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Nonlinear stochastic dynamics of detuned bladed-disks with
uncertain mistuning and detuning optimization using a

probabilistic machine learning tool

Evangéline Capiez-Lernouta, Christian Soize∗,a

aUniversité Gustave Eiffel, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

The paper deals with the nonlinear stochastic dynamics concerning the detuning optimization
in presence of random mistuning of bladed-disks with geometrical nonlinearities. We present
an efficient computational methodology for reducing the computational cost, an analysis of the
detuning, and the detuning optimization, based on the use of a high-fidelity computational model.
A deep computational analysis is presented for a 12-bladed-disk structure that is representative of
industrial turbomachines in order to understand the role played by the geometrical nonlinearities
on the dynamical behavior and to exhibit the consequences on the detuning effects. For the
detuning optimization with a very large number of possible detuned configurations, we propose
a reformulation of the combinatorial optimization problem in a probabilistic framework, which
is adapted to a probabilistic machine learning tool in order to limit the number of evaluations
of the cost function with the high-fidelity computational model. The methodology proposed is
validated for the 12-bladed-disk structure for which the exact optimal detuned configuration has
been identified. A very good prediction is obtained.

Key words: nonlinear stochastic dynamics, bladed-disk, detuning, mistuning, reduced-order
model, uncertainty quantification, combinatorial optimization, machine learning, probabilistic
learning, PLoM

1. Introduction

The vibrational behavior of turbomachines is known to be particularly complex, requiring
the construction of predictive computational models that have also to be efficient in terms of
numerical costs. One of the issues concerns the mistuning caused by the small variations of the
mechanical properties from one sector to another one, induced by the manufacturing tolerances
or by the wear and tear of the structure. Such phenomenon can generate strong localization ef-
fects yielding larger dynamical amplifications of the forced response with respect to the perfect
cyclic symmetry case [1, 2, 3]. This amplification strongly affects the fatigue life of the blades,
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which can cause safety problems and impair the proper operation of turbomachines. Many re-
search have been carried out on this subject, requiring the use of probabilistic approaches for
modeling the random character of the mistuning combined to the construction of reduced-order
models [4, 5, 6, 7, 8, 9, 10, 11] when linear assumption is considered. There also exist other
phenomena that can strongly affect the vibrational behavior of the bladed-disk and that have to
be the subject of a dedicated modeling. The presence of nonlinearities increases the complex-
ity of the forced response analysis because couplings and energy transfers can strongly modify
the position and the nature of the resonances of the bladed-disk. Contact nonlinearities occur
for fan-type bladed-disks for which the disk and the blades are manufactured independently and
for which the blade assembly is mounted on the disk with ”fir-tree” or dovetail fixings. Such
local nonlinearities although occur through rotor/stator interaction between the blade tip and the
stator casing or when using under-platform dampers yielding blade to blade contact (see e.g.
[12, 13, 14, 15, 16, 17, 18]). A research effort has also been made for the construction of non-
linear reduced-order models allowing for the mistuning analysis of bladed-disk in presence of
contact nonlinearities [19, 20, 21, 22, 23, 24, 25]. Moreover, due to technological evolutions
that involve lighter materials and thinner blades, the nonlinear geometrical effects induced by fi-
nite displacements cannot longer be neglected. The main difficulties concerning the modeling of
these nonlinear geometrical effects concern the construction of adapted nonlinear reduced-order
models that have to be efficient not only in terms of computational costs but also in terms of
predictability. These aspects have also been investigated in the more general context of thin and
slender structures [26, 27, 28, 29, 30, 31]. Concerning the context of turbomachines, various
research can be found for the deterministic case [32, 33, 34], but also in presence of contact
nonlinearities [35] or in presence of mistuning [36].

The intentional mistuning, also called detuning, consists in voluntarily breaking the cyclic
symmetry of the structure by using partial or alternating patterns of different sector types. The
detuning allows for spreading the frequencies of adjacent blades and thus for reducing the in-
teraction between them. As a consequence, the drastic amplification and localization effects
caused by the random mistuning can be greatly reduced. Such technology is particularly rele-
vant because it is a way for reducing the response amplification levels that are induced by the
unavoidable random mistuning while increasing its robustness. It has been thoroughly studied in
the framework of linear dynamics [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

In a context of sustainable development, technological innovations have to be compatible
with energy and environmental issues. This gives rise to the development and to the use of
lighter materials, that have to be capable of high thermo-mechanical resistance and of long dura-
bility, so that it may be possible that the blade displacements respond in its nonlinear vibration
range. In this context, a computational methodology and a robust analysis of the geometrical
nonlinear effects on several detuned configurations of mistuned bladed-disk have been proposed
in [47]. The results underline a complex nonlinear dynamical behavior and highlight a sensitiv-
ity of the nonlinear response to the detuning in presence of mistuning. Nevertheless, a too few
number of detuned configurations is available and is not sufficient to perform a full optimization
analysis with respect to the set of all possible detuned configurations of mistuned structures. This
latter one has a huge dimension that increases exponentially with respect to the number of blades.

Novelties of the paper. The first novelty is the development of an efficient computational method-
ology in nonlinear stochastic dynamics for reducing the computational cost using a high-fidelity
computational model (HFCM), and a deep computational analysis of a 12-bladed-disk structure
that is representative of industrial turbomachines in order (i) to understand the role played by the
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geometrical nonlinearities on the dynamical behavior and (ii) to construct the solution of the de-
tuning optimization problem and to analyze the optimization results. For the case for which the
set of all the possible detuned configurations cannot be computed with the HFCM, we propose
a novel probabilistic approach consisting in estimating a small subset (a few units) of detuned
configurations that improve the dynamical responses with respect to the configuration without
detuning in presence of random mistuning. This approach is based on a probabilistic formula-
tion of the combinatorial optimization problem and on the use of a probabilistic learning tool for
estimating the cost function without using the HFCM.

Organization of the paper. Section 2 is devoted to the formulation, the methodology, the com-
putational model, and the algorithms for the nonlinear stochastic dynamics analysis of rotating
detuned bladed-disks with geometrical nonlinearity in presence of random mistuning. The cho-
sen formulation is compatible with the use of the nonparametric probabilistic approach of uncer-
tainties for modeling the random character of the mistuning. We describe in details the specific
numerical difficulties encountered (i) in the computation of the nonlinear internal forces and its
related tangent stiffness matrix, and (ii) in the use of the nonlinear solver. In Section 3, we
present a full analysis of a representative computational model of the 12-bladed-disk structure
and the analysis of the detuned configurations. All the numerical parameters involved in the
computational process are carefully optimized in order to be able to generate a full data basis
for constructing the exact solution of the detuning optimization problem. In Section 4, for the
general case for which the number of detuned configurations is very large, we present a proba-
bilistic formulation of the combinatorial optimization problem and a probabilistic learning tool
for constructing a surrogate model of the cost function. This formulation is able to capture the
amplification level of a detuned configuration of the mistuned structure with respect to the con-
figuration without detuning in presence of random mistuning (pure mistuned configuration). The
statistics post-processing of the computational results yields a small subset of optimized config-
urations whose characteristics are analyzed in details. The proposed approach is validated using
the computational analysis performed in Section 3 for the 12-bladed-disk structure.

Notations

Lower-case letters such as q or η are deterministic real variables.
Boldface lower-case letters such as q or η are deterministic vectors.
Upper-case letters such as X or H are real-valued random variables.
Boldface upper-case letters such as X or H are vector-valued random variables.
Lower-case letters between brackets such as [x] or [η] are deterministic matrices.
Boldface upper-case letters between brackets such as [X] or [H] are matrix-valued random vari-
ables.

δK : hyperparameter controlling the mistuning rate.
δx: displacement field x 7→ δx(x).
δαβ: Kronecker’s symbol.
fHFCM: mapping on Nc defined by HFCM.
ι: imaginary unit such that ι2 = −1.
n: number of dof in the computational model.
nb1: number of blades of type 1.
nb2: number of blades of type 2.

3



nc: number of all the possible configurations.
nsim: number of Monte Carlo realizations.
nw: number of blades.
qc: amplification dynamic factor (QoI).
qc,`: Qoi computed with HFCM from wc,`.
q`ar: learned realization of Q.
u: vector of the M generalized coordinates.
wc

j: component j of wc for blade number j.
wc: vector in Nc defining a configuration.
wc,`

j : = 0 if j of type 1, = 1 if j of type 2.
wc,`: Nc-valued vector of Cc(given configuration).
w`

ar: learned realization of W.
wopt: optimal solution.
wc,opt

un : unachievable optimal solution.
x = (x1, x2, x3): point in R3.
x(t): displacement field at time t.
Cc: discrete set of all the nc = 216 configurations.
Cad: admissible set of displacement fields.
C: set of all the complex numbers.
Cn: Hermitian vector space on C of dimension n.
Dd: training set made up of Nd points (qc,`,wc,`).
Dar: learned set made up of Nar points (q`ar,w`

ar).
E: mathematical expectation.
[In]: identity matrix in Mn.
Jc: cost function derived from Jc.
Jar: learned cost function.
Jc: cost function.
M: order of the reduced-order model.
Mn,N : set of (n × N) real matrices.
MN : set of square (n × n) real matrices.
M+0

n : set of positive symmetric (n × n) real matrices.
M+

n : set positive-definite symmetric (n × n) matrices.
N: order of the blisk equal to nw.
Nar: number of points in the learned set.
Nd: number of points in the training set.
Nc: discrete set {0, 1}nw .
N: set of all the integers.
Q: random QoI constructed with PLoM.
Qc: random QoI such that Qc = fHFCM(Wc).
Q: dimension of matrix [G(δK)].
R: set of all the real numbers.
Rn: Euclidean vector space on R of dimension n.
U(t): u(t) in the finite element approximation.
U`(t): U(t) for detuned configuration `.
W: Rnw -valued random variable associated with Wc.
Wc

k component k of Wc.
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Wc: random variable with values in Nc.
W

opt
ns : subset of optimal solutions.

X(t): finite element discretization of x(t).
X`(t): X(t) for detuned configuration `.
[x]k j: entry of matrix [x].
[x]T : transpose of matrix [x].
<x , y>: Euclidean or Hermitian inner product.
‖x‖: Euclidean or Hermitian norm <x , x>1/2.
blisk: turbomachine component comprising both

rotor disk and blades.
dof: degree of freedom.
pdf: probability density function.
ANN: artificial neural network.
FFT: Fast Fourier Transform.
HFCM: high-fidelity computational model.
KDE: kernel density estimation.
MCMC: Markov chain Monte Carlo.
NL-ROM: nonlinear reduced-order model.
NL-SROM: nonlinear stochastic reduced-order model.
PCA: principal component analysis.
PLoM: probabilistic learning on manifolds.
QoI: quantity of interest.
ROB: reduced-order diffusion-maps basis.

2. Stochastic computational model for dynamic analysis of rotating bladed-disks with geo-
metrical nonlinearities: formulation, methodology, and algorithms

2.1. Assumptions
In the present work, the detuned bladed-disk structure has N blades and is assumed (1) to be

made up of a linear elastic material, (2) to be submitted to external forces whose amplitude is
sufficiently large so that the structure undergoes geometrical nonlinear effects induced by large
displacement, (3) to rotate at a constant velocity Ω around the rotation axis defined by (0,Z), (4)
to be constituted of different types of blades whose spatial distribution characterizes a detuned
configuration. In this work, two different sector types are considered. These two types have an
identical geometry but the blades have different material properties.

We have then to distinguish the tuned configuration from the detuned configurations. The
tuned structure is related to the conceptual structure that has a perfect N-order cyclic symmetry.
In consequence, the geometrical domain, the constitutive equations and the boundary conditions
related to the generating sector are invariant under the 2π/N rotation around the symmetry axis
(0,Z). A detuned configuration corresponds to a modification of the tuned structure for which
there is a spatial distribution of different types of sectors. For instance, if N = 12 and if there
are two different types of sectors A or B, a pattern denoted by 3A4B3A2B is constituted of 3
consecutive blades with type A, 4 with type B, 3 with type A and 2 with type B. The tuned
configuration can also be viewed as a particular detuning case. It should be also noted that
detuned configurations can also be sub-cyclic which means that they present a cyclic symmetry
with order n < N, where n is a divisor of N. All these detuned configurations are characterized
by the superscript `.

5



The real systems that are related to these detuned structures are modeled by introducing
mistuning (unintentional mistuning) that is modeled by using the nonparametric probabilistic
approach of uncertainties [48, 49]. We then can distinguish the pure mistuning situation, from
which the conceptual system is modeled with the tuned structure from the detuned structures that
are considered in presence of mistuning.

2.2. Description of the geometric nonlinear boundary value problem of a detuned configuration
The superscript ` is omitted in this Section. Let Ω be the three-dimensional bounded do-

main of the physical space R3 corresponding to the steady configuration of a detuned struc-
ture observed in the rotating frame that is defined as the reference configuration of the bound-
ary value problem [50]. The boundary ∂Ω is such that ∂Ω = Γ0 ∪ ΓE with Γ0 ∩ ΓE = ∅

and the external unit normal to boundary ∂Ω is denoted by n = (n1, n2, n3) (see Fig. 1). The
boundary part Γ0 corresponds to the fixed part (in the rotating frame) of the structure whereas
the boundary part ΓE is submitted to an external surface force field. A total Lagrangian for-
mulation is chosen. Consequently, the mechanical equations are written with respect to the
reference configuration in the rotating frame. Let x = (x1, x2, x3) be the position of a point
belonging to domain Ω. The displacement field expressed with respect to the reference con-
figuration is denoted as x(x, t) =

(
x1(x, t), x2(x, t), x3(x, t)

)
. It should be noted that the surface

force field G(x, t))=
(
G1(x, t)),G2(x, t)),G3(x, t)

)
acting on boundary ΓE and the body force field

g(x, t)) =
(
g1(x, t)), g2(x, t)), g3(x, t)

)
acting on domain Ω correspond to the Lagrangian transport

into the reference configuration of the physical surface force field and to the physical body force
field applied on the deformed configuration. The nonlinear boundary value problem is written,

Γ0

ΓE Ω

n g
G

3

Figure 1: Reference configuration

for i = 1, 2, 3 and using the classical convention for summations over repeated indices, as

ρ
∂2xi

∂t2 + 2ρ rik
∂xk

∂t
+ ρ rik rk`(x` + x`) =

∂
(
Fi jS jk

)
∂xk

+ gi(t) in Ω , (1)

xi = 0 on Γ0 , (2)

Fi jS jknk = Gi(t) on ΓE , (3)

in which ρ > 0 is the mass density expressed in the reference configuration, where the (3 × 3)
matrix [r(Ω)] whose component [r(Ω)]i j is denoted as ri j for the sake of clarity, is such that

[r(Ω)]i j = ri j = −Ω εi j3 , (4)
6



where εi jk is the Levi-Civita symbol such that εi jk = ±1 for an even or odd permutation and
εi jk = 0 otherwise. In Eq. (17), {Fi j}i j is the deformation gradient tensor whose components Fi j

are defined by
Fi j = xi, j + δi j , (5)

in which δi j is the Kronecker symbol such that δi j = 1 if i = j and δi j = 0 otherwise. In Eq. (5),
xi, j denotes the partial derivative ∂xi/∂x j. For a linear elastic material, the second Piola-Kirchoff
symmetric stress tensor {S i j}i j is written as

