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Abstract— Satellite altimeters provide sea-level measurements
along satellite track. A mean profile based on the measurements
averaged over a time period is then subtracted to estimate
the sea-level anomaly (SLA). In the spectral domain, SLA is
characterized by a power spectral density (PSD) whose slope
in a log–log scale is a parameter of great interest for ocean
monitoring. Estimation of this spectral slope is usually done
through a cumulated periodogram using a large number of signal
samples. The location and dates of the data induce the spatial
and temporal resolution of the slope estimates. To improve this
resolution, this article studies a new parametric method based
on an autoregressive model combined with a warping of the
frequency scale (denoted as ARWARP). This ARWARP model
provides a PSD estimate, with a lower variance than the classical
Fourier-based ones and is reliable in the case of a small sample
number. To give a reference in the performance of the SLA slope
estimation, the corresponding Cramér–Rao bound is derived.
Then, rather than performing linear regression on the spectral
estimates, a new estimator of the slope is suggested, based on
a model fitting of the PSD. A statistical validation is proposed
on simulated SLA signals, showing the performance of slope
estimation using this ARWARP spectral estimator, compared to
classical Fourier-based methods. Application to Sentinel-3 real
data highlights the main advantage of the ARWARP model,
making possible SLA slope estimation on a short signal segment,
i.e., with a high spatial and/or temporal resolution.

Index Terms— Autoregressive (AR) model, frequency warping,
sea-level anomaly (SLA), slope estimation, spectral analysis.

I. INTRODUCTION

THE history of satellite altimetry began in the 1970s, but
the performance of this technique improved considerably

in the 1990s with Topex/POSEIDON. This revolutionized the
scientific knowledge on sea-level variations, at regional and
global scales [1]. Topex/POSEIDON was the first item of the
Jason series (Jason-1 operating from 2001 to 2013, Jason-2
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from 2008 to 2019, Jason-3 from 2016, and Jason-CS/
Sentinel-6 launched in 2020), considered as the reference mis-
sion for mean sea-level monitoring [2]. The Sentinel-3 topog-
raphy mission (European Commission Copernicus Program)
aims at complement these reference time series for operational
applications and mesoscale monitoring. Satellites A and B are
currently in-flight (respectively, launched in 2016 and 2018),
and the continuity will be ensured with C and D items [3].

Actually, satellite altimetry is used for a wide range of appli-
cations. Over ocean, the measured data benefit, for example,
to meteorological applications, by measuring the surface wind
speed and the significant wave height [4]. Satellite altimetry is
also commonly used over hydrology, i.e., to monitor rivers and
lakes elevation [5]. The added value of satellite with respect
to in situ means is the global coverage, repeated in time. The
height variations measured can be then used to estimate the
fresh water fluxes and resources. Another major field of appli-
cation for altimetry is the cryosphere monitoring (obviously
with a proper orbit coverage), which mostly corresponds to ice
sheet elevation and sea ice thickness monitoring [6]. This topic
is strongly related to issues in climate change, as the mass loss
of ice sheet is the main contributor of sea-level rise, and sea
ice loss and thinning represents at the same time an evidence
of climate change and an amplification factor (albedo effect).
However, the main goal of most altimetry missions (such as
Sentinel-3) is to monitor sea-level variations.

As such, satellite altimetry has strongly contributed to reveal
that the circulation is dominated by mesoscale variability,
due to ocean eddies or isolated vortices, meandering currents
or fronts, squirts, and filaments. The mesoscale variability
usually refers to ocean signals with space scales of around
100 km. The mesoscale can be observed thanks to the sea-level
anomaly (SLA) variable, which is deduced from the measured
sea level minus a mean level computed by averaging a long
time series of sea-level data [7].

The estimation of the wavenumber spectra of along-track
SLA is a relevant way to evidence energy cascades between
large-scale (≈1000 km), mesoscale (≈100 km), and sub-
mesoscale (few tens kilometers) dynamics [8]. In such a
representation, geostrophic mesoscale turbulence appears as a
steep slope in the mesoscale wavelength band. The slope value
(denoted by α thereafter) exhibits spatial variability and gives
some clue regarding the geophysical process involved in the
observed area [8]. When working with high rate data, e.g., with
a sampling frequency of 20 Hz for Jason- or Sentinel-3-series,
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the white noise plateau appearing at short spatial scales
corresponds to the assumed Gaussian instrumental noise [9].

Estimation of the slope α is done on the power spectral
density (PSD) estimate in a log–log scale. To perform a
reliable slope estimation, the PSD estimate has to have a
variance sufficiently low. Therefore, the widely used spectral
method is based on a cumulated (Welch) periodogram which
consists of averaging a large number of periodograms of
along-track SLA segments [8], [10]–[14]. This PSD averaging
determines the spatial and temporal resolution of the resulting
slope map, depending on the size of the area in latitude
and longitude and on the time period from which the SLA
signals are issued. If we take into account the resolutions
currently targeted (10◦ (in latitude) by 10◦ (in longitude) and
averaging over several months, or even several years of SLA
data, the cumulated periodogram coupled with a least squares
estimate is an effective and efficient method for estimating the
slope.

