim

|E|→0 ||χ E || s(•) = 0. (1) 
Note that when s is continuous in Ω, relation [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] holds true and the equivalence we will be given in Theorem 2.2 . This will allow us to give many counterexamples where (1) is not true.

In the light of this new Theorem, we rephrase the results that we have obtained in [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] and also we add a refinement of Theorem 10 of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF].

Concerning the compactness of variable exponents, there are recent papers treating the same issues.

In [START_REF] Mizuta | Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the p(x)-Laplacian and its critical exponent with variable exponent[END_REF], the authors give some conditions to ensure the compact embedding; compared to our results, we recover their results in Lemma 2.3 and its consequences below. Moreover, in [START_REF] Mizuta | Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the p(x)-Laplacian and its critical exponent with variable exponent[END_REF] they give the following non compactness result

If q : Ω → [1, +∞) and q(x) p # (x) - c |Log |x -x 0 | | a.e x ∈ Ω ∩ B(x 0 ; η) for some η > 0, then the inclusion of W 1 0 L p(•) (Ω) into L q(•) (Ω) is not compact, provided : p(x 0 ) < N k , p # = N p N -p .
This case is linked with our condition since, here

s(x) := c p # (x) -q(x) Log |x -x 0 | |. (2) 
Then relation (2) implies lim inf

p→+∞ 1 p - Ω s(x) p dx 1 p γ > 0. (3) 
This example shows that condition (10) that we have introduced is necessary to have compactness.

Another recent paper appeared in [START_REF] Edmunds | EGN : Edmund-Gogatishvilli-Nekvinda[END_REF], they use the so called Almost-compact embedding which is a variant of uniform Vitali's Theorem. They give a necessary and sufficient condition to ensure that the injection between two Lebesgue variable exponent spaces L q(•) (Ω) and L p(•) (Ω) is an Almost-compact embedding. As a consequence, they give a sufficient condition using Banach function space X, Y, Z so that the injection W 1 X ⊂ > Z becomes compact. This last result is included in Corollary 2.1.

Main results

Let Ω be an open set of IR N and s

: Ω → [1, +∞[ a measurable function , L s(•) (Ω) the variable exponent space associated. We denote by || • || s(•) its usual norm and χ E is characteristic function of a set E ⊂ Ω.
When Ω of finite measure, we shall denote by -Ω and by u * the decreasing rearrangement of a measurable function u : Ω → IR that is the generalized inverse of the distribution function given by

t → |{u > t}| = |{u ∈ Ω : u(x) > t|.
Here, as usual, we set |E| the Lebesgue measure of a measurable set E.

Setting Φ p (u) = Ω |u(x)| p(x) dx,
we consider the norm :

||u|| p(•) = Inf λ > 0 : Φ p u λ 1 (Inf ∅ = +∞) (4) 
and

L p(•) (Ω) = {u : Ω → IR measurable such that ||u|| p(•) < +∞}. The space (L p(•) (Ω); || • || p(•)
) is a Banach function space and an equivalent norm for u is the following Amemiya norm

|u| p(•) = Inf λ>0 λ 1 + Φ p u λ ( 5 
)
which is equivalent to the norm in (4) :

||u|| p(•) |u| p(•) 2||u|| p(•) . ( 6 
)
We set :

L 1 + (Ω) = {v ∈ L 1 (Ω) : v 0} and L p(•) + (Ω) = L p(•) (Ω) ∩ L 1 + (Ω).
One has

Theorem 2.1.
Assume that Ω is of finite measure. The following assertions are equivalent :

1. lim t→0 sup |E|=t ||χ E || s(•) = 0. 2. lim p→+∞ 1 p - Ω s(x) p dx 1 p = 0. 3. s belongs to the closure of L ∞ (Ω) in L exp (Ω). L exp (Ω) = u ∈ IR measurable such that ∃ λ > 0 : exp(λ|u|) ∈ L 1 (Ω)

Proof of Theorem 2.1

We shall need the following Lemmas. The first one is given in Fusco-Lions-Sbordone [START_REF] Fusco | Sobolev imbedding theorems in borderline cases[END_REF] (see also [START_REF] Sbordone | Medie integrali e loro valori asintotici Atti del XVII convegno A[END_REF]).

Lemma 2.1.

Let g : Ω → IR be a measurable function with |Ω| < +∞. Set F (g) = lim sup p→+∞ e p - Ω |g| p dx 1 p . Then 1. F (g) = Inf λ > 0 : - Ω exp |g| λ dx < +∞ 2. F (g) = 0 if and only if there exists a sequence : f h ∈ L ∞ (Ω) such that Inf λ > 0 : - Ω exp |f h -g| λ dx < 2 ----→ h→+∞ 0.
Thanks to that lemma statements 2 and 3 are equivalent. We shall prove the equivalence between 1) and 2) in Theorem 2. .