S i j = σ
(g)
i j + ai jk` Ek` , (6)

in which {σ(g)
i j }i j is the symmetric Cauchy stress tensor acting on the reference configuration

observed in the rotating frame. In Eq. (6), the fourth-order elasticity tensor {ai jk`}i jk` satisfies the
usual symmetry and positive-definiteness properties. The Green strain tensor {Ei j}i j is written as
the sum of linear and nonlinear terms such that

Ei j = εi j + ηi j , (7)

in which εi j = (xi, j + x j,i)/2 and where ηi j = xs,i xs, j/2. In the following, when no confusion
is possible, symbol t denoting time is removed from the equations. Note that the first and the
second partial derivatives of the displacement field with respect to t are denoted by ẋ and ẍ. In
the rotating frame, we define the admissible space Cad of the displacements as the set of all the
sufficiently differentiable functions x 7→ δx(x) from Ω in R3 such that δx = 0 on Γ0 (in the
rotating frame). For all fixed t, the weak formulation of the geometric nonlinear boundary value
problem consists in finding the unknown displacement field x(t) in Cad such that, for all δx in
Cad,

m(ẍ, δx) +
(
c(ẋ, δx) + d(ẋ, δx)

)
+ k(1)(x, δx) + k(2)(x, x, δx) + k(3)(x, x, x, δx) = f (δx) , (8)

in which
f (δx) =

∫
Ω

δxi gi dx +

∫
ΓE

δxi Gi ds , (9)

with ds the surface element and where

m(x, δx) =

∫
Ω

ρ xiδxi dx , m(x, x) > 0 , (10)

c(x, δx) =

∫
Ω

2 ρ ri jx j δxi dx , c(x, x) = 0 . (11)

The bilinear form k(1) is written as

k(1)(x, δx) = k(e)(x, δx) + k(c)(x, δx) + k(g)(x, δx) ,

in which the positive-definite bilinear form k(e), the negative-definite bilinear form k(c), and the
bilinear form k(g) are written as

k(e)(x, δx)=

∫
Ω

a jk`m ε`m(x) ε jk(δx) dx , (12)
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k(c)(x, δx)=

∫
Ω

ρ rik rk` x` δxi dx , (13)

k(g)(x, δx) =

∫
Ω

σ
(g)
i j xs,i δxs, j dx , (14)

The multilinear forms k(2) and k(3) are such that

k(2)(x, x, δx) =

∫
Ω

a jk`mη`m(x)ε jk(δx) dx +

∫
Ω

a jk`mxs, jδxs,kε`m(x)dx , (15)

k(3)(x, x, x, δx)=

∫
Ω

a jk`mxs, j δxs,k η`m(x) dx. (16)

In Eq. (8), the damping bilinear form is modeled with a Rayleigh model such that

d(x, δx) = �m(x, δx) + � k(1)(x, δx) , (17)

in which � and � are two given positive or zero real numbers, not equal to zero simultaneously.
The multilinear form k(2)(x, x, δx) can be written as

k(2)(x, x, δx) =
1
2

(̂k(2)(x, x, δx) + k̂(2)(x, δx, x) + k̂(2)(δx, x, x)) , (18)

in which the multilinear form k̂(2) is defined by

k̂(2)(x, δx, z) =

∫
Ω

a jk`m xs,` δxs,m z j,k dx , (19)

and satisfies the following symmetry property, k̂(2)(x, δx, z) = k̂(2)(δx, x, z) for all z in Cad. Fi-
nally, using the symmetry and the positive-definiteness property of elasticity tensor a allows for
rewriting the multilinear form k(3)(x, δx, z, δz) as

k(3)(x, δx, z, δz)=
1
2

∫
Ω

a jk`m xα,` δxα,m zβ, j δzβ,k dx , (20)

which shows that k(3)(x, δx, x, δx) > 0.

2.3. Construction of the NL-ROM related to a detuned configuration

The computational model is constructed by discretizing Eq. (8) by the finite element method
and is referred as the high-fidelity computational model (HFCM). Such a nonlinear computa-
tional model is not explicitly constructed because of the large number of degrees of freedom
occurring in industrial finite element models. This Section is devoted to the construction of
the nonlinear reduced-order model (NL-ROM) of a detuned configuration without mistuning of
the rotating structure. The superscript ` characterizing the detuned configuration is omitted for
clarity.

Let {ϕ1, . . . ,ϕM} be a given finite family of algebraically independent vectors in Cad. We
introduce the notation Aαβ = a(ϕβ,ϕα) in which a(x, δx) is one of the bilinear forms defined
by Eqs. (10) to (14). Similarly, we introduce the notations K (2)

αβγ = k(2)(ϕγ,ϕβ,ϕα), K̂ (2)
αβγ =

k̂(2)(ϕγ,ϕβ,ϕα),K (3)
αβγδ=k(3)(ϕδ,ϕγ,ϕβ,ϕα), andFα= f (ϕα). We define the vector u = (u1, . . . , uM)
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of the generalized coordinates as a new set of unknowns obtained by projecting the reference
nonlinear response x(x, t) on the vector space spanned by the finite family {ϕ1, . . . ,ϕM},

x(x, t) =

M∑
β= 1

ϕβ(x) uβ(t) . (21)

Let δx(x) =ϕα(x) be a test function in Cad. Substituting x(x, t) and δx(x) into Eq. (8), and using
Eqs. (9) to (20) yields the following set of M nonlinear coupled differential equations such that,
for α ∈ {1, . . . ,M},

Mαβ üβ + (Cαβ +Dαβ) u̇β + (K (e)
αβ +K

(c)
αβ +K

(g)
αβ ) uβ + F NL

α (u) = Fα , (22)

in whichF NL(u)= (F NL
1 (u), . . . ,F NL

M (u)) is the RM-vector of the reduced nonlinear internal forces
whose component α is written as

F NL
α (u) = K

(2)
αβγ uβ uγ +K

(3)
αβγδ uβ uγ uδ , (23)

in which
K

(2)
αβγ =

1
2

(
K̂

(2)
αβγ + K̂

(2)
βγα + K̂

(2)
γαβ

)
, (24)

and where F = (F1, . . . ,FM) is the RM-vector of the reduced external forces whose component α
is Fα = f (ϕα). The computational procedure concerning the computation of F NL(u) requires to
use the finite element method in order (1) to construct the quadratic stiffness contribution K̂ (2)

αβγ,

to retrieve the quadratic stiffness contribution K (2)
αβγ according to Eq.(24), to construct the cubic

stiffness contribution K (3)
αβγδ and to compute the vector of the nonlinear reduced internal forces

F
NL(u). The choice of such computational procedure is required by the choice of modeling the

mistuning phenomenon through the nonparametric probabilistic approach [51]. All the details
concerning the computation of the nonlinear internal reduced force vector can be found in [52].

The projection basis can be constructed as the linear elastic modes of the rotating structure
associated with its first eigenfrequencies ordered in ascending order. It should be noted that in the
case of a rotating structure, the generalized eigenvalue problem allowing such a computation is a
nonsymmetric eigenvalue problem yielding a complex projection basis, due to the presence of the
gyroscopic coupling term. Another projection basis can be chosen as the family of linear elastic
modes constructed without considering the gyroscopic coupling term. With such a choice, the
speed of convergence with respect to M of the projection remains fast enough for bladed-disks
whose blades have a reasonable slenderness. When the gyroscopic coupling term is kept, an
alternative method avoiding the calculation of complex modes can be used as proposed in [47].
It consists in using the proper orthogonal decomposition method (POD) applied to the nonlinear
dynamical response of the rotating structure (including all the coupling terms) issued from a
first nonlinear reduced-order model obtained with the linear elastic modes calculated without the
gyroscopic coupling term.

Let n be the number of dofs of the HFCM. Let [Φ] be the (n × M) matrix whose columns
are the vector of the projection basis (in the finite element discretization). At time t, the physical
response of the detuned bladed-disk, constructed using the HFCM, is written as

X(t) = [Φ] U(t) , (25)

in which X(t) is the Rn-vector of the physical displacements and U(t) is the RM vectors of the
generalized coordinates U1(t), . . . ,UM(t).
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2.4. Construction of the NL-SROM related to a detuned configuration in presence of mistuning
In this paragraph, we are interested in constructing the nonlinear stochastic reduced-order

model (NL-SROM) related to a detuned configuration of the bladed-disk in presence of random
mistuning. It is assumed that the mistuning only affects the linear elastic internal force and the
nonlinear forces, which are therefore uncertain. Such mistuning is modeled through the nonpara-
metric probabilistic approach [49] for geometric nonlinearities [51], which is briefly summarized
below. A global stiffness (P×P) real symmetric matrix [KNL], with P= M(M + 1), containing all
the linear, quadratic, and cubic elastic stiffness contributions, is constructed such that

[KNL] =

 [K (e)] [K̂ (2)]
[K̂ (2)]T 2 [K (3)]

 , (26)

in which [K (e)] is the (M×M) matrix defined by [K (e)]αβ =K
(e)
αβ and where the block matrices

[K̂ (2)] and [K (3)] are the (M×M2) and the (M2×M2) real matrices resulting from the following
reshaping operation,

[K̂ (2)]αJ = K̂
(2)
αβγ , J = (β − 1)M + γ , (27)

[K (3)]IJ =K
(3)
αβγδ , I = (α − 1)M + β , J = (γ − 1)M + δ . (28)

In [51], it is proven that [KNL] is a positive-definite matrix that is modeled by a random matrix
[KNL]. In this work, we use the nonparametric probabilistic modeling proposed in [53] for
random matrix [KNL],

[KNL] = [LK]T [G(δK)] [LK] + [∆K]with [∆K] = [KNL] − [LK]T [LK] . (29)

The matrix [LK] is a full (Q×P) matrix for which Q � P, defined by [LK] = [ΛQ]
1
2 [ΨQ]T .

The columns of [ΨQ] are the Q eigenvectors of matrix [KNL] related to its first Q largest eigen-
values that are stored in the diagonal matrix [ΛQ]. The full (Q×Q) random matrix [G(δK)]
is then constructed according to the nonparametric probabilistic approach [54, 49] for which the
uncertainty level is controlled by a scalar hyperparameter δK . The random matrix [KNL] is block-
decomposed similarly to Eq. (26), which allows for extracting the random stiffness terms K (e)

αβ,

K̂
(2)
αβγ, and K (3)

αβγδ. The random quadratic term K (2)
αβγ is then reconstructed according to Eq. (18)

by using the formula

K
(2)
αβγ =

1
2

(
K̂

(2)
αβγ + K̂

(2)
βγα + K̂

(2)
γαβ

)
. (30)

The NL-SROM of a detuned configuration ` of the rotating bladed-disk in presence of mistuning
is then written (see Eq. (25)) as

X`(t)= [Φ`] U`(t) , (31)

in which X`(t) is the Rn-valued random vector corresponding to the nonlinear random displace-
ments at time t of the HFCM for the detuned configuration ` in presence of mistuning. At time t,
the Rn-valued random vector U`(t) of the generalized coordinates is then solution of the random
nonlinear coupled differential equations, which are written, for α ∈ {1, . . . ,M}, as

M`
αβ Ü`

β + (C`αβ +D`
αβ) U̇`

β + (K (e),`
αβ +K

(c),`
αβ +K

(g),`
αβ ) U`

β + F NL,`
α (U`) = F `

α , (32)

in which the component α of the RM-valued random vector F NL,`(U) is

F
NL,`
α (U`)=K

(2),`
αβγ U`

β U`
γ +K

(3),`
αβγδ U`

β U`
γ U`

δ . (33)
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The observation (quantity of interest) that is adapted to the detuning context in presence of ran-
dom mistuning and that allows to quantify the dynamical amplification of the detuned configu-
ration with random mistuning with respect to the configuration without detuning in presence of
random mistuning, is defined in Section 3 (see Eq. (38)).

2.5. Numerical aspects related to the algorithms
This section is devoted to the computational strategy used for solving the NL-SROM. In the

detuning context, the number nc of distinct detuned configurations rapidly increases with the
number N of blades of the bladed-disk as nc ' 2N/N. Furthermore, the NL-SROM is solved
with the Monte-Carlo numerical simulation using nsim realizations for which the numerical con-
vergence has to be achieved in order to perform statistics post-processing. This means that there
is a large number nc × nsim of nonlinear differential equations with order M to be solved. Note
that, in general for industrial bladed-disks, nc is very large and it is impossible to solve nc×nsim
times the nonlinear reduced-order computational model, even with an efficient algorithm. Only
a small number Nd � nc of detuned configurations in presence of mistuning can be computed.
This is the reason why a surrogate model will be constructed in Section 4 with a probabilistic
learning tool in order to solve the probabilistic-based combinatorial optimization problem and
which will allow an optimal detuned configuration to be identified. In consequence, the com-
putational algorithms require to be efficient in terms of computational costs. A careful attention
has been paid in order to be able to browse the set of all the possible detuned configurations in
presence of mistuning using the HFCM, when nc is not to large. This approach is presented and
analyzed in Section 3 and the obtained results will be used for validating the solving method of
the probabilistic-based combinatorial optimization problem using a probabilistic learning tool,
presented in Section 4.

2.5.1. Computational strategy for dealing with geometrical nonlinearities
In a deterministic finite element context, it should be noted that the construction of the linear

reduced operators in Eq. (22) is usual and can easily be extracted using commercial softwares.
From a computational point of view, the vector of the nonlinear reduced internal forces F NL(U)
and the tangential matrix, for which the nonlinear stiffness contribution is written as

[KNL
T (U)]αβ δUβ=

∂F NL
α (U)
∂Uβ

δUβ ,

can also be extracted. Nevertheless, vector F NL(U) is usually constructed by directly comput-
ing the contribution related to each finite element, without distinguishing the quadratic stiffness
entries from the cubic stiffness entries. In such a case, the assemblage is quickly performed as
a simple summation. In general, tangential matrix [KNL

T (U)] is deduced from finite differences
techniques. The present methodology requires the knowledge of entries K̂ (2),`

αβγ and K (3),`
αβγδ. Its

detailed construction can be found in [52]. In the detuning context in presence of random mis-
tuning, the computational procedure allowing for computing the random quantities F NL(U) and
[KNL

T (U)] issued from the NL-SROM is summarized hereinafter.

1. Commercial software extraction or direct construction of the reduced linear elastic stiffness
K

(e)
αβ =k(e)(ϕβ,ϕα) according to Eq. (12).

2. Construction of the quadratic stiffness contribution K̂ (2)
αβγ= k̂(2)(ϕγ,ϕβ,ϕα) and of the cubic

stiffness contribution K (3)
αβγδ=k(3)(ϕδ,ϕγ,ϕβ,ϕα) according to Eqs. (19) and (20),
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3. Construction of the global stiffness matrix [KNL] according to Eq. (26),
4. Construction of the random global stiffness matrix [KNL] according to Eq. (29), by opti-

mizing the size Q of random matrix [G(δK)].

5. Extraction from random matrix [KNL] of random quantities K (e)
αβ, K̂

(2)
αβγ, and K (3)

αβγδ and

retrieving random stiffnessK (2)
αβγ according to Eq. (30)

6. Computational evaluation of random nonlinear internal reduced force vector F NL(U) ac-
cording to Eq. (33)

7. Depending on the computational algorithms used for solving nonlinear equations, comput-
ing the tangential matrix related to the nonlinear contribution [KNL

T (U)] such that [KNL
T (U)]αβ=

K
(2)
αβγUγ +K

(2)
αγβUγ +K

(3)
αβγδUγUδ +K

(3)
αδβγUγUδ +K

(3)
αδγβUγUδ.