However, it would be of interest to improve the spatial
and temporal resolution of the slope estimates. Therefore, this
article focuses on SLA slope estimation using a small number
of signal samples, i.e., a single segment of a few thousand
samples, corresponding to a single satellite pass in a very short
time interval, over a given area, the number and the dates of
samples used being directly related to the spatial and temporal
resolution of the estimate.

The article is organized as follows. Section II recalls
the methods widely used for spectral slope estimation to
show their limitations when applied to short signal segments.
Moreover, this section also describes the main interesting
characteristics of SLA signals to highlight the difficulty of
such a spectral estimation. Section III introduces the pro-
posed spectral estimator referred to as autoregressive model
combined with a warping of the frequency scale (ARWARP).
To conduct a quantitative comparison between different meth-
ods, Section IV derives the Cramér–Rao bound (CRB) of
the slope estimate. Furthermore, rather than performing linear
regression on the spectral estimates, a new estimator of α is
suggested, based on a model fitting of the spectral estimates.
A statistical analysis of slope estimation using ARWARP is
conducted on simulated SLA signals in Section V. An appli-
cation to real data from the Sentinel-3 satellite is presented in
Section VI. Conclusions and future works are finally reported
in Section VII.

II. PROBLEM STATEMENT

Let us assume that N consecutive measurements of SLA
are collected along the satellite track every 1/ fs seconds, fs

denoting the sampling frequency, and gathered in a vector
x = [x(0) x(1) . . . x(N − 1)]T , the superscript T denoting
the transpose operation. Assuming that x is a sample drawn
from a wide-sense stationary process with PSD Sx( f ), our
objective is to obtain an estimate Ŝx( f ) of Sx( f ) from x, that
can take into account the frequency characteristics of SLA
signals.
Since we are considering sampled data, through the article,
f will denote the normalized frequency, i.e., the actual fre-
quency (hertz) divided by fs . Therefore, all figures of SLA

Fig. 1. Along-track Sentinel-3 altimeter wavenumber spectrum for the
equator area within a box 20◦ × 20◦ centered at (0◦ N, 210◦ E): (Left) using
a cumulated periodogram of 315 SLA segments of N = 3000 samples each,
corresponding to seven months of data, and (Right) using a single periodogram
on one SLA segment of N = 3000 samples (October–November 2016).

Fig. 2. Sentinel-3 SLA PSD (in blue) estimated by Welch periodogram
(L = 8, N = 3000, 10% cosine taper window applied after detrending,
zero-padding by a factor 3), compared with the expected shape in red.

spectra are plotted as a function of f . It is noted that if the
sampling rate fs in hertz corresponds to a ground spacing of
ds in kilometer, any normalized frequency f can be converted
to the corresponding wavenumber f/ds in cycles per kilome-
ter (cpkm) or to the wavelength ds/ f in kilometer. To illustrate
this, a double x-axis has been included in Figs. 1, 2, and 6.

A. Conventional Methods for SLA Spectral Slope Estimation

Estimation of the SLA spectral slope α is usually a two-step
procedure [8], [10], [11], [13], [14]. First, an estimation of
the PSD is done. Second, a least squares linear regression is
applied on the log–log PSD representation within a specified
frequency interval to estimate the slope α. To favor the
performances of least squares linear regression, we need an
estimated spectrum with a small variance. Therefore, PSD
estimation is done on a large number of SLA samples, through
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Fourier-based methods, classically a cumulated weighted peri-
odogram (Welch periodogram) since averaging several PSD
estimates is a way to reduce the variance of the estima-
tion. This two-step procedure involves several parameters:
the number of averaged PSD, the spatial box in latitude and
longitude from which the corresponding SLA segments are
selected, the weighting window, and the wavelength range
for the linear fit. In [10], along-track altimeter data from
TOPEIX/Poseidon, Jason-1, ENVISAT ,and Geosat Follow-On
are selected within 10◦ (in latitude) by 20◦ (in longitude).
Then, the wavenumber spectrum is calculated by averaging
different PSDs over a four-year period which means using
around 2000 SLA segments. The slope is calculated by a least
squares regression for wavelengths between 100 and 300 km.
In [11], the along-track observations whose PSD are averaged
are covering seven years, the corresponding spatial boxes are
10◦ × 10◦ and the linear fit is done between 70 and 250 km.
However, the authors confirm that the presented results are
not sensitive to the choice of the selected wavenumber band.
The same procedure is applied in [13], specifying that the
weighting window used in the cumulative periodogram is a
10% cosine taper. To improve the estimation performance and
to robustify the results toward the choice of the frequency
interval, [12] suggests to subtract the estimated noise level
from the PSD estimation before performing the linear regres-
sion. This methodology is applied in [8] for Jason-2, Cryosat-2
and SARAL/Altika along-track analysis, over seven months
of data, within spatial boxes 10◦ × 10◦ and with a linear
fit over the range 95–280 km for slope estimation. In [15],
the weighting window is a Hamming one and the number of
spectral estimates which are averaged for each spatial box is
of the order of 14 700.