Proof :

Let E ⊂ Ω with 0 < |E| < 1. According to the Lyapunov's theorem (see [START_REF] Rakotoson | Réarrangement Relatif, un instrument d'estimations dans les problèmes aux limites[END_REF]) there exists a measurable set

G E ⊂ Ω such |G E | = |E| and {s > t 0 } ⊂ G E ⊂ {s t 0 }, with t 0 = s * (|E|) (s * is the decreasing rearrangement of s).
Since for all λ 1, we have

Ω χ G E (x) λ s(x) dx |G E | = |E| < 1, then ||χ G E || s(•) = Inf 0 < λ < 1 : G E e -s(x)Log λ dx 1 = Inf |E| < λ < 1 : G E e -s(x)Log λ dx 1 because s 1, = Inf e -1 µ : µ µ 0 > 0 G E e s(x)
µ dx 1 where

µ 0 = - 1 Log |E| .
Let ε > 0. Then, using the definition of infimum, there exists

µ ε ∈ [µ 0 ; +∞[ such that G E e s(x)
µε dx 1 and lim

ε→0 µ ε = - 1 Log ||χ G E || s(•) (7)
Since µ ε > 0, we then have : 

µ ε Inf µ > 0 : G E e s(x) µ dx 1 Inf µ > 0 : 1 |E| G E e s(x
1 p - Ω s(x) p dx 1 p = 0.
Conversely, assume 2., then following Lemma 2.1, Inf λ > 0 : -

Ω exp s(x) λ dx < 2 = 0. Let 0 < ε < 1, then we have Ω exp -s(x)Log ε dx is finite (that is Ω 1 ε s(x) dx < +∞).
By Hardy-Littlewood inequality : sup

|E|=t E 1 ε s(x) dx t 0 1 ε s * (σ)
dσ --→ t→0 0. Therefore, there exists δ ε > 0 such that for all 0 < t < δ ε : we have sup

|E|=t E 1 ε s(x) dx 1. This implies sup |E|=t ||χ E || s(•) ε. ♦
We recall the following Theorem which is the Theorem 10 p. 517 of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] Theorem 2.2 (Vitali's Theorem for normed space). Let (X(Ω), || • ||) be a normed space with X(Ω) ⊂ L 0 (Ω) (set of measurable functions). Assume that the norm satisfies also : if

0 |f | g, g ∈ X(Ω) then |f | ∈ X(Ω), || |f | || ||g|| and ||1|| < ∞, 1 ∈ X(Ω).
Then for any sequence (|f n |) n 0 of X(Ω) satisfying the following two conditions (Vitali's conditions)

1. f n (x) → f (x) a.e on Ω, |f | ∈ X(Ω), 2. ∀ε > 0, ∃δ ε > 0 such that if |E| δ ε , E ⊂ Ω then for all n || |f n |χ E || ε and || |f |χ E || ε, one has : lim n→+∞ || |f n -f | || = 0.
Next, we shall introduce the following definition :

Definition 2.1. Vitali's conditions Let (Z, || • || Z ) be a normed space included in L 0 (Ω). We will say that a bounded sequence (f n ) n in Z possesses the Vitali's property in Z, if for all ε > 0 :

1. there exists

Ω ε ⊂ Ω, with |Ω ε | < +∞, so that sup n 0 ||f n χ Ω\Ωε || Z ε and 2. sup n 0 ||f n χ E∩Ωε || Z ----→ |E|→0 0. Remark 2.1. If Ω is of finite measure, then 1.) always holds with Ω = Ω ε .
Here is a corollary of Theorem 10 of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] Corollary 2.1. Let (V, || • || V ) be a normed space continuously embedded in L 1 loc (Ω) (ie ∀ ω ⊂⊂ Ω (i.e. relatively compact in Ω), there exists c ω > 0 :

|u| L 1 (ω) c ω ||u|| V , ∀ u ∈ V ). Let us set W 1 V = v ∈ L 1 (Ω) : ∇v ∈ V N with the natural norm |||v||| = |v| L 1 (Ω) + ||∇v|| V .
Consider Z a Banach function space such that W 1 V is continuously embedded in Z. If any bounded sequence of W 1 V has a subsequence having the Vitali's property in Z then W 1 V is compactly embedded in Z. The converse is true if Z is separable.

Proof :

The condition 1.) of Vitali's property shows that it is sufficient to consider |Ω| < +∞. We have to check the conditions of Theorem 2.2 to show the compactness : Let (f n ) n be a bounded sequence in W 1 V , our assumption implies

W 1 V ⊂ > W 1 L 1 loc (Ω)
. Thus, by usual compactness and Cantor diagonal process, we have a subsequence

f σ(n) n and f ∈ L 1 (Ω) such that f σ(n) (x) -----→ n→+∞ f (x) a.e.
Assuming that W 1 V is continuously embedded in Z, we deduce that (f n ) is also a bounded sequence in Z. Since it is a Banach function space then the Fatou property holds to get

||f || Z lim inf ||f σ(n) || Z constant.
Therefore f ∈ Z. Since (f σ(n) ) has a subsequence having the Vitali's property, still denoted f σ(n) , then if ε > 0 there is δ ε > 0 such that if |E| δ ε , we have sup On other hand, the separability of the Banach function space implies also

n 0 ||f σ(n) χ E || Z ε. But f σ(n) χ E converges to f χ E a.e
||f χ E || Z ----→ |E|→0 0 and ∀k ∈ IN sup n k ||f n χ E || Z ----→ |E|→0 0.
Thus, one has