2.5.2. Computational strategy for the nonlinear solver
The problem investigated concerns the forced regime of the bladed-disk, that is to say the

nonlinear forced response that does not depend on initial conditions. The external excitation is
thus a square integrable real-valued function on Rwhose Fourier transform has a compact support
(see Section 3.3). For a given detuned configuration ` with random mistuning, the NL-SROM is
solved in the time domain. An implicit unconditionally stable integration scheme corresponding
to the Newmark method with an averaging acceleration scheme is chosen. With such integration
scheme, for a given sampling time ti, we then have to solve the following set of nonlinear coupled
equations such that, for α = 1, . . . ,M,

[Keff]αβUβ(ti) + F NL
α (U(ti)) = F eff

α (ti) . (34)

In Eq. (34), the random matrix [Keff] is the reduced effective stiffness matrix that is independent
from sampling time. Note that [Keff] is positive definite almost surely for a fixed structure and is
without signature for a rotating structure due to the antisymmetric gyroscopic coupling term. The
random vector F eff(ti) models the effective external load that has to be updated at each sampling
time ti.

There are several ways to solve iteratively such nonlinear coupled equation. The simplest
method that is used is the fixed point method. The main advantage is that this iterative scheme
is computationally expedient because it does not require the evaluation of the tangential matrix.
Nevertheless, the algorithm does not necessarily converge. When the fixed-point algorithm does
not converge, it can be replaced by a Newton-Raphson algorithm [55]. It should be noted that
such algorithm requires the computation of the tangential matrix that is particularly time con-
suming. Furthermore, for nonlinear computations corresponding to a snap-back or snap-through
behavior, the Newton algorithm does not converge beyond the critical limit corresponding to a
null tangential stiffness matrix. In this case, the arc-length algorithm appears to be efficient for
computing the solution. Nevertheless, such algorithm introduces a new additional scalar param-
eter ζ(ti) that multiplies the right-hand side member of the nonlinear equation. In this case, we
then introduce the residual random vector R(U(ti), ζ(ti)) whose component α is defined by

Rα(U(ti), ζ(ti)) = ζ(ti)F eff
α (ti) − [Keff]αβUβ(ti) − F NL

α (U(ti)) . (35)

The algorithm is iterative. Several numerical approximations can be made. The first one consists
in keeping the same tangential matrix [KNL

T (U(ti))] along the successive iterations. The second
one concerns the computation of the increment related to parameter ζ(ti). The pure spherical
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arc-length method is based on the fact that there always exists a hypersphere that intersects the
load curve [56]. It then requires to solve a quadratic equation and to select amongst the two
solutions the physical root. Improvements have been proposed based on linearization methods,
for which the hypersphere is replaced by an hyperplan that is updated at each iteration [57] or
not updated [58]. For a given sampling time ti, such iterative scheme allows for computing a
solution (U(ti), ζ(ti)) but does not allow for controlling the value of ζ(ti). In the present case, the
process is incrementally repeated in order to increase the value of ζ(ti) that has to be controlled
to 1. In order to achieve that, an adaptive arc length, depending on the number of iterations
necessary to obtain the convergence of the previous increment is also implemented according to
[55]. An unusual procedure is then added to the algorithm concerning parameter ζ(ti). The state
of the algorithm corresponding to the previous increment is stored. As the new incremental value
of ζ(ti) is found to be upper than 1, the algorithm is rewind to the previous increment and the
computation is set again with the half of the arc-length. Such additional procedure is repeated
until parameter ζ(ti) reaches 1 within a numerical tolerance set.

3. Computational analysis of the role played by the geometrical nonlinearities in the de-
tuned bladed-disk in presence of random mistuning and detuning optimization

For the computational analysis, we have deliberately chosen a blisk (turbomachine compo-
nent comprising both rotor disk and blades) with mistuning with a relatively small number of
blades so that the number of all the possible detuned configurations be also small. This will
allow us

(1) to present a complete analysis of the role played by geometrical nonlinearities in the
detuned blisk in presence of random mistuning,

(2) to build an exact solution (as the reference) of the combinatorial optimization problem
introduced in Section 4. This reference will allow for validating the formulation of the combina-
torial optimization problem (see Sections 4.1 to 4.5) and for validating the probabilistic machine
learning tool for constructing a metamodel of the cost function (see Section 4.6 to 4.8). If we had
chosen a larger number of blades, we would not have been able to build the reference solution of
the combinatorial optimization problem, reference that is required for validation.

3.1. Description of the finite element model

The structure under consideration is a blisk with order N = 12 and with nw = N = 12 blades
whose finite element computational model is constructed with hexahedral solid finite elements
with 8 nodes. The finite element mesh is issued from [59] for which the order of the cyclic
symmetry has been modified from 24 to 12 as also used in [41]. The main motivation of such
reduction of the number of blades is to decrease the number of possible detuning patterns in or-
der to have a reasonable number of detuning possibilities, as previously explained. In the present
case, the aim is to constitute a full reference data basis in the nonlinear mistuned/detuned con-
text. When the detuning concept is approached with 2 possible types of blades, there are 352
possible detuned configurations when N = 12 that reduces the number of possibilities by a fac-
tor of almost 2N−1 ' 2 000 with respect to a structure with cyclic symmetry of order 2N = 24.
Let (0,X,Y,Z) be the Cartesian reference coordinate system for which (0,Z) coincides with the
rotational axis for the blisk. Fig. 2 shows the finite element mesh of the blisk whose computa-
tional characteristics are summarized in Table 1. There are n = 27 108 degrees of freedom (dof).
The blisk is made up of a homogeneous and isotropic material with mass density 7 860 Kg/m3,
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Figure 2: Finite element mesh of the blisk: blade sector (upper figure), full blisk (lower figure)

Poisson ratio 0.25, and Young modulus 2×1011N/m2. A Dirichlet condition is applied along the
interfaces toward adjacent stages [59]. The fundamental frequency of the blisk is ν0 = 977.32 Hz.
A Rayleigh damping model (see Eq. (17)) is added for the blisk, with parameters � = 78.67 s−1

and � = 3.69×10−7 s chosen such that the critical damping rate ξ(2πν) belongs to [0.0054, 0.008]
for ν ∈ [900 , 6 000] Hz as shown in Fig. 3.

Elements Nodes dof
Sector 476 846 2151

Full model 5712 9 036 27 108

Table 1: Computational characteristics of the finite element model

3.2. Modal characteristics of the tuned blisk

The eigenfrequencies (natural frequencies) of the structure are computed using the cyclic
symmetry. Fig. 4 displays the eigenfrequencies of the tuned blisk with respect to its circumfer-
ential wave number. The graph exhibits several veerings. Let νh,i be the eigenfrequency number
i related to the number h of nodal diameters. In the present case, the veering corresponding to
h = 2 nodal diameters corresponds to (double) eigenfrequency ν2,4 = 4 845.18 Hz that is related
to a dominant blade motion and to (double) eigenfrequency ν2,5 = 5 091.09 Hz that is related to a
blisk global motion as can be shown in Fig. 5.
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Figure 3: Critical damping rate: graph of ν 7→ ξ(2πν). Square symbol is related to fundamental frequency ν0 = 977.32 Hz
and ξ0 = ξ(2πν0) = 0.00754.
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Figure 4: Graph of the eigenfrequencies ν of the tuned blisk with respect to its circumferential wave number h

3.3. Choice of the external excitation and time-frequency sampling

Since we are interested in the forced response of the structure, the presence of geometrical
nonlinearities requires to solve the nonlinear equations in the time domain. The time-dependent
external excitation is modeled by the Rn-vector F(t) whose block decomposition according to
each sector is given by F(t) =

(
F0(t), . . . ,FN−1(t)

)
such that

F j(t) = s0 g j(t)F , j ∈ {0, 1, . . . ,N−1} ,

in which s0 is the load intensity that allows the nonlinearity rate to be calibrated, t 7→ g j(t) is a
square integrable real-valued function on R, which characterizes the time evolution of the load,
and where F is a Rn-vector describing the space localization of the load related to a given sector,
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Figure 5: Graph of the modal shapes related to double eigenfrequencies ν2,4 = 4 845.18 Hz (upper figures corresponding
to blade dominant motion) and to ν2,5 = 5 091.09 Hz (lower figures corresponding to blisk global motion)

in which integer n is equal to n/N. The Fourier transform of function t 7→ g j(t) is the C-valued
function again noted g j, but for which its argument is 2πν, such that

g j(2πν) =

∫
R

e−2ιπνtg j(t) dt , ν ∈ R ,
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in which ι is the imaginary unit. Complex-valued function ν 7→ g j(2πν) is assumed to have a
compact support Be ∪ Be ∈ R, independent of j, with Be = [−νmax,−νmin] and Be = [νmin, νmax].
This support is chosen as the frequency band of excitation for which νmin = 4 700 Hz and νmax =

5 200 Hz (see Fig. 7) in order that Be contains the veering region for h = 2 (see Fig. 4). Time
function g j differs from one sector to another one by a constant phase shift ϕ j = (4π j)/N. This
choice of the phase allows the modes with h = 2 nodal diameters to be excited for the linearized
dynamical system. For all t in R, we write

g j(t) =

S∑
k=1

2
π t

sin(π∆ν t) cos(2πsk ∆ν t + ϕ j)

in which ∆ν= (νmax − νmin)/S and where sk =νmin/∆ν + (2k − 1)/2. Consequently, |g j(2πν)| = 1
if ν belongs to Be ∪ Be ∈ R and is equal to 0 if does not. Therefore, the structure is uniformly
excited in band Be. From a numerical point of view, the computation is carried out on a truncated
time domain T = [tini, tini + T ]. The initial time is chosen as tini = −0.06 s yielding a null initial
load. The time duration T is then adjusted so that the system be returned at its equilibrium
state within a given numerical tolerance for both linear and nonlinear computations. Even the
fundamental eigenfrequency does not belong to excitation frequency band Be, it can indirectly
be excited through the geometrical nonlinear effects. Let ξ0 = 0.00754 be the critical damping
rate at fundamental frequency ν0 as shown in Fig.3. Time duration is chosen as T = 0.128 s,
which ensures the system to return to its equilibrium state with a negligible relative tolerance
τ = e−2πξ0ν0T < 10−12 when fundamental frequency is excited. The sample frequency νe and
the number of time steps are then chosen as νe = 64 000 Hz and nt = 8 192 yielding a constant
sampling time step δt = 15.6×10−6 s and a constant sampling frequency step δν = 7.8125 Hz.
Function ν 7→ g j(2πν) is estimated by using FFT. A convergence analysis is carried out with
respect to the number S + 1 of subdivisions of frequency band Be. Let Conv1(S ) be defined by

Conv1(S ) =

∫
R+ |g j(2πν)| dν

νmax − νmin
.

Fig. 6 shows the graph of S 7→ Conv1(S ). It can be seen that S = 30 yields a good representation
of |g j(2πν)|. Fig. 7 displays the graphs of t 7→ g0(t) and ν 7→ |g0(2πν)|. The spatial repartition
of the external load described by the normalized vector F is such that an external point load is
applied along all directions at the excitation nodes located at the tip of each blade with a constant
phase shift π/3. The load intensity s0 is adjusted to get sufficient geometrical nonlinear effects
that modify the vibrational behavior of the blisk.

3.4. Convergence analysis with respect to time sampling
The efficiency and the accuracy of the Newmark time integration scheme coupled with a

Newton-Raphson procedure is investigated. The load intensity is set to s0 = 10 N that corre-
sponds to a situation for which nonlinear effects occur, involving displacements of magnitude
2×10−3 m at the tip of blade, knowing that the blade thickness is 6.7×10−3 m. The nonlinear
reduced-order model is then constructed with M = 72 elastic modes corresponding to increas-
ing eigenfrequencies up to ν6,12 = 10 835.13 Hz. The frequency band of analysis B is chosen as
B = [300 , 6 000] Hz. We are then interested in the nonlinear computations for which the nonlin-
ear response is calculated in the truncated time domain T = [−0.06, 0.068] s. For performing the
convergence analysis, the values of parameters δt, nt, and νe are given in Table 2.
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Figure 6: Graph of convergence function S 7→ Conv1(S ).
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Figure 7: Graph of t 7→ g0(t) (upper figure) and ν 7→ |g0(2πν)| (lower figure).

T (s) 0.128×10−3 0.128×10−3 0.128×10−3 0.128×10−3 0.128×10−3 0.128×10−3

δt(s) 62.5×10−6 31.2×10−6 20.8×10−6 15.6×10−6 12.5×10−6 10.4×10−6

nt 2 048 4 096 6 144 8 192 10 240 12 288
νe(Hz) 16 000 32 000 48 000 64 000 80 000 96 000

Table 2: Numerical parameters for Newmark algorithm

Let u = (u1, . . . , uM) be the vector of the M modal coordinates. Let δt 7→ Conv2(δt) be the
convergence function defined by

Conv2(δt) =

√∫
B
‖u(2πν; δt)‖2dν ,

in which ‖u(2πν; δt)‖2 =
∑M

i=1 |ui(2πν; δt)|2 and where the CM-vector u(2πν; δt) is the Fourier
18



transform of the RM-valued function t 7→ u(t; δt). Fig. 8 shows the graph of δt 7→ Conv2(δt). It
can be seen that a reasonable convergence is obtained for δt = 15.6×10−6 s yielding nt = 8 192
time steps, νe = 64 000 Hz, and a frequency resolution δν = 7.8 Hz.
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Figure 8: Convergence analysis with respect to time sampling δt. Graph of function δt 7→ Conv2(δt).

Let xtip(t) = (xtip
1 (t), xtip

2 (t), xtip
3 (t)) be the displacement vector of the node located at the tip of

blade number 0 and let xtip
i (2πν) be its Fourier transform. Fig. 9 displays the graphs of t 7→ xtip

3 (t)
and ν 7→ |xtip

3 (2πν)|. First of all, it can be seen that the structure returns to its equilibrium
state at the end of the simulation. The time response is strongly sensitive to the choice of δt.
The response in the frequency domain displays consequent nonlinear effects, since the structure
responds outside the frequency band of excitation Be. The convergence with respect to the choice
of δt is relatively quick when analyzing the structure in the excitation frequency band. The
fundamental frequency of the blisk is also excited through the nonlinearities and it can be seen
that this response is strongly over-estimated when choosing δt = 62.5×10−6 s and becomes stable
from for time steps lower than δt = 15.6×10−6 s, which is confirmed by the zoom of the nonlinear
response in the low-frequency range displayed in Fig. 10. From now on all the computations in
the time domain are done taking δt = 15.6×10−6 s.