These slope estimations result in a global map of the oceans
whose spatial and temporal resolution depends on the size of
the spatial box and on the time period of the selected SLA
segments.

B. Improving the Temporal and Spatial Resolution

To improve the temporal and/or spatial resolution of the
SLA slope estimates, one has to be able to perform this
slope estimation on a SLA segment, either corresponding to
a more restricted spatial box, either to a shorter time period,
or both. Therefore, we are interested in estimating the SLA
slope using a small number of samples, for example, a single
segment of a few thousand of samples corresponding to a
single satellite pass in a very short time interval. Fig. 1
on the left presents the result of the spectral analysis using
classical Fourier-based methods as detailed in Section II-A,
when cumulating 315 PSD estimations, with and without
noise suppression as suggested by Xu and Fu [12]. One can
obviously “see" the spectral slope, increased by removing the
noise level (in red) which will make the slope estimate more
robust. There is no doubt that when using a large number of
SLA samples from long data records, Fourier-based methods
are an efficient and effective mean to estimate the spectral
slope. However, when looking for a higher temporal and/or
spatial resolution and applying this methodology to a single

segment of N = 3000 samples as on the right of Fig. 1,
the variance of the PSD estimate is so high that removing
the noise level does not bring any improvement and one can
understand that slope estimation will be a difficult task. In this
context, there is a need for another spectral estimator, not
relying on a Fourier-based one, to analyze short segments of
SLA signals with better bias and variance properties.

C. PSD Model of SLA

Before addressing estimation of SLA signal PSD, we would
like to highlight some specific features of this PSD, since
any appropriate PSD estimation method should take them into
account.

The first issue concerns the shape of the PSD. As awaited
from the quasigeostrophic theory [10], [16], the PSD of
SLA signals exhibits a decrease of the type f −α , starting
from some minimal frequency f1. In other words, one can
observe a line in a log–log representation. In addition to the
signal component, thermal noise, which is usually modeled
as a white Gaussian process, is present. Therefore, in a first
approximation, a simplified model of SLA PSD is given by

Sx( f ) = σ 2 + Sα( f ) = σ 2 +
�

C f −α
1 0 ≤ f < f1

C f −α f ≥ f1
(1)

where σ 2 stands for the white noise power, and where the
power at very low frequencies C f −α

1 is fixed by continuity
arguments and from the fact that the PSD for f < f1 is not
known, or at least not easy to characterize as f1 is very low.
Indeed, this value of f1 is usually chosen equal to a few bins of
the SLA signal Fourier transform (FT), i.e., to k/N in normal-
ized frequencies with k = 3 for example. It can be associated
with the so-called energy-containing scale where the spectrum
is leveling off [11]. The real data used in this article are from
Sentinel-3 satellite, sampled at fs = 20 Hz, which corresponds
to a distance of 319 m between samples along the satellite
track. Analyzing segments of N = 3000 samples of SLA
signals leads to set f1 = 0.001, as shown in Fig. 2, which is a
very low normalized frequency corresponding to a spatial scale
of around 320 km. This illustrates why precise characterization
of the PSD for frequencies below f1 is really questionable.
Hence, the proposed model accounts for a constant value at
frequencies below f1. A second and important characteristic
of the PSD of the signal component is that it lies in a very
narrowband located at very low frequencies. Again, for the real
data of Sentinel-3 used in this article, as can be seen in Fig. 2,
the informative part of the slope area lies approximately in
the interval [0.001, 0.01] (equivalent to 320–30 km) which
is a very small part of the total normalized frequency interval
[0, 0.5[, located at very low frequencies. This is rather unusual
in PSD estimation and calls for specific processing.

III. PROPOSED SPECTRAL ESTIMATOR

A. Parametric Spectral Analysis

Parametric spectral analysis is an effective alternative to
nonparametric Fourier-based analysis [17], [18]. It relies on a
PSD model depending on a parameter vector θ so that the PSD
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estimation Sx( f ; θ) amounts to that of θ , yielding an estimate
Sx( f ; θ̂) where θ̂ is an estimate of θ . Two main benefits have
been advocated to support this parametric approach. First, with
possibly a small number of parameters describing the PSD,
accurate estimation can be conducted with a low number of
samples. For SLA signals, this would allow us to estimate
the slope on a small ocean area, with a few SLA samples (in
the case of Sentinel-3, the distance between two consecutive
samples is 319 m along the satellite track). Another advantage
is that estimates of the form Sx( f ; θ̂) exhibit less variance than
Fourier-based estimates, leading to smoother PSD, which will
facilitate a reliable slope estimation in the case of SLA signals.