δ ε > 0 if |E| δ ε , E ⊂ Ω ε then sup n kε ||f n χ E || Z + ||f χ E || Z ε 2 .
We deduce

||f n χ E || Z ||f n -f || Z + ||f χ E || Z ε, ∀ n k ε .
These Then, any bounded sequence (u j ) j 0 in L r 2 (•) (Ω) having a pointwise limit u, i.e.

u j (x) -----→ n→+∞ u(x) a.e in Ω,
converges strongly in L r 1 (•) (Ω).

Proof :

We can reproduce the proof of Corollary 10.1. of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF]. Notice that, due to the above condition (1) the relation ( 16) in [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] As a consequence of Lemma 2.3 we can rephrase Lemma 12 of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF] as follows :

While for the sequence (u j ) j 2 , we can choose u j (x) = This shows that (u j ) j remains in a bounded set of L r 2 (•) B(0; 1 2 ) and u j does not tend to zero in L 1 (B(0; 1 2 ) ) since B(0; 1 2 )

u j (x)dx = α N j -N • j N = α N > 0.
Remark 

1 jeN 1 - 1 Logr N - 1

 1111 We have u j (x) ----→ j→+∞ 0 ∀ x = 0. andB(0; 1 2 ) u j (x) r 2 (x) dx = |x| |x| Log j dx = α N dr α N e N < +∞.

Proof of the equivalence in Theorem 2.1 Assume

  

								s(x)	|E|		s * (t)
							e	µ dx =	e	µ dt. Therefore, we have
							G E		0	
	µ ε	Inf µ > 0 :	1 |E|	0	|E|	e	s * (t) µ dt < +∞	Ω Inf µ > 0 : -	e	s(x) µ dx < +∞
	Using relation (7) and Lemma 2.1, this inequality implies the result.		♦
	Thus Lemma 2.2 implies lim p→+∞								

) µ dx < +∞ By the Hardy-Littlewood inequality, we have 1. that lim t→0 sup |E|=t ||χ E || s(•) = 0 then lim t→0 sup |E|=t ||χ G E || s(•) = 0 where G E is the set given in Lemma 2.2.

  in Ω, Z is a Banach function space, again from Fatou property, we have ||f χ E || Z ε. Thus the second condition of Theorem 2.2 is fulfilled. So, we can conclude For the converse, let (f n ) n be a bounded sequence in W 1 V ; the compactness implies the existence of f ∈ Z, and a subsequence still denoted (f n ) n such that (8) holds. So let ε > 0, then we havek ε such that ∀ n k ε ||f -f n || Z ε 2and a finite measure subset Ω ε of Ω such that ||f χ Ω\Ωε || Z ε.

	lim n→+∞	||f σ(n) -f || Z = 0.	(8)

  holds true and so is the proof. ♦ || s(•) = 0; for clarity reason we choose to express it as it is.

	Remark 2.2. Condition (9) holds if ess inf Ω	r 2 r 1	> 1, for instance. Statement 1. in Theorem 2.1 is equivalent
	to lim |E|→0	||χ E	

  3.2.The choice of r 2 is related to the fact that lim inf|E| ||χ E || r 2 (•) γ 0 > 0, which implies that L r 2 (•) mustbe a non reflexive Banach function space, since this means that the constant function 1 does not have an absolutely continuous norm. Other counterexamples can be constructed.
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Proof :

The proof is the same as for Lemma 12 of [START_REF] Fiorenza | Relative rearrangement and Lebesgue spaces L p(•) with variables exponent 88[END_REF], replacing Corollary 10.1 by Lemma 2.3. We reproduce it for convenience.

Since the injections are continuous, then for any bounded sequence (u j

and a subsequence still denoted by (u j ) j 0 such that u j (x) ----→ j→+∞ u(x) a.e.

Since s = r r -r 1 satisfies condition (10) of Lemma 2.3 by our assumption, we may conclude that

Some useful results concerning non compactness

We want to give some examples, which will show that condition (9) (respectively (10) ) is necessary to obtain strong convergence. For this we introduce the following proposition : 

Proof :

Let us note, following Fusco-Lions-Sbordone's result (see Lemma 2.1), that

Lexp and we conclude using Lemma 2.1.

Remark 3.1.

We can compute directly a lower bound for γ 0 . Indeed, by change of variables, we are led to use the behavior of Γ-function given

t αp e -t dt as p → +∞.

Next, an analysis of Theorem 2.1 shows that, if we choose r 1 = 1 and r 2 > r 1 = 1 in Corollary 2.1 then r 2 r 2 -1 is the conjugate of r 2 . So, in the light of Proposition 3.1, to have a counterexample it suffices to take

Thus, relation( 9) is not satisfied. We can take