3.5. Convergence analysis with respect to the order of the reduced-order model

The accuracy of the NL-ROM is investigated with respect to the order M of the reduced-order
model. The elastic modes are sorted by increasing order of their eigenfrequencies belonging to a
family of modes that are represented in Fig. 4. The load intensity is set to s0 = 10 N and the time
step is set to δt = 15.6×10−6 s. Denoting always u = (u1, . . . , uM) as the vector of the M modal
coordinates, the convergence function M 7→ Conv3(M) is defined by

Conv3(M) =

√∫
B
‖u(2πν; M)‖2dν ,

in which ‖u(2πν; M)‖2 =
∑M

i=1 |ui(2πν; M)|2 and where the CM-vector u(2πν; M) is the Fourier
transform of the RM-valued function t 7→ u(t; M). The superscript lin is added for the computation
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Figure 9: Graph of function t 7→ xtip
3 (t) representing the nonlinear response at the tip of blade 0 in the transverse direction

for different values of δt (upper figure). Graph of ν 7→ |xtip
3 (2πν)| in the frequency analysis B = [300, 6 000] Hz.
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Figure 10: Zoom of the graph of function ν 7→ |xtip
3 (2πν)| in the very low-frequency range, for different values of δt.

corresponding to the response of the linearized system. Fig. 11 displays the graphs of functions
M 7→ Convlin

3 (M) (upper graph) and M 7→ Conv3(M) (lower graph). It should be noted that for
each considered order M, the corresponding value of function Conv3(M) has been obtained by
performing a whole deterministic nonlinear analysis using the NL-ROM parameterized by M.
As expected, it can be seen that the converged values of both convergence functions differ, that
underlines the presence of effects induced by the geometrical nonlinearities. As expected, it can
also be seen that the convergence is slower in the nonlinear case. It should also be noted that
the nonlinear tuned case yields response levels that are much more lower than the corresponding
linearized case, which means that the geometrical nonlinearities have a stiffening effect on the
vibrational behavior of the bladed-disk. Note also that the convergence analysis exhibits a maxi-
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linear
h 2 2 1 3

ν(Hz) 4845.2 5091.1 4840.0 4865.6
ratio 1.0000 0.3660 0.2108 0.1927

nonlinear
h 2 2 1 3 0 5 2 4 6 0

ν(Hz) 5091.1 4845.2 4840.0 4865.6 5266.1 4872.1 2571.5 4871.3 4872.1 4768.6
ratio 1.0000 0.8001 0.5421 0.3519 0.3129 0.2694 0.2653 0.2431 0.2375 0.2092

Table 3: Analysis of the most contributing generalized coordinates

mum when the nonlinear reduced-order model of order M =48 is used for the computations. The
main contribution comes from mode with ν2,5 = 5091.09 Hz, which is the mode with the higher
frequency that is located in the excitation frequency band and that is directly excited by the load
vector. Such an overestimation is then corrected by including additional modes in the nonlinear
reduced-order model. From now on, the order of the NL-ROM is fixed to M = 72.
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Figure 11: Convergence analysis with respect to the order M of the NL-ROM. Graph of function M 7→ Convlin
3 (M)

corresponding to the linearized case (upper graph) and graph of M 7→ Conv3(M) (lower graph).

An analysis of the most contributing generalized coordinates is carried out over B and pre-
sented in Table 3. In the linear case, it is seen that the most contributing generalized coordinates
are related to natural eigenfrequencies ν2,5 = 5091.1 Hz and ν2,4 = 4845.2 Hz. Moreover there are
also two other contributions that are non negligible, that are located in Be, and that are not re-
lated to circumferential wave number h=2. This is not theoretically expected since the load has
been constructed to only excite circumferential wave number h = 2. Nevertheless, in the present
case, the forced response is solved in the time domain. The signal is theoretically defined for
t ∈ R but is numerically truncated, which explains those secondary contributions. In the nonlin-
ear case, all the natural frequencies located in Be are contributing to the nonlinear response. It
should also be noted that the ratios of the generalized coordinates related to natural frequencies
ν2,2 = 2571.5 Hz and ν0,5 = 5266.1 Hz, that are located outside the excitation frequency band do
have a non negligible participation.
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3.6. Effects of the geometrical nonlinearities

In order to have a better understanding of the structural behavior of the blisk, it is essential
to perform a sensitivity analysis of the nonlinear response with respect to load intensity s0. The
computations are carried out with numerical parameters set to δt = 15.6×10−6 s and M = 72.
Parameter s0 controls the level of nonlinear effects that can be quantified as follows. A criterion
is that the nonlinear response does no longer coincide with the response of the linearized system
(small deformations, small displacements) as soon as vibrations appear outside the excitation
frequency band Be. As previoulsly, let u = (u1, . . . , uM) be the vector of the M modal coordinates
and let s0 7→ Conv4(s0) be the function defined by

Conv4(s0) =

∫
Be
‖u(2πν; s0)‖2dν∫

B ‖u(2πν; s0)‖2dν
,

in which ‖u(2πν; s0)‖2 =
∑M

i=1 |ui(2πν; s0)|2 and where the CM-vector u(2πν; s0) is the Fourier
transform of the RM-valued function t 7→ u(t; s0). Such function is equal to unity as long as
the linear assumption remains valid. Consequently, there exists a threshold smin above which
geometrical nonlinearities can no longer be neglected. Fig. 12 shows the graph of function
s0 7→ Conv4(s0). The threshold value is found to be smin = 1 N.
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Figure 12: Sensitivity analysis with respect to load intensity s0. Graph of function s0 7→ Conv4(s0).

3.7. Convergence analysis with respect to the size Q of the random germ.

As defined in Section 2.4, the global stiffness matrix [KNL] corresponding to a reduced-order
model of order M = 72 has a size (P × P) with P = 72 × 73 = 5256. Figure 13 represents the
function j 7→ [ΛQ] j j where the eigenvalues of matrix [KNL] are sorted by decreasing values.
One chooses Q so that eigenvalues that are greater than 10−6 the fundamental one and their
corresponding eigenvectors are kept in the reduction so that Q=440. Note that this value defined
the length of the random vector used for constructing random matrix [G(δK)]. Let be Conv5(Q)
be the function defined by

Conv5(Q)=

√
||∆K(Q)||2

||KNL||2
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It can be shown that Conv5(Q = 440) = 1.98 × 10−6 which allows a good representation of the
solution to be obtained and which is such that Q=440 � P=5256.
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Figure 13: Convergence analysis with respect to the number Q of eigenvectors to be kept in the simulation. Graph of
function j 7→ [ΛQ] j j.

3.8. Convergence analysis with respect to the number of Monte Carlo numerical simulations for
the mistuned blisk without intentional detuning

The load intensity is set to s0 = 10 N that corresponds to significant nonlinear effects and the
numerical parameters are set to M = 72 and δt = 15.6×10−6 s. The pure mistuning (that is to say
without intentional detuning) of the blisk is considered through the nonparametric probabilistic
approach with a hyperparameter δK set to δK =0.1.

Since the nonparametric probabilistic approach is used for modeling the mistuning, it seems
important to precise what is the physical meaning of the choice of hyperparameter δK = 0.1 in
the pure mistuning case. Figure 14 displays the probability density function of the first three
eigenfrequencies with circumferential wave number h = 0 using kernel density estimation in
order to provide the level of variations of the natural frequencies induced by the pure mistuning
when using the nonparametric probabilistic approach. The nonlinear random responses obtained
in the pure mistuning case allows for the order of magnitude of the amplification to be estimated,
yielding a mean level of amplification of 1.222, a corresponding standard deviation of 0.164 and
a 98th quantile of 1.629.

The convergence analysis with respect to the number nsim of Monte Carlo numerical simula-
tions is investigated. Let U = (U1, . . . ,UM) be the random vector of the M modal coordinates on
the probability space (Θ,T ,P). Let Conv6(nsim) be the function defined by

Conv6(nsim) =

√√
1

nsim

nsim∑
α=1

∫
B
‖U(2πν; θα)‖2dν ,

in which, for θα ∈ Θ, U(2πν; θα) is the realization of the CM-valued random variable U(2πν) such
that the CM-valued function ν 7→ U(2πν; θα) is the Fourier transform of the RM-valued function
t 7→ U(t; θα). Fig. 15 displays the graph of function nsim 7→ Conv6(nsim). It is found that a good
convergence is obtained from nsim = 400.
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Figure 14: Estimation of the probability density function pν0,i (ν) for i = {1, 2, 3} of the first three natural frequencies with
circumferential wave number h=0 using kernel density estimation. Corresponding natural frequencies for the tuned case
(red line).
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Figure 15: Convergence analysis with respect to the number nsim of realizations for the Monte Carlo numerical simulation
of the NL-SROM. Graph of function nsim 7→ Conv6(nsim).

3.9. Quantification of the computational costs with regard to the detuning context of the mistuned
blisk

These numerical computations are essential (1) to better understand the dynamic behavior
of the blisk and (2) to optimize for the best the computational costs while keeping a predictive
computational model that ensures a good accuracy on the nonlinear dynamical response. From
now on, the load intensity is set to s0 = 10 N that corresponds to significant nonlinear effects (see
Fig. 12). The mistuning level is characterized by a dispersion level δK = 0.1 and the numerical
parameters are set to M = 72, δt = 15.6×10−6 s, nsim = 500, and Q = 440. It is essential to
underline that all these convergence analyses have to be carried out meticulously. The aim of
this work concerns the optimization of the detuning of the blisk in presence of mistuning. The
computational model of the detuned blisk is constructed from the knowledge of two compatible
meshes of two different sector types denoted as 1 and 2. The reference sector 2 is obtained from
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nb1 12 11 10 9 8 7 6 5 4 3 2 1 0
nb2 0 1 2 3 4 5 6 7 8 9 10 11 12

ñc(nb1, nb2) 1 1 6 19 43 66 80 66 43 19 6 1 1

Table 4: Number ñc(nb1, nb2) of detuned configurations as a function of the number nb1 and nb2 of blades of type 1 and
2.

sector 1 by decreasing the Young modulus of the blade from Young1 = 2.00×1011 N/m2 to
Young2 = 1.80×1011 N/m2.

Let us denote by nb1 and nb2 the number of blades of type 1 and type 2 in a detuned config-
uration. Let ñc(nb1, nb2) be the number of possible detuned configurations having nb1 and nb2
blades of type 1 and 2 respectively. Let nc be the total number of detuned configurations for all
the possible values of nb1 and nb2. For the tuned blisk with cyclic symmetry of order N = 12,
Table 4 gives the number ñc(nb1, nb2) of detuned configurations as a function of the number
nb1 and nb2 of blades of type 1 and 2. There are a total number of nc = 352 possible detuned
configurations (patterns).

The objective is to find the optimal configuration (pattern) that will reduce for the best the re-
sponse amplification induced by mistuning. Another objective is to have a complete knowledge
of the nonlinear dynamical behavior of all possible detuned configurations in order to consti-
tute a reference data basis. In the present numerical study, all the computations are distributed
according to the number nsim of Monte Carlo realizations and are made on workstations with
1 536 GB RAM and 30 cores (Intel(R) Xeon(R) Platinum 8 168 CPU@2.9Ghz). The generated
elapsed time is about 6 hours to perform 1 computation corresponding to the nonlinear analysis
of 1 detuned pattern in presence of mistuning, which means that the construction of the full data
basis requires an elapsed time of about 88 days of computations.

3.10. Choice of the observation

The pure mistuning case corresponds to the usual situation for which the blisk is described
with a tuned configuration in presence of mistuning. In that particular case, the deterministic case
corresponds to a structure with a perfect cyclic symmetry with order N. The usual mistuning
analyses, whether it is in a linear or nonlinear context, characterize the mistuning effects by
introducing a random amplification factor that is expressed with respect to the deterministic
resonance of the structure with perfect cyclic symmetry.

The detuned configuration in presence of mistuning is defined by a given distribution of the
blades of type 1 and 2. The detuned configuration number ` is then represented by a vector
wc,` ∈ {0, 1}nw whose component wc,`

j is equal to 0 or 1 whether the blade is of type 1 or of type
2. Let us recall that for a given mistuning level, the drastic mistuning effects yield a response
amplification with respect to its deterministic counterpart. The objective is to find detuned config-
urations whose mistuning effects induce less amplification than the one obtained with the tuned
configuration in presence of mistuning. The idea is then to define a scalar quantity that is able
to quantify the mistuning effects of the detuned configuration with respect to the unavoidable
mistuning effects of the tuned configuration.

Let X`( j, 2πνi, θk) be the C3nb -vector of the realization θk of the 3nb-displacement dofs of
blade number j ∈ {1, . . . , nw} in the frequency domain, taken at frequency νi, and corresponding
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to the detuned configuration number `. Let [t j] be the (3nb×n) real matrix that allows for re-
straining the complex vector of the n displacement-dofs of the structure to those related to blade
number j, we have

X`( j, 2πνi, θk) = [t j] [Φ`] U`(2πνi, θk) ,

in which [Φ`] ∈ Mn,M is the matrix of the M elastic modes for configuration ` and where
U`(2πνi, θk) is the realization θk ∈ Θ of the CM-valued random variable U`(2πνi) of the modal
coordinates at frequency νi.

For blade number j of configuration `, at frequency νi, and for realization θk, we define
the scalar observation Y`( j, 2πνi, θk) = ‖X`( j, 2πνi, θk)‖. Since the mistuning context requires to
consider the resonance of the most responding blade, we define the R+-valued random variable
A` whose realization a`,k = A`(θk) is such that

a`,k = max
j
{max

i
Y`( j, 2πνi, θk)} . (36)

We define the associated random variable J`max whose realization j`,kmax = J`max(θk) is such that

j`,kmax = arg max
j
{max

i
Y`( j, 2πνi, θk)} . (37)

In order to get a robust scalar quantity for characterizing the random nonlinear dynamical be-
havior of the blisk, an estimate of the maximum extreme value statistics of random variable A`

is introduced. It should be noted that, for a fixed `-configuration, the maximum is used so that
all realizations are in the confidence domain with the greatest probability. This estimation is
constructed as follows. The available number of Monte Carlo numerical simulations is written
as nsim = νr νe (for nsim = 500, νe = 10 and νr = 50). We then define, for r ∈ {1, . . . , νr},

a`,rM = max
k∈{νe(r−1)+1,...,rνe}

a`,k ,

in which a`,k is defined by Eq. (36) and we define its mean value, a`M , such that

a`M =
1
νr

νr∑
r=1

a`,rM .

The observation of the detuned `-configuration with mistuning is then defined as the amplifica-
tion factor qc,` with respect to its tuned counterpart with pure mistuning,

qc,` =
a`M
at

M
, (38)

in which superscript t is related to the tuned configuration.

3.11. Some remarks concerning the nonlinear detuning optimization and the linearized detuning
optimization

In this paragraph, we investigate the deterministic response of the two tuned configurations
with cyclic symmetry with order N = 12. Concerning the tuned configuration with blades of
type 1, the natural eigenfrequencies related to the veering with circumferential wave number
h = 2 are the double eigenfrequencies νtype1

2,4 = 4845.18 Hz and νtype1
2,5 = 5091.09 Hz. Concerning
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the tuned configuration with blades of type 2, the natural eigenfrequencies related to the veering
with circumferential wave number h = 2 are the double eigenfrequencies νtype2

2,4 = 4596.54 Hz and

ν
type1
2,5 =4829.83 Hz. Since the excitation frequency band Be is a narrow excitation frequency band

chosen as Be = [4700 , 5200] Hz, it can be seen that the tuned configuration with 12 blades of
type 2 only presents one resonance in Be. In the linearized case, this means that there will be
some detuned configurations for which there will be only one resonance in frequency band of
analysis. B. Let ytypeα(2πνi), with α = {1, 2} be the deterministic scalar observation defined sim-
ilarly to quantity Y`( j, 2πνi, θk). Figure 16 displays the graphs of a zoom of ν 7→ ytypeα,lin(2πνi)
and ν 7→ ytypeα(2πνi). It is clearly seen that the nonlinear and linearized response yield very
different dynamical behavior due to the external load level for which geometrical nonlinearities
occur. Concerning the nonlinear response, the two tuned configurations do exhibit a complex vi-
brational behavior, with several resonances in and outside the excitation frequency band, which
is of interest for considering the nonlinear detuned optimization. Concerning the linearized re-
sponse, it is seen that the second resonance for the tuned configuration with blades with type
1 has a response level about 5 times smaller than the main resonance. It is also seen that the
first resonance for the tuned configuration with blades with type 2 is not captured because the
corresponding natural eigenfrequency is localized below the excitation frequency band. For that
reason and for the considered case, it does not seems appropriate to consider linearized detuning
optimization and to compare it with the nonlinear detuned optimization.