A very popular and understood PSD parametric model is
the autoregressive (AR) one, due to the fact that obtaining
the AR parameters reduces to solving a linear least-squares
problem, for which computationally efficient algorithms have
been proposed [17], [18]. Moreover, an AR model is of interest
for a large class of signals since it consists in modeling a
signal x(n) as a linear combination of its past samples with
an additive component representing the unexpected part of the
signal

x(n) = −
p�
�=1

a�x(n − �)+ e(n) (2)

where p is the AR model order, a� is the �th AR coefficient,
and e(n) is the model error [namely the linear prediction error
(LPE)]. The fitting of such a model to a signal leads to the
following spectral estimator of x(n):

SAR
�

f ; �
a1 . . . ap σ

2
e

�� = σ 2
e��1 + 	p

�=1 a�e−i2π� f
��2 (3)

where σ 2
e is the LPE power. In the case of SLA signals, our

experience is that AR modeling can work fine, provided that
a sufficient AR model order (large number of parameters) is
used. However, this is not fully satisfactory since we loose the
interest of a model with few parameters and we do not take
into account the problem specificities, namely that the spectral
part of interest lies in very low frequencies while the rest of
the frequency band contains mostly white noise.

B. Proposed Preprocessing: Warping

To account for the frequency distribution of the signal
power, we use the basic idea of a nonuniform spectral rep-
resentation, with a view to emphasize the lower part of the
spectrum compared to the high-frequency part. This idea of
using an unequal resolution related to the frequency is an
old one, which goes back to the seventies [19], [20]. It has
been extensively used for audio applications [21] where it is
sometimes referred to as “frequency warping." The basic idea
is to obtain a transformed sequence y(n), which corresponds
to an expansion over a set of orthogonal sequences ψk(n),
that is

x(n) =
+∞�

k=−∞
y(k)ψk(n) (4)

Fig. 3. Frequency warping function W ( f ) for different values of b.

where the functions ψk(.) should be chosen so that the FTs of
x(n) and y(n) are related to one another by a function W ( f )
such that

Y (W ( f )) = X ( f ) i.e.,
+∞�

k=−∞
y(k)e− j2πkW ( f ) =

+∞�
n=−∞

x(n)e− j2πn f . (5)

Hence, a conventional FT of y(n) over equally spaced
frequencies yields a nonequally spaced frequency analysis
for x(n). A significant advantage of this technique is that it
can be implemented very easily from digital filters. Various
choices exist for the sequences ψk(n) which result in different
nonlinear functions W ( f ). Since they exhibit good properties
and are widely used in warping methods, this article uses
Laguerre functions [22], leading to

W ( f ) = f + 1

π
arctan



b sin(2π f )

1 − b cos(2π f )

�
(6)

where the parameter b ∈ [−1, 1] impacts the shape of the
function W ( f ), as can be seen in Fig. 3. In our application,
one wishes to dilate low frequencies while compressing high
frequencies, leading to the constraint b > 0.

C. Proposed Spectral Analysis: ARWARP

For SLA signal analysis, we propose to use frequency warp-
ing as a preprocessing step, which enhances the low-frequency
components before an AR spectral analysis. A linear regres-
sion is finally conducted on the resulting AR estimator allow-
ing the slope α to be estimated, as illustrated in Fig. 4. The
warping preprocessing might be combined with any spectral
analysis method. However, based on the benefits of parametric
methods detailed above, AR modeling has been preferred for
SLA analysis. The pair (frequency warping, AR modeling)
will be referred to as ARWARP in the sequel.

ARWARP requires the tuning of three parameters: the
warping coefficient b, the number of warped samples M , and
the AR model order p. The selected values of b and M
usually result from some tradeoff. More precisely, the warping
coefficient b is directly linked to a so-called turning point
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Fig. 4. Proposed SLA processing combining warping, AR modeling
(ARWARP), and slope estimation.

frequency fw [21]

b = cos(2π fw). (7)

For b > 0, the PSD is sampled with higher resolution at
frequencies lower than fw , and lower resolution at frequencies
higher than fw . For SLA signals, fw should correspond to the
end of the slope region in a log–log scale (also corresponding
to the beginning of the noise floor), i.e., fw � 0.01 in normal-
ized frequencies, as observed in Fig. 2, which corresponds to
b = 0.99.