4500 5000 5500
10-5

10-4

type1
type 1, lin
type 2
type 2, lin

Figure 16: Graph of a zoom of the deterministic response for the nonlinear and linearized response of the tuned config-
urations with blades of type 1 and of type 2. Graphs of ν 7→ ytype 1(2πνi) (thick line), ν 7→ ytype 1,lin(2πνi) (thin line),
ν 7→ ytype 2(2πνi) (thick dashed line), ν 7→ ytype 2,lin(2πνi) (thin dashed line). Excitation frequency band Be is represented
by the light pink area.

3.12. Detuned configurations that decrease the amplification of the nonlinear response induced
by the mistuning

A detuned configuration `, which yields a nonlinear mistuned response level that is smaller
than the one obtained with the tuned configuration in presence of mistuning, is characterized
by qc,` < 1. Such configuration belongs to the set of optimal detuned configurations. In the
detuning process, the tuned configuration wc,t = [0 0 0 0 0 0 0 0 0 0 0 0] in presence of mistuning
is considered and yields amplification qc,t = 1.0000. The detuning is defined around this tuned
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configuration. This subset corresponds to nc = 216 possible detuned configurations for which
the number nb2 of blades of type 2 is less than or equal to nw/2 = 6 (see Table 4). However,
in this paragraph, we will also consider as possible configurations, the detuned configurations
around the other tuned configuration wc,t2 = [1 1 1 1 1 1 1 1 1 1 1 1] corresponding to nb2 > 6
and for which the amplification factor is qc,t2 = 1.1252. In such a case (see Table 4), there are
136 additional detuned configurations and consequently, the total number of configurations is
nc = 352, which are randomly ordered. The tuned configuration wc,t corresponds to ` = 49.
Fig. 17 shows the graph of j 7→ qc,` j where qc,` j are sorted by increasing order for nc = 352
(upper graph) and for nc = 216 (lower graph). It can be shown that the amplification factor
increases from qc,`1 = qc,104 = 0.9476 until qc,`352 = qc,9 = 1.1774 corresponding to detuned
configurations defined by wc,104 = [0 0 0 1 0 0 1 0 0 1 0 1] and wc,9 = [0 1 0 0 0 1 1 1 0 0 1 1]. By
comparing these two graphs, it is shown that only one improving detuned configuration has a
number nb2 of blades with type 2 greater than 6. Furthermore, it is seen that the worst detuned
configuration ` = 9 has a number nb2 of blades with type 2 equal to 6. It can also be seen
that most of the detuned configurations having a majority of blades with type 2, have a larger
amplification factor.

From now on, only detuned configurations corresponding to nc = 216 possible detuned con-
figurations for which will be considered. With this new renumbering, it can be seen that there
are 14 detuned configurations amongst all the 216 detuned configurations (representing 6.5 % of
all the detuned configurations) for which the nonlinear mistuned response has smaller response
levels than those obtained with the pure mistuning case. Table 5 summarizes the results ob-
tained with these improving detuned configurations. Note that there is only one configuration
that presents a subcyclicity with order s = 2. The other improving detuned configurations have
no particular cyclicity.

Nonlinear detuning optimization in presence of mistuning
j ` j s nb1 nb2 wc,` j qc,` j deterministic detuning qc,` j

det
1 104 8 4 [0 0 0 1 0 0 1 0 0 1 0 1] 0.9476 1.0717
2 166 7 5 [1 0 1 1 0 0 1 0 0 1 0 1] 0.9529 1.1157
3 123 10 2 [1 0 0 1 0 0 0 0 0 0 0 0] 0.9537 1.0504
4 6 9 3 [0 0 0 1 0 1 0 0 0 1 0 0] 0.9817 1.0988
5 141 10 2 [1 0 0 0 0 1 0 0 0 0 0 0] 0.9822 1.0194
6 133 8 4 [1 0 1 0 0 0 0 0 0 1 0 1] 0.9824 1.1610
7 44 10 2 [1 0 1 0 0 0 0 0 0 0 0 0] 0.9834 1.1845
8 64 8 4 [0 0 1 0 0 1 1 0 0 1 0 0] 0.9859 1.0462
9 34 11 1 [1 0 0 0 0 0 0 0 0 0 0 0] 0.9882 1.0852

10 109 7 5 [1 0 1 0 0 1 0 0 1 1 0 0] 0.9893 1.3093
11 175 7 5 [1 0 1 0 0 0 1 0 1 1 0 0] 0.9894 1.1167
12 64 7 5 [0 0 1 1 0 1 1 0 0 1 0 0] 0.9974 0.9799
13 211 2 10 2 [1 0 0 0 0 0 1 0 0 0 0 0] 0.9995 0.9788
14 16 6 6 [0 0 1 1 0 1 1 0 1 1 0 0] 0.9999 0.9903

Table 5: Characteristics of the the improving detuned configurations.

A careful attention is also paid to the 10 detuned configurations that present a cyclic sym-
metry s ∈ {2, 3, 4, 6} < N. The characteristics are summarized in Table 6 and the corresponding
amplification factors are represented by symbols in Fig. 17. As shown in Table 5, except for de-
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j ` j s nb1 nb2 wc,` j qc,` j

87 127 6 6 6 [0 1 0 1 0 1 0 1 0 1 0 1] 1.0757
159 79 4 8 4 [0 1 0 0 1 0 0 1 0 0 1 0] 1.1130
47 45 3 9 3 [0 1 0 0 0 1 0 0 0 1 0 0] 1.0519
164 195 3 6 6 [1 1 0 0 1 1 0 0 1 1 0 0] 1.1141
13 211 2 10 2 [1 0 0 0 0 0 1 0 0 0 0 0] 0.9995
52 152 2 8 4 [0 1 0 1 0 0 0 1 0 1 0 0] 1.0540
90 129 2 8 4 [1 0 0 0 0 1 1 0 0 0 0 1] 1.0766
192 121 2 6 6 [0 1 1 0 0 1 0 1 1 0 0 1] 1.1270
212 164 2 6 6 [0 1 1 0 1 0 0 1 1 0 1 0] 1.1545
213 185 2 6 6 [0 0 1 1 1 0 0 0 1 1 1 0] 1.1573

Table 6: Characteristics of the detuned configurations with a subcyclicity s.
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Figure 17: Dynamical amplification factor according to detuned configuration. Graph of function j 7→ qc,` j for the
nc = 352 detuned configurations (upper graph) and for the nc = 216 detuned configurations with a number of blades with
type 2 less than or equal to 6 (lower graph). Subcyclicity order s is given for s = 2 (purple square symbol), s = 3 (red
diamond symbol), s = 4 (orange bullet symbol) and s = 6 (green triangle symbol).

tuned configuration ` = 211 with s = 2 that has an amplification factor qc,211 = 0.9995 ' 1 that
slightly inhibits the mistuning effects, these subcyclic configurations give rise to an amplification
between 5% and 16% with respect to the pure mistuning situation.

3.13. Nonlinear analysis of the mistuned response of the best and the worst detuned configura-
tions

The results are analyzed for the following detuned configurations: the tuned configuration
corresponding to the pure mistuning case (` = 49), the best detuned configuration (` = 104),
and the worst detuned configuration (` = 9). Fig. 18 displays the graphs of k 7→ a`,k = A`(θk)
for k = 1, . . . , nsim, which describes the maximum displacement response over the frequency
and the blades for each mistuning realization θk of the detuned configurations ` ∈ {49, 104, 9}.
By comparing these graphs, it can be seen that the best detuned configuration is characterized
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by slightly lower response levels but also by less scattered realizations with respect to the pure
mistuned case (left figure). The realizations of the worst detuned configurations (right graph)
are clearly more scattered with higher response levels. The distribution of the blades related to
these detuned configurations are displayed in Fig. 19. For a given detuned configuration ` and a
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Figure 18: Analysis of the mistuned response for given detuned configurations: graph of realizations k 7→ a`,k = A`(θk)
for the tuned configuration (pure mistuning) ` = 49 (left figure), the best detuned configuration ` = 104 (middle figure),
and the worst detuned configuration ` = 9 (right figure).
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Figure 19: Analysis of the blade distribution corresponding to the pure mistuned configuration (left graph), the best
detuned configuration (middle graph), and the worst detuning case (right graph).

fixed frequency ν, we introduce the real-valued random variable Y`
max(2πν) whose realization θk

is defined by
Y`

max(2πν, θk) = Y`( j`,kmax, 2πν, θk) ,

in which j`,kmax is defined by Eq. (37). For detuned configurations ` ∈ {49, 104, 9}, Figs. 20 to 22
display the graphs of the confidence region of the real-valued random function ν 7→ Y`

max(2πν)
for a probability level of 0.98. As expected, it can be seen that the structural displacements are
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mainly located in the frequency band of excitation Be but that there are also new resonances
occurring below the frequency band of excitation Be that are induced by the geometrical non-
linearities. The amplitudes of these new resonances correspond to the indirect excitation of the
first blade modes of the blisk and are of a lower order of magnitude in the present case, probably
because the blades are not very slender. Note that this phenomenon has already been observed
in previous analyses of nonlinear mistuned blisk for which the blades were slender structures,
attached to the disk [36, 47]. Moreover, the phenomenon for which the amplitude of the res-
onances located below the frequency band of excitation are dominant has been investigated in
another context of sloshing in nonlinear fluid structure interaction [60]. Fig. 23 shows a zoom
of these confidence regions around the excitation frequency band Be. It is clearly seen that the
pure mistuned blisk have slightly more robust resonances that the one obtained with the detuned
configurations in presence of mistuning. But the real interest is to verify that the optimal detuned
configuration (middle graph) guarantees that the upper envelope of the confidence region stays
below the critical level of response of the pure mistuned response. It is thus observed that the
optimal detuned configuration yields a reduction of the maximum amplitude of about 12% with
respect to the initial situation that corresponds to the pure mistuning case. Another observation
is that the worst detuned configuration yields an amplification of about 11% with respect to the
initial situation that corresponds to the pure mistuning case. Note that the resonance involved
does not correspond to the main resonance of the pure mistuned system. All these observations
allow for assessing the efficiency of the optimization through the output of interest qc,`.
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Figure 20: Analysis of the mistuned response for the tuned configuration: graph of the confidence region of ν 7→
Y`max(2πν) for a probability level of 0.98, corresponding to the pure mistuned configuration ` = 49 (purple area). Excita-
tion frequency band Be is represented by the light pink area.

3.14. Sensitivity analysis of the nonlinear mistuned response of the best and the worst detuned
configurations with respect to the detuning rate and the mistuning rate

It is interesting to perform a sensitivity analysis with respect to the detuning rate for the 3
configurations studied in Section 3.13. The detuning rate is described by the ratio r defined by

r = 1 −

√
Young2

Young1
. (39)
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Figure 21: Analysis of the mistuned response for given detuned configurations: graph of the confidence region of ν 7→
Y`max(2πν) for a probability level of 0.98, corresponding to the best detuned configuration ` = 104 (green area). Excitation
frequency band Be is represented by the light pink area.

Figure 22: Analysis of the mistuned response for given detuned configurations: graph of the confidence region of ν 7→
Y`max(2πν) for a probability level of 0.98, corresponding to the worst detuned configuration ` = 9 (orange area). Excitation
frequency band Be is represented by the light pink area.

It quantifies a ratio for the blade frequency. In this Section, observation qc,` is parameterized
as a function of r and δK and is rewritten as qc,`(r; δK). All the optimization process has been
carried out for the constant mistuning defined by δK = 0.1 and for a detuning rate r = 5.13 %
corresponding to blade Young modulus Young2 = 1.80×1011 N/m2. The performed sensitivity
analysis involves a blade Young modulus Young2 ∈ [1.70, 2.00]×1011 N/m2 corresponding to
r ∈ [0, 7.8] %. The graph r 7→ qc,`(r; 0.1) is shown in Fig. 24. The purple line describes the
pure mistuning case taken as a reference and yielding qc,49(0, 0.1) = 1. As expected, the two
investigated detuned configurations (` = 9 and 104) tend to converge to the pure mistuned sit-
uation as r goes to zero. Note that the few fluctuations at r = 0 are caused by the statistical
post-processing. The optimal detuned configuration ` = 104 further reduces the amplification
when the detuning rate is r = 4.34 % corresponding to Young2 = 1.83×1011 N/m2 yielding
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Figure 23: Analysis of the mistuned response for given detuned configurations: for a probability level of 0.98, zoom of
the confidence region of ν 7→ Y`max(2πν) for the pure mistuned configuration ` = 49 (upper graph), for the best detuned
configuration ` = 104 (middle graph), and for the worst detuned configuration ` = 9 (lower graph). Critical level defined
by the maximum of the upper envelope corresponding to the pure mistuned situation (red line).

qc,`(r = 4.34 %, 0.1) = 0.9394. Note that this optimum is not necessarily a global optimum since
the optimization has been carried out for r = 5.13 %. Moreover, it can also be seen that detuned
configuration ` = 104 does not behave monotonically with respect to inhibition or amplification
induced by the mistuning. There is a range of detuning rate r ∈ [3.30, 6.99] % for which the
detuned configuration reduces the amplification induced by the mistuning. But we have to care-
fully pay attention not to have a detuning rate r smaller than 3.30 %. Note also that the detuned
configuration ` = 9 corresponding to the worst detuned configuration in the optimization process
increases the amplification induced by the mistuning whatever the detuning rate r. Then a sensi-
tivity analysis is performed for these three detuned configurations with respect to the mistuning
rate δK , which is the hyperparameter that calibrates the uncertainty level in meta-stiffness matrix
(See Section 2.4), and which contains both linear and nonlinear stiffness contributions. It is in-
teresting to relate it to physical considerations. For instance, in the pure mistuning case and for
a mistuning rate δK = 0.1, the confidence region obtained with a probability level of 98% and
related to the location of the main resonance is described by a dispersion between −1.76 % and
+5.59 % around the main resonance. The performed sensitivity analysis involves a mistuning
rate from δK ∈ [0, 0.24]. The graph δK 7→ qc,`(5.13 %; δK) is shown in Fig. 25. The purple line
describes the pure mistuning case taken as a reference and yielding qc,49 = 1. The detuned con-
figuration ` = 9 never improves the mistuning situation whatever the mistuning rate. Concerning
detuned configuration ` = 104 that is optimal for a mistuning rate δK = 0.1, there is a threshold
value δK = 0.08 from which the mistuning amplification effects are inhibited with respect to the
pure mistuning situation. A remark concerns the deterministic detuning optimization. It can be
seen that neither detuned configurations ` = 9 or ` = 104 allows for inhibiting the mistuning am-
plification effects as deterministic detuning is considered. Although deterministic optimization
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Figure 24: Analysis of the sensitivity of mistuned response for given detuned configurations with respect to the detuning
rate r: graph of r 7→ qc,`(r; 0.1) for the pure mistuned situation corresponding to ` = 49 (square symbol, purple line),
for the best detuned configuration ` = 104 (diamond symbol, green line), and for the worst detuned configuration ` = 9
(circle symbol, orange line). Parameters for optimization process (vertical red line).

has no meaning because mistuning is an unavoidable phenomenon, it has also been performed
and the results show that the optimal solutions are not optimal for the detuning optimization in
presence of mistuning. Let qc,`

det be the corresponding quantity of interest related to qc,` when
considering deterministic detuning (that is to say without mistuning). Table 7 displays the seven
optimal deterministic detuned configurations and compares the quantity of interest when de-
tuning optimization is carried out in presence of mistuning. It can be seen that three optimal
deterministic detuned configurations belong to the set of the fourteen optimal detuned configu-
rations (in presence of mistuning) but that such detuned configurations are in fact part of the less
optimal configurations since the corresponding quantity qc,` is close to 1. Table 5 also compares
the quantity of interest of the detuning optimization with those obtained when no mistuning is
considered. It is interesting to see that such quantity is sensitive to the presence of mistuning.
This proves that mistuning cannot be neglected in the detuning optimization process. The most
optimal detuned configurations are not optimal solutions when no mistuning is considered in the
detuning optimization process.

Nonlinear deterministic detuning optimization (without mistuning)
j ` j s nb1 nb2 wc,` j deterministic detuning qc,` j

det qc,` j

39 145 7 5 [0 0 1 1 0 0 1 0 0 0 1 1] 0.9574 1.0444
68 189 7 5 [0 0 1 1 0 1 1 1 0 0 0 0] 0.9675 1.0627
192 121 6 6 [0 1 1 0 0 1 0 1 1 0 0 1] 0.9727 1.1270
13 211 2 10 2 [1 0 0 0 0 0 1 0 0 0 0 0] 0.9788 0.9995
12 64 7 5 [0 0 1 1 0 1 1 0 0 1 0 0] 0.9800 0.9974
27 162 7 5 [1 1 0 0 0 0 1 0 1 1 0 0] 0.9872 1.0329
14 16 6 6 [0 0 1 1 0 1 1 0 1 1 0 0] 0.9903 0.9999

Table 7: Characteristics of the the improving deterministic detuned configurations without mistuning
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Figure 25: Analysis of the sensitivity of mistuned response for given detuned configurations with respect to the mistuning
rate δK : graph of δK 7→ qc,`(5.13 %; δK ) for the pure mistuned situation corresponding to ` = 49 (square symbol, purple
line), for the best detuned configuration ` = 104 (diamond symbol, green line), and for the worst detuned configuration
` = 9 (circle symbol, orange line). Parameters for optimization process (vertical red line).

4. Optimization of the detuning in presence of mistuning using probabilistic learning on
manifolds (PLoM) as a machine learning tool

4.1. Discrete set Nc of a configuration
We consider the detuning of a blisk as the one analyzed in Section 3 having nw blades and

two types of blades that are labelled by integer 0 and 1. A configuration (also called a pattern) of
the blisk consists in giving a vector

wc = (wc
1, . . . ,w

c
nw

) , (40)

in which for k ∈ {1, . . . , nw}, wc
k is equal to 0 or to 1. We then define the finite subset Nc of Nnw

such that
Nc = Π

nw
k=1 {0, 1}

nw ⊂ Nnw , (41)

and consequently, wc ∈ Nc.

4.2. Discrete set Cc of the nc possible configurations
The total number of all the possible configurations is denoted by nc. As already explained in

Section. 2.5, nc can be very large as soon as nw is large. By excluding the rotations by an integer
number of blades, the asymptotic value of nc is nc = (2nw )/nw. For instance, if nw = 48, then
nc = 5.86 × 1012. This asymptotic formula includes the configuration with nw blades of type 0
and the configuration with nw blades of type 1. If the configurations are restricted to the case for
which the number of blades of type 1 is less than or equal to nw/2, then nc < (2nw )/nw. It will be
the case for the configurations of the detuned blisk considered in this section, for which nw = 12
and therefore, nc = 216 (see also Section 3.9).

The finite set Cc of the nc possible configurations is defined by

Cc = {wc,1, . . . ,wc,nc } , wc,` ∈ Nc . (42)
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4.3. Quantity of interest (QoI) computed for a given configuration

For a given configuration wc ∈ Nc, the HFCM is used (see Section 3) for computing the
QoI that is the dynamic amplification factor qc ∈ R (defined by Eq. (38)) of the detuned disk in
presence of random mistuning. Consequently, there exists a mapping wc 7→ fHFCM(wc) defined
on Nc with values in R such that

qc = fHFCM(wc) . (43)

Mapping fHFCM is completely defined by the set {(qc,`,wc,`), ` = 1, . . . , nc} of the nc points in
R × Nc in which qc,` = fHFCM(wc,`) with wc,` ∈ Cc.

4.4. Definition of a combinatorial optimization problem on finite set Cc

Such a combinatorial optimization problem [61, 62, 63] on finite set Cc would consist in
finding wc,opt

un ∈ Nc such that
wc,opt

un = arg min
wc∈Cc

Jc(wc) , (44)

in which wc 7→ Jc(wc) is chosen for minimizing the dynamic amplification factor defined by
Eq. (43), that is to say,

Jc(wc) = fHFCM(wc) , wc ∈ Nc . (45)

(i) The exhaustive search of the combinatorial optimization problem on finite set Cc, defined
by Eqs. (44)-(45), is not tractable and unachievable for large value of nc. There are many methods
in the literature for solving such a problem: the theory of linear programming [64] including the
polynomial-time algorithms [65], integer programming [66] that deals with graph structures [67],
the operations research [68], and the computational complexity theory [69]. Certainly, the most
popular methods are the branch-and-bound [70], the branch-and-cut [71], the tabu search and
greedy [72], and the dynamic programming [73].

(ii) When the numerical cost for the evaluation of Jc(wc) at any point wv in Cc is negligible,
then the previous listed methods and algorithms can be used for estimating an optimal solution.

(iii) The specificity of the combinatorial optimization problem under consideration is the
high numerical cost of one evaluation qc,` = fHFCM(wc,`) using HFCM. In practice, only Nd �

nc evaluations can be carried out (for instance, Nd = 50 or 100 while nc can be 1012). We
therefore need to construct a metamodel ofJc for computingJc(wc) for any wc proposed by the
optimization algorithm in order that each evaluation has a negligible numerical cost. We propose
to use a machine learning tool for evaluating Jc(wc) for any wc in Cc.

4.5. Transforming the combinatorial optimization problem in another one adapted to probabilis-
tic machine learning tools

The combinatorial optimization problem defined by Eqs. (44)-(45) is reformulated in a prob-
abilistic framework, which will be adapted to a machine learning solver in order to limit the
number of evaluations using HFCM.

Let Wc = (Wc
1 , . . . ,W

c
nw

) be the Nc-valued random variable, defined on a probability space
(Θ,T ,P), for which the nc elements wc,1, . . .wc,nc of Cc are nc independent realizations. Let Qc

be the real-valued random variable, defined on (Θ,T ,P) such that

Qc = fHFCM(Wc) . (46)
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Consequently, {qc,` = fHFCM(wc,`), ` = 1, . . . , nc} is the set of the nc realizations of Qc. The opti-
mization problem defined by Eqs. (44)-(45) is then replaced by the following one: find wc,opt ∈ Nc

such that
wc,opt = arg min

wc∈Cc
Jc(wc) , (47)

in which the cost function wc 7→ Jc(wc) is chosen as the conditional mathematical expectation of
Qc given Wc = wc,

Jc(wc) = E{Qc |Wc = wc} , wc ∈ Nc . (48)

For wc,` ∈ Cc, the conditional random variable {Qc |Wc = wc,`} is equal to the deterministic
value qc,` = fHFCM(wc,`). We thus have Jc(wc,`) = Jc(wc,`) for ` ∈ {1, . . . , nc}, which proves that
Eqs. (47)-(48) is a rewriting of Eqs. (44)-(45) for wc ∈ Cc. Therefore, this optimization problem
is still a combinatorial optimization problem, but Jc(wc) will be computed using a probabilistic
machine learning tool.

4.6. Definition of the training set Dd and learned set Dar for a probabilistic machine learning
tool

Taking into account Section 4.5, we will use a probabilistic machine learning tool for con-
structing a probabilistic metamodel of cost function Jc in order to avoid a large number of eval-
uations of Jc(wc) with HFCM for wc ∈ Cc.

(i) Training set Dd. The first step consists in generating the training set Dd by using HFCM.
Training setDd is made up of Nd points (qc,`,wc,`) such that qc,` = fHFCM(wc,`) for ` ∈ {1, . . . ,Nd}

with Nd � nc. This means that the construction of Dd requires Nd calls to HFCM, and con-
sequently, Nd will be small. The training set is therefore, by hypothesis, a small data set (in
opposite to a big data set that is generally requires for the machine learning algorithms).

(ii) Learned set Dar. The second step will thus consist in using a machine learning method for
generating, from the training set Dd, the learned set Dar made up of Nar learned realizations
{(q`ar,w`

ar), ` = 1, . . . ,Nar} of an R × Rnw -valued random variable (Q,W) (defined in Section 4.7)
without calling HFCM. The number Nar of points is chosen sufficiently large (Nar � Nd) to
obtain a converged estimate of the conditional expectation introduced in Eq. (48) for computing
Jc(wc) for any wc ∈ Cc (see Eq. (42)). SoDar can be viewed as a big data set.

4.7. Probabilistic learning on manifolds (PLoM) used as a machine learning tool and approxi-
mate combinatorial optimization problem

There are many methods available in the literature for building metamodels. Each method
has its own validity assumptions with respect to the input-output dimensions, the complexity of
the function to be represented, the number of points in the training set (small or big), the presence
or not of uncertainties, a formulation performed in a deterministic or stochastic framework. It is
not possible here to propose a review of all these methods, knowing that the use of each requires
a precise analysis of its domain of validity, which depends on the hypotheses with which it was
constructed. Nevertheless, we refer the reader to [74] for methods based on probability theory
and mathematical statistics, including polynomial chaos expansion methodology, to [75, 76, 77,
78, 79, 80] for surrogate based modeling, to [81, 82, 83, 27, 84, 85, 86, 87, 88] for projection-
based model reduction, and to [89, 90, 91, 92, 93] for optimization of expensive functions.

The specific difficulty of the problem considered here is the small number of points available
in training set Dd (a few tens or even hundreds for industrial turbomachinery problems) and the
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complexity of the function fHFCM. For instance, the very efficient ANN approach [94] cannot be
used, a priori, for constructing a metamodel of Jc because Nd is too small. There are methods for
sampling underlying distributions on manifolds [95, 96, 97, 98, 99, 100, 101, 102]. Among all
these existing methods in machine learning, there is the probabilistic learning method (PLoM),
which has specifically been developed for small non-Gaussian data (small value of Nd) in arbi-
trary dimension [103, 104, 105], with the possibility to take into account additional constraints
coming from experiments [106] or from nonlinear partial differential equations [107], to con-
struct a polynomial chaos representation of databases on manifolds [77], to construct Bayesian
posteriors in high dimension [108], and which has been used for complex optimization problems
under uncertainties [93, 109] and challenging applications [110, 111, 112].

(i) Generating the learned set Dar with the PLoM method. We thus propose to use the PLoM
method for generating the learned set Dar from the training set Dd. The PLoM method is
adapted to a continuous random variable X = (Q,W), defined on (Θ,T ,P), with values in
Rn = R × Rnw with n = 1 + nw, while the combinatorial optimization problem defined by
Eqs. (47)-(48) is related to the random variable Xc = (Qc,Wc), in which Qc = fHFCM(Wc) (see
Eq. (46)) and where Wc is a random variable with values in a finite set Nc. From the training
set Dd = {(qc,`,wc,`), ` = 1, . . . ,Nd}, the PLoM method is used for generating the learned set
Dar = {(q`ar,w`

ar), ` = 1, . . . ,Nar}.
In order to facilitate the reading of this paper, the reader will find in Section A.1 of Ap-

pendix A a summary of the PLoM algorithm. We give this summary, because the proposed
algorithm is the assembly of ingredients, which are distributed in three different papers with
slightly different notations: basic algorithm of PLoM [103, 104], novel algorithm to estimate the
optimal value of the parameter of the kernel for the calculation of the diffusion-maps basis [105],
and taking into account of the normalization constraints [106].

(ii) Approximate combinatorial optimization problem. In order to use the learned set Dar, we
introduce the following approximation of the combinatorial optimization problem defined by
Eqs. (47)-(48): find wopt in Nc such that

wopt = arg min
wc∈Cc

Jar(wc) , (49)

in which the learned cost function wc 7→ Jar(wc) is defined by

Jar(wc) = E{Q |W = wc} , wc ∈ Nc , (50)

in which (Q,W) is the random variable with values in R × Rnw , which approximates (for the
learning step) random variable (Qc,Wc) with values in R × Nc and for which the learned real-
izations are {(q`ar,w`

ar), ` = 1, . . . ,Nar}. Since random variable (Q,W) has been defined by its
learned realizations, the joint probability density function pQ,W of (Q,W) on R × Rnw will be
constructed by using the multidimensional Gaussian Kernel Estimation (KDE) method with the
learned realizations of Dar (thus this pdf exists by construction, see Section 4.8). With such a
hypothesis, the right-hand side of Eq. (50) can be written as

E{Q|W=wc} =
1

pW(wc)

∫
R

q pQ,W(q,wc) dq, (51)

in which pW(wc) =
∫
R pQ,W(q,wc) dq.
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(iii) Difficulties induced by the fluctuations (variations) of the cost function. There is still a dif-
ficulty with the combinatorial optimization problem defined by Eqs. (49)-(50), induced by the
physics of the nonlinear stochastic dynamics of detuned bladed-disks in presence of random mis-
tuning. Function wc 7→ fHFCM(wc) defined for wc ∈ Cc has many local minima with very close
values (very similar dynamic amplification factor qc = fHFCM(wc) for many different configura-
tions wc). This implies that function w 7→ Jar(w) defined by Eq. (50) and extended on Rnw , is not
convex on Rnw , and has also many local minima with very close values.

(iv) Reformulation of the combinatorial optimization problem. Taking into account the need to
introduce the approximation defined by Eq. (50) to build a metamodel of cost function Jar and
taking into account the specificities of its fluctuations (variations) involved by physics, the formu-
lation defined by Eqs. (49)-(50) is not suitable and must be adapted. Estimating a single optimal
configuration wopt, which yields the smallest dynamic amplification factor, is not sufficiently
robust. We therefore propose to reformulate Eq. (49) as follows.

SubsetW opt
ns of optimal solutions. Let ns � nc be an integer that is fixed a priori (chosen as a few

units). LetW opt
ns be the subset of Cc made up of the ns configurations wc,`1 , . . . ,wc,`ns in Cc with

{`1, . . . , `ns } ⊂ {1, . . . , nc}, which correspond to the ns first smallest values Jar(wc,`1 ), . . . , Jar(wc,`ns )
of the set {Jar(wc),wc ∈ Cc}. We then have,

W
opt
ns = {wc,`1 , . . . ,wc,`ns } ⊂ Cc , (52)

Jar(wc,`1 ) ≤ Jar(wc,`2 ) ≤ . . . ≤ Jar(wc,`ns ) . (53)

The subset of optimal solutions of the combinatory optimization problem is therefore defined as
the subsetW opt

ns of Cc.

(v) Convergence analysis of the subset of optimal solution. Since the conditional mathematical
expectation in Eq. (50) will be estimated with the Nar points of the learned set Dar, the subset
of optimal solutionW opt

ns depends on Nar and will be rewritten asW opt
ns (Nar) when necessary. A

convergence analysis will be carried out in Section 4.10 with respect to Nar � Nd.