The input SLA signal being of finite length (N samples),
the warped sequence should be of infinite size [19]. However,
from a practical point of view, only M samples of the warped
sequence are computed. The influence of the warping sequence
truncation has been studied in [22]: taking into account
the total group propagation time of the Laguerre warping
system, the minimum number of warped samples allowing a
quasi-reversible transformation is defined by

M = N
1 + |b|
1 − |b| . (8)

It is noted that for N = 3000 and b = 0.99, we obtain
M = 597 000 which induces a high computational cost in
the warping step. To reduce the value of M , we have chosen
b = 0.9, corresponding to a value of M more than ten times
lower, i.e., M = 57 000 and a turning point frequency of
fw = 0.07, which is acceptable in view of Fig. 2.

Finally, the model order p needs to be adjusted. One might
think of using classical AR model order criteria such as
Akaike or minimum description length (MDL) [17], [18], [23].
However, these criteria are more adapted to line spectra, which
is not the case for SLA signals. The model order p has to
be low enough to guarantee a “smooth” spectral behavior.
A reasonable choice is p ∈ {5, . . . , 9}.

Once the ARWARP parameters have been set, one can
compute the ARWARP spectral estimator as follows:

SAW( f ) = σ 2
e��1 + 	p

�=1 a�e−i2π�W ( f )
��2 |�0( f )|2 (9)

where a�, � = 1, . . . , p are the AR coefficients estimated using
any linear prediction algorithm applied to the warped sequence
y(k), k = 0, . . . ,M − 1, σ 2

e is the LPE power and �0( f ) is
the lowpass filter (in the case of b > 0) corresponding to the
zero-order Laguerre sequence [22].

Once the PSD (9) has been computed, the slope α has to
be estimated. The problem of slope estimation performed on
a log–log spectral representation is the focus of Section IV.
The full estimation strategy is summarized in Fig. 4.

IV. BOUNDS AND ESTIMATION OF THE SLOPE α

While Section III-B and III-C focused on estimating Sx ( f ),
let us now study the problem of the slope estimation in the
model (1). First, we derive the CRBs to the variance of
the estimates of the different model parameters, including
the slope α. Second, two different estimation methods are
proposed that rely on the ARWARP or Fourier-based PSD
estimates.

A. Cramér–Rao Bound

The CRB for estimation of a vector parameter θ from
observation of x = [x(0) . . . x(N − 1)]T provides the
lowest variance that any unbiased estimator can achieve [24].
Therefore, whatever the problem, it constitutes a reference to
which any estimator can be compared, especially when no
estimator is known to achieve the bound, which is the most
usual situation. Additionally, the CRB provides a quantitative
measure of how difficult is the estimation problem and,
as such, it bears much interest for SLA signals.

The CRB(θ) is obtained as the inverse of the Fisher
information matrix (FIM) F(θ), which depends on the
second-order derivatives of the log-likelihood function (LLF).
For zero-mean Gaussian distributed signals, the LLF depends
only on the signal correlation, which means that deriva-
tion of the CRB requires an explicit expression of the
signal correlation as a function of θ . Unfortunately for
SLA signals which are characterized in the spectral domain,
as in (1), this is not the case as the inverse FT of (1)
cannot be obtained analytically as a function of θ . Therefore,
it would be more suitable to have an expression of the
FIM which would depend on θ through Sx( f ; θ). Such an
expression was found by Kay [24] and Whittle [25] who
shows that for a Gaussian process the asymptotic FIM is
given by

[Fas(θ)]k,� = N

2

∫ 1/2

−1/2

∂ log Sx ( f ; θ)

∂θk

∂ log Sx( f ; θ)

∂θ�
d f

= N

2

∫ 1/2

−1/2

1

S2
x ( f ; θ)

∂Sx( f ; θ)

∂θk

∂Sx( f ; θ)

∂θ�
d f. (10)

While this expression holds only for large N , it has been
shown to come rather close to the exact CRB even in short data
samples, say N = 100, see e.g., [26]. Therefore, not only (10)
is well-suited for SLA signals, but it is also meaningful
since no efficient estimator exits for finite N (only asymptotic
efficiency is possible) and one can conjecture that the exact
CRB will be rather close to the asymptotic CRB with the
number of samples we consider, namely N = 3000.

To obtain the CRB, let us rewrite (1) as

Sx( f ; θ) =
{
σ 2(1 + γ ) f < f1

σ 2
�
1 + γ f −α f α1

�
f ≥ f1

(11)

and let us define θ = [γ α σ 2]T . Differentiating (11) yields

∂ log Sx( f ; θ)

∂γ
=

⎧⎨⎩ (1 + γ )−1 f < f1
f α1

f α + γ f α1
f ≥ f1

(12a)
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Fig. 5. Square root of CRB(α) for the model (11) versus α (γ = 30 dB in
blue and 40 dB in red, f1 ↔ 319 km and N = 3000).