(vi) Searching a best optimal configuration in the subsetWopt
ns of optimal solutions. The hypothe-

ses for constructing the best optimal configuration are the following.
(H1) The number Nd of points in the training set is fixed. This number corresponds to the

maximum numerical effort that can be made for performing Nd calls to HFCM. As Nd is assumed
to be small, convergence with respect to Nd has no object. Once set Nd, we seek to improve the
values of the dynamic amplification factors that have been computed with HFCM for constructing
the training set.

(H2) Let us assume that Nd and Nar are fixed. As previously explained, taking into account
the complexity of the variations of function fHFCM, which is not explicitly known in Cc, but only
point-by-point using HFCM, it is not possible to demonstrate that subsetW opt

ns (Nar) contains an
optimal configuration that improves the dynamic amplification factors computed for constructing
the training setDd. The only way to do this is to compute again, with HFCM,

Jc(wc,`1 ), . . . ,Jc(wc,`ns ) , (54)

for the ns configurations of subsetW opt
ns (Nar), which have been identified by PLoM (see Eqs. (52)-

(53)). Therefore, we define the configuration wc,`opt with `opt ∈ {`1, . . . , `ns } as the one that satis-
fies,

wc,`opt = arg min
wc,` j, j=1,...,ns

{Jc(wc,`1 ), . . . ,Jc(wc,`ns )}. (55)
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(H3) Definition of the best optimal configuration. Let ns be fixed and let wc,`opt be the config-
uration identified by Eq. (55) . If we have

Jc(wc,`opt ) < min
`=1,...,Nd

fHFCM(wc,`) , (56)

then wc,`opt is identified as the optimal configuration in W opt
ns (Nar), which is better than all the

configurations {wc,`, ` = 1, . . . ,Nd} used for constructing the training setDd.

(H4) If Eq. (56) does not hold, that is to say, a configuration has not be found for improving
the knowledge corresponding to the training set, then we can:
(a) Increase the value of ns (Nd remaining fixed at its value). Note that the value of ns should be
kept small because the number of evaluations with HFCM is ns.
(b) If (a) is not a success, this means that the value of Nd is not large enough for obtaining a good
learned setDar from the training setDd. It is then necessary to increase the value of Nd.
(c) It should be noted that to build the learned set from the training set, the PLoM algorithm
is initialized with the points of the training set, which means that the points of the training set
belong also to the learned set. Consequently, if the best optimal configuration belongs to the
training set, then this optimal configuration will be identified with Eq. (56).

4.8. Estimating the cost function using the learned set

As explained in Section 4.7-(i), the PLoM method allows for generating Nar � Nd realiza-
tions {x`ar, ` = 1, . . . ,Nar} with x`ar = (q`ar,w`

ar) of random variable X = (Q,W) with values in
R × Rnw , n = 1 + nw, without calling HFCM. The classical Gaussian KDE method of the pdf
x 7→ pX(x) on Rn of random variable X, with respect to the Lebesgue measure dx, is written
[113, 114, 115, 116] as

pX(x) =
1

Nar

Nar∑
`=1

1

(
√

2πsSBX)nσ1...σn
× exp{−

1
2s2

SBX

n∑
k=1

(
xk − x`ar

σk
)2} , (57)

in which σk is the empirical estimate of the standard deviation of Xk calculated with {x`ar,k, ` =

1, . . . ,Nar} and where sSBX is the Silverman bandwidth that is written [117] as

sSBX =

(
4

Nar(2 + n)

)1/(4+n)

. (58)

Since W with values in Rnw is a representation of Wc with values in the finite set {0, 1}nw , a
modification of Eq. (57) is proposed as follows.

(i) Random variable Q is normalized in a random variable Q̃. Let q and σQ be the empirical
mean value and standard deviation of Q estimated with {q`ar, ` = 1, . . . ,Nar}. We then have,

Q = q + σQ Q̃ , Q̃ = (Q − q)/σQ , (59)

whose realizations of Q̃ are

q̃`ar = (q`ar − q)/σQ , ` ∈ {1, . . . ,Nd} , (60)
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Consequently, Eq. (50) can be rewritten as

Jar(wc) = q + σQ E{Q̃ |W = wc} , wc ∈ Nc . (61)

In Eq. (61), the conditional mathematical expectation is written as

E{Q̃|W=wc} =
1

pW(wc)

∫
R

q̃ pQ̃,W (̃q,wc) dq̃, (62)

in which pW(wc) =
∫
R pQ̃,W (̃q,wc) dq̃ and where pQ̃,W is the pdf on R × Rnw of random variable

(Q̃,W) with respect to dq̃ dw, whose following construction is directly deduced from Eq. (57).

(ii) The PLoM algorithm that is summarized in Section A.1 of Appendix A is appropriated
to the case of a random vector X that belongs to an uncountable set Rn. In the present case,
the quantity of interest Q has values in an uncountable set whereas the control variable W is
a representation of Wc that takes its values in a finite discrete set. This mixed uncountable
- countable case can be approached elegantly with PLoM by taking an adapted value of the
Silverman bandwidth of the nonparametric representation of the probability density function of
W in order to properly separate the bimodality linked to the two discrete values {0} and {1}. This
is done and explained below.

Since Wc is a random variable with values in the finite set {0, 1}nw and since the Rnw -valued
random variable W is a representation of Wc, we do not normalize W and we choose its band-
width as sw = c0 sSBW for constructing the Gaussian KDE of pdf pW in order to obtain a possible
bimodality centered in 0 and in 1, in which sSBW is the following Silverman bandwidth of W,

sSBW =

(
4

Nar(2 + nw)

)1/(4+nw)

. (63)

The numerical experiments have shown that c0 = 0.2 is a good value for obtaining a clear sepa-
ration (see Fig. 26). Therefore, we have

pW(w)=
1

Nar

Nar∑
`=1

1

(sw
√

2π)nw
exp{−

1
2s2

w
‖w − w`

ar‖
2}, (64)

in which ‖.‖ is the usual Euclidean norm on Rnw .

(iii) Using (i) and (ii), the Gaussian KDE of pQ̃,W is defined as

pQ̃,W (̃q,w) =
1

Nar

Nar∑
`=1

1

sq
√

2π
exp{−

1
2s2

q
(̃q − q̃`ar)

2 ×
1

(sw
√

2π)nw
exp{−

1
2s2

w
‖w − w`

ar‖
2} , (65)

in which sq is chosen as sq = (4/(3Nar))1/5. From Eqs. (62) and (65), it can be deduced that

E{Q̃|W=wc} =

∑Nar
`=1 q̃`ar exp{− 1

2s2
w
‖wc − w`

ar‖
2}∑Nar

`=1 exp{− 1
2s2

w
‖wc − w`

ar‖
2}

. (66)
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Figure 26: Scheme of the graph of the pdf wk 7→ pWk (wk) of a component Wk of W using Eq. (64) with sw = c0 sSBW ,
c0 = 0.2, and sSBW given by Eq. (63).

4.9. Data for the validation of the optimization method based on a probabilistic machine learn-
ing tool

In subsections (i)-(iv), there are a few repetitions of results and discussions that have already
be given in the previous sections. These small repetitions have voluntary be introduced in order
to facilitate the reading of the paper in order to avoid going back and forth in the paper.

(i) Hypothesis and objective for the validation. The number nw of blades in the blisk (See Sec-
tion 3) has deliberately be chosen so that the number nc of elements in Cc (all the possible
configurations) is also small in order to build the exact solution of the combinatorial optimiza-
tion problem defined by Eqs. (44)-(45), in order to be able to validate the proposed approach.
For nw = 12, the number of all possible configurations for which the blade of type 1 is less than
or equal to nw/2 = 6 is nc = 216. Consequently, 216 calls to HFCM has been carried out for
constructing the solution wc,opt

un of Eqs. (44)-(45).
We wish to insist here on the fact that the proposed optimization method has been devel-

oped to analyze bladed-disks whose number of blades is such that nc leads to a combinatorial
optimization problem for which the cost function could only be evaluated with HFCM for Nd

configurations with Nd � nc. In such a case, the construction of the exact solution of Eqs. (44)-
(45) is unachievable and therefore, a reference solution would not be available for the validation.
For instance, for nw = 24, we would have nc ' 350, 000, which would require 350, 000 call to
HFCM, that is unachievable.

(ii) Defining the nc configurations of Cc. The nc = 216 configurations {wc,`, ` = 1, . . . , nc} of Cc

are extracted from the 352 configurations introduced in Section 3.9.

(iii) Computation of the dynamic amplification factor for all the configurations in Cc. In order
to construct the exact optimal solution wc,opt

un of the combinatorial optimization problem on fi-
nite set Cc, defined by Eqs. (44)-(45), the nc = 216 configurations {wc,`, ` = 1, . . . , nc} of Cc

are considered and the nc dynamic amplification factors {qc,` = fHFCM(wc,`), ` = 1, . . . , nc} (see
Sections 3.12 and 3.13) have been computed with HFCM. Fig. 27 shows the graph ` 7→ qc,` for
` ∈ {1, . . . , nc}.
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(1) The configuration wc,49 is the configuration without detuning in presence of random mis-
tuning for which wc,49

k = 0 for k = 1, . . . , nw and qc,49 = 1.
(2) There are 14 configurations {wc,` j , j = 1, . . . , 14} for which qc,` j < 1. The three smallest

values of qc,` are reached for ` = 104, 123, and 166 and are qc,` = 0.9476, 0.9529, and 0.9537.
(3) It can be deduced that there are 202 configurations for which qc,` is greater than or equal

to 1
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Figure 27: For the nc = 216 configurations of Cc, dynamic amplification factor qc,` as a function of index ` ∈ {1, . . . , nc}

of configuration wc,`, computed with HFCM.

(iv) Reference Optimal solution of the combinatorial optimization problem defined by Eqs. (44)-
(45) on finite set Cc. From the previous paragraph (iii), it can be deduced that the reference
optimal solution wc,opt

un of Eqs. (44)-(45) is wc,104 = [0 0 0 1 0 0 1 0 0 1 0 1], which is such that
qc,104 = fHFCM(wc,104) = 0.9476.

(v) Defining the subset Cc,q≥1 of Cc for constructing the training set. In order to present a val-
idation of the proposed method, which is based on the use of PLoM as a probabilistic learning
tool, we consider the most difficult case that consists only of configurations wc,` for which the
dynamic amplification factor qc,` = fHFCM(wc,`) is greater than or equal to 1. These configurations
will constitute a subset Cc,q≥1 defined by

Cc,q≥1 = {{wc,` j , j = 1, . . . , nc,q≥1} | qc,` j = fHFCM(wc,` j ) ≥ 1} . (67)

Fig. 28 shows the graph ` 7→ qc,` for the nc,q≥1 configurations of Cc,q≥1.

(vi) Defining the training set Dd for the validation of the machine learning tool. Let Nd be
the number of points in the training set Dd (see Section 4.6-(i). For the validation that we
propose, 4 values of Nd are considered. We recall that any convergence analysis with respect to
Nd has no object (see Section 4.7-(vi)-(H1)). The reason for this choice of these four values are
the following. The construction of the training set Dd is then performed as follows. For each
considered value of Nd, the first Nd points of Cc,q≥1 are selected,

Dd = {(qc,` j ,wc,` j ), j = 1, . . . ,Nd} ⊂ Cc,q≥1 , (68)
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Figure 28: For the nc,q≥1 = 202 configurations ofCc,q≥1, graph of the dynamic amplification factor qc,` j = fHFCM(wc,` j ) ≥
1 as a function of index j ∈ {1, . . . , nc,q≥1} computed with HFCM.

in which {wc,` j ), j = 1, . . . ,Nd} are defined in Section 4.9-(v). The four chosen values of Nd are
50, 75, 100, and 202.

(1) For each one of the two values 50 and 75 of Nd, the prediction of subsetW opt
ns of Cc with

ns = 6 (see Eq. (52)) is carried out and the best solution wc,`opt is deduced (see Section 4.7-(vi)).
(2) The third value Nd = 100 is then considered in order to compare the corresponding best

solution with the one obtained for Nd = 75.
(3) Finally, the last value, Nd = nc,q≥1 = 202, has just been considered to check the consis-

tency of the approach proposed for solving the combinatorial optimization problem.

(vii) Values of the parameters of the PLoM algorithm. These values are given in Section A.2 of
Appendix A.

4.10. Results and discussion
(i) Convergence analysis of the subset of optimal solutions with respect to the number Nar of
points in the learned set Dar. This convergence analysis with respect to Nar (see Section 4.6-
(ii)) has been defined in Section 4.7-(v) and is carried out for each training set Dd defined by
Nd points. Let {(q`ar,w`

ar), ` = 1, . . . ,Nar} be the Nar points of Dar generated by PLoM. The
criteria for the convergence analysis are the empirical estimates convQ(Nar) and convW(Nar) of
the mean-square norm of Q and W,

convQ(Nar) = {
1

Nar

Nar∑
`=1

(q`ar)
2}1/2 , (69)

convW(Nar) = {
1

Nar

Nar∑
`=1

‖w`
ar‖

2}1/2 . (70)

For Nd = 50, the convergence is obtained for Nar = 2 × 107, while for Nd = 75, 100, and 202,
for Nar = 107. For illustration and for Nd = 75, Fig. 29 displays the graph of function Nar 7→

convQ(Nar) defined by Eq. (69) while Fig. 30 displays the graph of function Nar 7→ convW(Nar)
defined by Eq. (70). The graphs of the three other values of Nd are similar.
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Figure 29: For Nd = 75, graph of function Nar 7→ convQ(Nar).
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Figure 30: For Nd = 75, graph of function Nar 7→ convW(Nar).

(ii) Illustration of the detailed results for Nd = 75 using PLoM. In order to limit the number of
figures, we illustrate the results obtained by using PLoM for Nd = 75. Qualitatively, the results
for the three other values of Nd are similar.

(a) Generation of the learned set with PLoM. Figs. 31 and 32 show realizations q`ar and w`
ar,1

(first component of w`
ar) for ` ∈ {5 240 000, . . . , 5 245 000} ofDar generated by using PLoM (we

have presented a zoom in order to avoid a view having an absence of space resolution when the
107 realizations are plotted). The pdf w1 7→ pW1 (w1) of component W1 of W, estimated using
{w`

ar,1, ` = 1, . . . , 107} is shown in Fig. 33.
(b) Cost function computed with the learned set. Fig. 34 shows the graph of function ` 7→

Jar(wc,`) for ` ∈ {1, . . . , nc} (with nc = 216) in which Jar(wc,`) is computed by using Eqs. (61) and
(66) with Nar = 107. This graph is superimposed to the graph of function ` 7→ qc,` (the reference
shown in Fig. 27). It can be seen that the two graphs have similar fluctuations.

(c) Computation of the best optimal solution. For ns = 6, the indices {` j, j = 1, . . . , 6} of the
6 configurations wc,` j , which define subsetW opt

ns of optimal solutions (see Eqs. (52) and (53)) are
7, 34, 49, 55, 1, and 166, for which the corresponding values of qc,` j (see Section 4.9-(iii) and
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Fig. 27) are respectively, 0.9974, 0.9882, 1.0000 (the tuned configuration), 1.0015, 1.0067, and
0.9529. The use of Eq. (56) yields the best optimal solution wc,`opt = [1 0 1 1 0 0 1 0 0 1 0 0] for
which `opt = 166 and qc,`opt = 0.9529.

(d) Numerical cost. The numerical cost in terms of Elapsed Time (in seconds) of the analysis
performed with a workstation 3072 GB RAM and 110 cores (Intel(R) Xeon(R) Platinium 8280
CPU@2.706 Hz) is the following: 21 607 s for the generation of the learned dataset by the PLoM
with constraints and 1 144 s for computing the best optimal solution.