∂ log Sx( f ; θ)

∂α
=

⎧⎨⎩ 0 f < f1

γ f α1
f α + γ f α1

log



f1

f

�
f ≥ f1

(12b)

∂ log Sx( f ; θ)

∂σ 2
= σ−2 (12c)

which provides all necessary entries to compute the asymptotic
FIM. While analytical evaluation of the integrals in (10) cannot
be given, a numerical integration is possible, which provides
the elements of the asymptotic FIM. Inversion of the latter
provides the asymptotic CRB for estimation of θ . Bearing
in mind that the exact CRB is not achievable, any estimator
whose variance is “close" to the asymptotic CRB can be
deemed to be a good estimator.

The expressions in (12) call for some comments:
1) The CRB for σ 2 given by [Fas(θ)]−1

3,3 is proportional to
(σ 4/N), the proportionality term depending on the other
parameters f1, γ , α which is a usual behavior,

2) The CRBs for γ and α given by [Fas(θ)]−1
1,1 and

[Fas(θ)]−1
2,2 do not depend on σ 2, they only depend on

f1, γ , α and are proportional to (1/N).

For illustration purposes, Fig. 5 displays the asymptotic
CRB(α) versus α for values of γ observed on real SLA signals
from Sentinel-3 and f1 = 0.001 (corresponding to 319 km).

This shows that when α increases, it is more and more
difficult to estimate it, which is an expected behavior. It should
also be noted that, as γ increases, the CRB decreases which is
logical since the gap between the power at lower frequency and
the power at high frequency increases. To give more precise
results, Fig. 5 shows that a precision of less than 10% with γ =
40 dB is impossible to achieve when estimating α around 3,
while for γ = 30 dB, the precision cannot be below 16%,
for α of the same order, considering an uncertainty interval of
±2(CRB(α))1/2 and keeping in mind that this is an optimistic
and asymptotic bound.

The previous theory also allows us to derive a bound for
estimation of log Sx( f ; θ) as

CRB(log Sx ( f ; θ)) = ∂ log Sx( f ; θ)

∂θT
CRB(θ)

∂ log Sx( f ; θ)

∂θ
(13)

Fig. 6. DSP model (11) in blue and the interval at ±2
√

CRB(log Sx ( f ; θ))
in red, with γ = 35 dB, σ 2 = 0.003, α = 3 and N = 3000.

where the derivatives are given by (12). In Fig. 6,
we display the PSD model (11) and the interval at
±2(CRB(log Sx ( f ; θ)))1/2. This highlights that the lower the
frequency, the more difficult it is to have a precise estimation
of the PSD, which is an awaited behavior.

B. Estimation of α

We now address the issue of proposing an estimator of α,
using a two-step approach. First, an estimate Ŝx( f ) is obtained,
using for example one of the two methods proposed earlier,
i.e., the periodogram or the ARWARP estimator. Second,
we perform a fitting between log Ŝx( f ) and log Sx( f ; θ), i.e., θ

is estimated by solving

min
θ

∫ fmax

fmin

[log Ŝx( f )− log Sx( f ; θ)]2d f. (14)

Sx( f ; θ) being the SLA model (11). In practice, the integral
is replaced by a summation over a grid of frequencies span-
ning the interval [ fmin, fmax]. Alternatively, to have a simpler
method, one can investigate a simple linear regression over
log Ŝx( f ) and estimate the slope by solving

min
α,β

� f +

f −
[log Ŝx( f )− α f − β]2. (15)

Again, integrals are replaced by finite sums and a simple linear
least-squares problem needs to be solved. This last method is
the one used in most publications [8], [10], [11], [13], [14].

V. VALIDATION ON SIMULATED SIGNALS

To validate our proposed approach, one has to compare
with the conventional method used for SLA slope estimation,
i.e., based on a periodogram which, in this case of short
SLA segments, cannot be an averaged one but only a single
periodogram including a weighting window w(n)

Iw( f ) = 1

N

�����
N−1�
n=0

w(n)x(n)e−i2πn f

�����
2

. (16)
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Then, four different estimators of the SLA slope α can be
compared. They are designed by three letters in what follows
and described hereafter:

LRP: Linear regression (15) over a log-periodogram (16).
MFP: Model fitting (14) over a log-periodogram (16).
LRA: Linear regression (15) over an ARWARP (9).
MFA: Model fitting (14) over an ARWARP (9).
The four estimators LRP, MFP, LRA, and MFA are com-

pared in terms of mean-square error (MSE) to the asymptotic
CRB. Section V-A presents the simulation model used to
generate SLA signals with a given slope. The results of
Monte-Carlo simulations are analyzed in Section V-B.

A. Simulation Model

Simulated SLA signals were generated as Gaussian vectors
through a Cholesky decomposition of the correlation matrix.
The latter is computed from the inverse FT of Sα( f ) in (1),
with the addition of the noise power σ 2 in the diagonal terms

x ∼ N (0, Rxx )

with

Rxx =

⎛⎜⎜⎜⎝
r0 + σ 2 r1 · · · rN−1

r1 r0 + σ 2 · · · rN−2
...

...
. . .

...
rN−1 rN−2 · · · r0 + σ 2

⎞⎟⎟⎟⎠
and

{r0, . . . , rN−1} = FT−1[Sα( f )]. (17)

The Gaussian assumption has been validated on real data.
The corresponding MATLAB code for the generation of SLA
signals is available in [27].

Monte Carlo simulations of SLA signals with a known slope
value allow to evaluate the statistics of the four estimates LRP,
MFP, LRA, and MFA. We also compare these estimations to
the CRB which provides a reference.

This approach is illustrated in Fig. 7 where N = 3000 sam-
ples of a signal whose PSD is given by (11) were generated.
Both a weighted periodogram (16) and an ARWARP spectral
estimate (9) were computed. These estimates were used in
(14) and (15) to obtain estimates of α, represented by either a
red segment corresponding to the linear regression result, or a
red fitted spectral model when using (14), all compared to
the black dotted line which is the “ground truth." As can be
observed, ARWARP spectral estimate exhibits less variance
than the periodogram, which was expected. The following
numerical simulations provide quantitative analysis of the
performance of these methods.

B. Statistical Analysis

Based on the above simulation model, 1000 Monte-Carlo
simulations were run for a SLA signal of N = 3000 samples
with PSD (1), the frequency f1 corresponding to a distance
d1 = 319 km (i.e., a normalized frequency f1 = 10−3) and
a white noise level fixed to σ 2 = 0.003 (to be coherent with
Sentinel-3 real data). Fourier-based spectrum estimation was

Fig. 7. Slope estimates (Left) by linear regression and (Right) by model fitting
between the two vertical dashed green lines over (Top) a periodogram (10%
cosine taper window applied after detrending, zero-padding by a factor 3) and
(Bottom) an ARWARP (p = 7, b = 0.9, M = 57 000), of a simulated SLA
signal (N = 3000, α = 3, γ = 30 dB).

TABLE I

CRB AND MSE OF SLOPE ESTIMATES USING THE FOUR PROPOSED

ESTIMATORS WITH N = 3000 SAMPLES OF SLA SIGNAL

conducted using a periodogram with a 10% cosine taper win-
dow applied after detrending and zero-padding by a factor 3.
For the ARWARP model, the warping parameter was b = 0.9
and different values of the model order were considered,
i.e., p ∈ {5, 7, 9}.

Linear regression is performed following (15) between
f − and f + corresponding to 45 and 160 km, while model
fitting is done, following (14) with fmin and fmax correspond-
ing to 1 and 630 km (dashed green vertical lines in Fig. 7).

Fig. 8 displays the boxplots of the bias between the esti-
mated and theoretical values of α versus different values
of α, while the corresponding values of the MSE are reported
in Table I.

From inspection of them, the following conclusions can be
drawn regarding slope estimation:

1) When spectral estimation is done through Fourier analy-
sis, Table I shows that slope estimation using linear
regression gives a MSE around 10 times the CRB which
means that there is space for improvement.

2) When spectral estimation is done through Fourier analy-
sis, model fitting should be preferred: the MSEs are
lower than when performing linear regression, whatever
the slope value. This is highlighted on the two left
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Fig. 8. Statistics (boxplots) of slope bias on 1000 sequences of simulated SLA (N = 3000): (Left) estimation using periodogram, (Middle) ARWARP of
orders 5, and (Right) 7, (Top) with linear regression and (Bottom) model fitting. In each box plot, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the most extreme datapoints the algorithm considers to be not outliers, and the outliers are plotted
individually in red.

figures of Fig. 8: the variance of estimation is smaller
with model fitting.

3) However, model fitting on Fourier spectrum sometimes
fails, leading to spurious results (red marks in Fig. 8),
while model fitting on ARWARP spectrum seems to be
more robust (less outliers).

4) When spectral estimation is done through ARWARP,
model fitting does not bring a systematic improvement,
compared to linear regression (see Table I): this may
be explained by the fact that the ARWARP spectral
estimation is smooth and linear regression performs
well. For small values of slope, model fitting leads
to lower MSEs, while for high slope values, linear
regression should be preferred.

5) When spectral estimation is done through ARWARP,
increasing the model order does not bring much
improvement: the behavior of the method remains the
same: with model fitting, the bias and the variance of
the estimation increase with the value of the slope,
while linear regression leads to almost the same results
for model order of five and seven (simulations have
shown that increasing more the model order increases
the MSE).

Finally, based on these results on simulated SLA signals,
two estimates are of interest for slope estimation: linear
regression on ARWARP (LRA p = 5) and model fitting on
the periodogram (MFP). Both have the same performance in
terms of MSE, whatever the slope value, being around three

times the CRB. Remembering that the latter is very optimistic,
one can state that the proposed estimators are rather accurate.
The main interest of model fitting on the periodogram is the
low computational cost but it can bring unacceptable bias, with
estimated values going from −1 to 0.5 for a simulated SLA
slope of 2 for example (see outliers of the bottom left boxplots
of Fig. 8). Therefore, linear regression on ARWARP (LRA)
should be preferred, although the computational cost may be
higher.

The interest of linear regression on ARWARP compared to
the three other estimators has been shown on simulated SLA
signals. Section VI presents the application of these estimators
on real SLA signals.

VI. VALIDATION ON REAL SIGNALS

A. SLA Around the Equator

First, we apply the proposed ARWARP method on Sentinel-
3 real data measured around the Equator in an area where the
slope is known to have low values and to be mostly stationary.
Fig. 9 presents the result of slope estimation on 52 segments
of N = 3000 samples issued from cycle 11 of Sentinel-3A
sampled at 20 Hz, within a box 20◦ × 20◦ centered at (0◦S,
150◦W), between November and December 2016: on the left
with linear regression over the periodogram in blue (LRP) and
ARWARP in red (LRA) and on the right with model fitting
over the periodogram in blue (MFP) and ARWARP in red
(MFA). Since quite constant values of the slope are expected,
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Fig. 9. Slope estimates on SLA segments of the Equator area, sampled
at 20 Hz, within a box 20◦ × 20◦ centered at (0◦S, 150◦W), between
November and December 2016 (N = 3000), using periodogram (blue),
ARWARP (p = 5, red). The mean value of the estimated slopes is also
reported with an error interval of ± twice the standard deviation. (Left) Using
linear regression between 90 and 200 km. (Right) Using model fitting on the
whole spectrum.

the mean value with a confidence interval at twice the standard
deviation is given for each estimator in the legend.

As can be seen, slope estimation via periodogram (blue
curves) gives spurious results with an unacceptable vari-
ance along the different segments. This shows clearly that
a Fourier-based spectral estimate cannot be used for slope
estimation on short SLA segments [14], which explains why
averaging several periodograms is necessary. However, on the
same short SLA segments, ARWARP estimates yield quite
constant values of the slope, as expected in this Equator area.
Especially, the linear regression over the ARWARP model
(LRA, red curve on the left) gives values of the slope around
α = 1.45 and a small variance, as expected from a physical
point of view. It is noted that a classical Welch (cumulated)
periodogram on these 52 segments gives an estimation of the
slope �α = 1.51, which make the LRA results reliable.

B. SLA in the Agulhas Current

Let us now consider SLA segments from the Agulhas
Current, which is a region with high eddy kinetic energy
and where higher and different slope values are expected.
Fig. 10 displays slope estimates obtained on 75 different SLA
segments (N = 3000), issued from cycles 10 to 17 of Sentinel-
3A, sampled at 20 Hz, within a box 20◦ × 13◦ centered at
(35◦S, 26.5◦E), between October 2016 and May 2017. In this
case also, linear regression over the periodogram (LRP, blue
curve on the left) obviously gives spurious and unreliable
results. The same behavior is observed with model fitting on
the periodogram (blue curve on the right) even if less irrelevant
results are obtained. ARWARP estimates are more coherent
and based on the previous validations on simulated SLA
signals and on the homogenous Equator area, one can trust
these results. In an area of the ocean where it will be difficult
to average several periodograms without questioning about

Fig. 10. Slope estimation on SLA segments of the Agulhas current area,
sampled at 20 Hz, within a box 20◦ ×13◦ centered at (35◦S, 26.5◦E), between
October 2016 and May 2017 (N = 3000), using periodogram (blue) and
ARWARP (order p = 5, red). (Left) Using linear regression between 90 and
200 km. (Right) Using model fitting on the whole spectrum.

the stationarity of the different SLA segments, the ARWARP
model allows PSD and slope estimations on each individual
segment, i.e., corresponding to a small area on the ocean.

VII. CONCLUSION

In this article, we addressed the problem of PSD and slope
estimation of short SLA segments, for example, to analyze
regions of the ocean with high eddy kinetic energy. First,
the asymptotic CRB of the estimation variance was derived.
Even if this is only an asymptotic result for an unbiased
estimator, this bound is a reference to which any estimator has
to be compared. We showed that the usual estimator based on
a linear regression over a weighted periodogram gives MSE
values ten times higher than the CRB, which shows that there
is space for improvement. Second, this article proposed a
new method to estimate the slope of SLA signals based on a
combination of frequency warping, AR modeling, and linear
regression. This method showed improved results compared
to Fourier-based strategies for simulated SLA signals. The
resulting estimator can be considered as a good one, with
a variance around three times the CRB. This improvement
has also been observed on real Sentinel-3 data. The proposed
ARWARP model makes PSD and slope estimations possible
on a short SLA segment, i.e., allows spatial resolution of the
estimates to be improved. Future works include validation on
more real data, which is encouraged using the MATLAB code
available in [27].
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