Figure 31: For Nd = 75, realizations q`ar for ` ∈ {5.240, . . . , 5.245} × 106 of Q generated by PLoM.

Figure 32: For Nd = 75, realizations w`
ar,1 of the first component of w`

ar for ` ∈ {5.240, . . . , 5.245} × 106 of W generated
by PLoM.

(iii) Checking the stability and consistency of the proposed methodology and algorithm. The
proposed methodology and algorithm allow for estimating the best optimal solution wc,`opt given
by Eq. (56), in whichW opt

ns is constructed using Eqs. (52)-(53), and where Jar(wc,` j ) is computed
by Eqs. (61) and (66), in which the learned set Dar = {(q`ar,w`

ar), ` = 1, . . . ,Nar} is generated
using PLoM algorithm from the training set Dd defined by Eq. (68) for a given value of Nd. In
order to check the stability/consistency of the algorithm, we have analyzed the case for which

46



-1 0 1 2
0

0.5

1

1.5

2

Figure 33: For Nd = 75, pdf w1 7→ pW1 (w1) of component W1 of W, estimated using {w`
ar,1, ` = 1, . . . , 107} generated by

PLoM.
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Figure 34: For Nd = 75, graph of function ` 7→ Jar(wc,`) for ` ∈ {1, . . . , nc}, with nc = 216 (red thick line) and graph of
function ` 7→ qc,`, the reference shown in Fig. 27 (black thin line).

Dd = Cc that is therefore constituted of Nd = nc points of Cc (see Section 4.9-(iii)). The results
are presented in the next paragraph and are good.

(iv) Synthesis of the results obtained as a function of the number Nd of points in the training set
Dd. The results obtained with the proposed methodology/algorithm are summarized in Tables 8
and 9 for ns = 6.

(1) The best optimal solution obtained for Nd = 50 improves the dynamic amplification
factors {qc,` j , j = 1, . . . , 50} used in the training set Dd defined by Eq. (68) for which qc,` j ≥ 1,
which have been computed with HFCM. However, although qc,`opt = 0.9822 < 1, it is not a
value close to the optimum that is 0.9476. As explained in Section 4.7-(vi)-(H4)-(a) and (b), this
solution can possibly be improved by increasing the value of Nd as it can be seen in Table 8.

(2) For Nd = 75 and, a fortiori, for Nd = 100 and 202, the best optimal solutions qc,`opt

are 0.9529 and 0.9538 that are close to the optimum 0.9476, and which constitute very good
predictions.
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Table 8: Synthesis of the results as a function of the number Nd of points in the training set Dd and results obtained for
Nd = nc = 216 (reference).

Nd j = 1, . . . , 6 W
opt
ns `opt qc,`opt

50 ` j 211 7 44 49 141 55 141 0.9822
qc,` j 0.9995 0.9974 0.9834 1.0000 0.9822 1.0015

75 ` j 7 34 49 55 1 166 166 0.9529
qc,` j 0.9974 0.9882 1.0000 1.0015 1.0067 0.9529

100 ` j 7 49 211 123 141 34 123 0.9538
qc,` j 0.9974 1.0000 0.9995 0.9538 0.9822 0.9882

202 ` j 49 55 34 123 1 141 123 0.9538
qc,` j 1.0000 1.0015 0.9882 0.9538 1.0067 0.9822

Reference ` j 104 166 123 141 44 133 104 0.9476216 qc,` j 0.9476 0.9529 0.9538 0.9822 0.9834 0.9824

Table 9: Best optimal configuration wc,`opt listed in Table 8.

`opt qc,`opt wc,`opt = (wc,`opt
1 , . . . ,w

c,`opt
12 )

104 0.9476 0 0 0 1 0 0 1 0 0 1 0 1
123 0.9537 1 0 0 1 0 0 0 0 0 0 0 0
141 0.9822 1 0 0 0 0 1 0 0 0 0 0 0
166 0.9529 1 0 1 1 0 0 1 0 0 1 0 0

5. Conclusion and discussion

We have presented an approach for the optimization of the detuning in presence of random
mistuning and geometrical nonlinearities for bladed-disks, based on the use of high-fidelity com-
putational models. This very challenging problem has given rise to very little published work
and remains an open subject. The difficulties we have addressed are related to the developments
of an efficient computational methodology for reducing the computational cost, to the physics
understanding of such stochastic nonlinear dynamical systems, and to the probabilistic formu-
lation of the detuning optimization problem. We have presented a deep computational analysis
on a bladed-disk that is representative of industrial turbomachines, in order to understand the
role played by the geometrical nonlinearities on the dynamical behavior and to exhibit the con-
sequences on the detuning effects. Several results can be put forward.

A careful convergence analysis with respect to all numerical parameters must be performed
to obtain a predictive solution with an optimal computational cost. This is essential for exploring
a relatively large number of detuned configurations in the context of the stochastic nonlinear
mistuning analysis. It should be noted that the sensitivity analysis with respect to the time step
used in the numerical resolution of the nonlinear coupled differential equations is particularly
delicate, yielding a fast convergence in the excitation frequency band but a slow convergence in
the low-frequency range that is not directly excited by the external loading.
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Another point of attention concerns the choice of the quantities of interest used in the formu-
lation of the detuning optimization problem from a scalar-valued highly nonlinear cost function.
It is found that there is a few number of optimal solutions with respect to the number of possible
detuned configurations. It is also proved that the optimization problem is well-posed, yielding
to robust optimal detuned configurations that are identified after post-processing analysis as de-
tuned configurations for which the mistuning amplification effects are inhibited with respect to
the pure mistuning situation.

The detuning patterns yielding the best optimal detuned configurations and yielding the worst
amplification response levels have no particularly structure in terms of number of blades of dif-
ferent types and of blade distribution, which deserve further investigations to understand the
complex mechanisms induced by the detuning. As expected, the sub-cyclic detuned configura-
tions that present a cyclic symmetry with a lower cyclic order are sensitive to the mistuning and
are not part of the optimal solutions.

For the considered bladed-disk, the sensitivity analysis with respect to the detuning rate or the
mistuning rate shows that the detuned configuration yielding the worst case in terms of response
amplification remains a wrong detuned configuration whatever the detuning or mistuning rate.
There also exists a threshold in terms of detuning rate and mistuning rate from which a detuned
configuration belongs to the set of optimal detuned configurations. There is no guarantee that an
optimal solution remains optimal when the detuning rate increases too much. Note that the mis-
tuning rate corresponds to the uncertainty level related to the global stiffness matrix with a huge
dimension and that the involved magnitude orders are much larger than the uncertainty levels
describing the usual frequency mistuning modeling but corresponds in fact to small mistuning
levels.

The chosen external load corresponds to a narrow-frequency band of excitation so that the
linearized detuning optimization problem has no real interest. It cannot be properly achieved
since the natural frequencies of most detuned configurations do not belong to this narrow ex-
citation frequency range and since the structure only can respond in the excitation frequency
band. This is to underline that the nonlinear detuned optimization problem is of different nature
because of the complex vibratory behavior induced by the geometric nonlinearities that appear
themselves as an excitation that spreads the nonlinear response on the whole frequency band of
analysis.

Concerning the detuning optimization of bladed-disks in presence of random mistuning, for
nonlinear responses regimes involved by geometrical nonlinearities and using high-fidelity com-
putational models, there are no published methods. When the number of detuned configurations
is large, we have proposed a reformulation in a probabilistic framework of the combinatorial
optimization problem, which is adapted to a probabilistic machine learning tool in order to limit
the number of evaluations of the cost function with the high-fidelity computational model. The
optimization must be carried out in a probabilistic framework in order to give robustness to the
identification of an optimal detuned configuration. It should be noted that the proposed ap-
proach is unambiguous as it allows for building a subset of optimal detuned configurations and
the search for the optimal solution in this subset is done using the high-fidelity computational
model. The methodology proposed has been validated for a 12-bladed-disk structure for which
the exact optimal detuned configuration in presence of random mistuning has been identified. A
good prediction has been obtained for this very difficult case, which constitutes one validation of
the proposed method.
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A. Probabilistic learning on manifolds (PLoM), its parameterization and numerical results

A.1. Summary of the PLoM algorithm

The PLoM approach [103, 104, 105] starts from a training set Dd made up of a relatively
small number Nd of points. For the supervised case, it is assumed that the training set is re-
lated to an underlying stochastic manifold related to a Rn-valued random variable X = (Q,W)
in which X, Q (quantity of interest), and W (control parameter) are Rn-, Rnq -, and Rnw -valued
random variables defined on a probability space (Θ,T ,P) with n = nq + nw. Let U (uncontrolled
parameter) be another Rnu - valued random variable defined on (Θ,T ,P). Random variable Q
is written as Q = f(U,W) = F(W) in which the measurable mapping f is not explicitly known
(unknown) and F is such that F = f(U, ·) is a random mapping. The probability distributions of
the vector-valued random variables W and U are assumed to be given. The stochastic manifold is
defined by the unknown random graph {w,F(w)} for w belonging to an admissible set Cw that is
the support of the probability distribution of W. With the PLoM construction, its is assumed that
this stochastic manifold cannot directly be described. Under these conditions, the non-Gaussian
probability measure of X is concentrated in a region of Rn for which the only available infor-
mation is the cloud of the points of the training set. The PLoM method makes it possible to
generate the learned set Dar whose nMC � Nd points (learned realizations) are generated by the
non-Gaussian probability measure that is estimated from the training set. The concentration of
the probability measure is preserved thanks to the use of a diffusion-maps basis that allows to
enrich the available information from the training set. It should also be noted that the estimate
of the unknown probability measure of X cannot be performed from the training set by using
an arbitrary estimator. It must be parameterized in a manner that permits convergence to any
probability measure as its number of points in the training set goes towards infinity. The PLoM
method therefore does not only consist in generating points that belong to the region in which the
measure is concentrated, but also allows these learned points to be realizations of the estimate
probability measure with the convergence properties evoked above. The choice of the kernel
density estimation method for estimating the probability measure of X from the training dataset
guarantees that this required fundamental property is satisfied [104]. Considering all of these
assumptions in the construction and in the methodology of PLoM makes PLoM as a general ap-
proach for small datasets for arbitrary non-Gaussian measures. Using the learned setDar, PLoM
allows for carrying out any conditional statistics such as w 7→ E{Q|W = w} from Cw in Rnq , and
consequently, to directly construct metamodels in a probabilistic framework.

The training set Dd is made up of the Nd independent realizations {x j
d = (q j

d,w
j
d) ∈ Rn = Rnq ×

Rnw , j = 1, . . . ,Nd} of random variable X = (Q,W). The PLoM method allows for generating the
learned set Dar made up of Nar � Nd learned realizations {x`ar, ` = 1, . . . ,Nar} of random vector
X. As soon as the learned set has been constructed, the learned realizations for Q and W can be
extracted as (q`ar,w`

ar) = x`ar for ` = 1, . . . ,Nar.

(i) Normalization of the training set. The Nd independent realizations {x j
d, j = 1, . . . ,Nd} of

X with values in Rn can be represented by the matrix [xd] = [x1
d . . . x

Nd
d ] in Mn,Nd . Let [X] =
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[X1, . . . ,XNd ] be the random matrix with values in Mn,Nd , whose columns are Nd independent
copies of random vector X. Therefore, [xd] is one realization of random matrix [X]. The normal-
ization of random matrix [X] is performed by using a principal component analysis (PCA) of X
allowing for defining the random matrix [H] = [H1, . . . , HNd ] with values in Mν,Nd with ν ≤ n.
Consequently, random matrix [X] is written as,

[X] = [x] + [ϕ] [µ]1/2 [H] , (71)

in which [µ] is the (ν × ν) diagonal matrix of the ν positive eigenvalues of the empirical estimate
of the covariance matrix of X (computed using x1

d, . . . , x
Nd
d ). The (n× ν) matrix [ϕ] is made up of

the associated eigenvectors such [ϕ]T [ϕ] = [Iν]. The matrix [x] in Mn,Nd has identical columns,
each one being equal to the empirical estimate x ∈ Rn of the mean value of random vector X
(computed using x1

d, . . . , x
Nd
d ). The columns of [H] are Nd independent copies of a random vector

H with values in Rν. The realization [ηd] = [η1
d . . . η

Nd
d ] ∈ Mν,Nd of [H] (associated with the

realization [xd] of [X]) is computed by [ηd] = [µ]−1/2[ϕ]T ([xd] − [x]). The value ν is classically
calculated in order that the L2- error function ν 7→ errX(ν) defined by

errX(ν) = 1 −
∑ν
α=1 µα

E{‖X‖2}
, (72)

be smaller that εPCA. If ν < n, then there is a statistical reduction.

(ii) Construction of a reduced-order diffusion-maps basis (ROB). To identify the subset around
which the points of the training set are concentrated, the PLoM relies on the diffusion-maps
method [118, 119]. This is an algebraic basis of vector space RNd , which is constructed using
the diffusion maps. Let [K] and [b] be the matrices such that, for all i and j in {1, . . . ,Nd},
[K]i j = exp{−(4 εDM)−1‖ηi

d − η
j
d‖

2} and [b]i j = δi j bi with bi =
∑Nd

j=1[K]i j, in which εDM > 0 is a
smoothing parameter (the non symmetric matrix P = [b]−1[K] ∈ MNd is the transition matrix of
a Markov chain that yields the probability of transition in one step). The eigenvalues λ1, . . . , λNd

and the associated eigenvectors ψ1, . . . ,ψNd of the right-eigenvalue problem [P]ψα = λα ψ
α are

such that 1 = λ1 > λ2 ≥ . . . ≥ λNd and are computed by solving the generalized eigenvalue
problem [K]ψα = λα [b]ψα with the normalization < [b]ψα,ψβ >= δαβ. The eigenvector ψ1

associated with λ1 = 1 is a constant vector. For a given integer κ ≥ 0, the diffusion-maps
basis {g1, . . . , gα, . . . , gNd } is a vector basis of RNd defined by gα = λκα ψ

α. For a given integer
m with 3 ≤ m ≤ Nd, the reduced-order diffusion-maps basis of order m is defined as the family
{g1, . . . , gm} that is represented by the matrix [gm] = [g1 . . . gm] ∈ MNd ,m with gα = (gα1 , . . . , g

α
Nd

)
and [gm]`α = gα

`
. This ROB depends on two parameters, εDM and m, which have to be identified.

It is proven in [104], that the PLoM method does not depend of κ that can therefore be chosen to
0.

For estimating the optimal values εopt of εDM and mopt of m, we use the algorithm proposed
in [105], which is summarized hereinafter. We have to find the value mopt ≤ Nd of m and the
smallest value εopt > 0 of εDM such that

1 = λ1 > λ2(εopt) ' . . . ' λmopt (εopt) � λmopt+1(εopt) ≥ . . . ≥ λNd (εopt) > 0 , (73)

with an amplitude jump equal to an order of magnitude (a factor 10 as demonstrated in [104])
between λmopt (εopt) and λmopt+1(εopt). This property means that we have to find mopt ≤ Nd and
the smallest positive value εopt in order (1) to have λ2(εopt) < 1 (one must not have several
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eigenvalues in the neighborhood of 1) and (2) to obtain a plateau for λ2(εopt) to λmopt (εopt) with
a jump of amplitude 10 between λmopt (εopt) and λmopt+1(εopt). A further in-depth analysis makes
it possible to state the following criterion and algorithm to easily estimate εopt and mopt. Let
εDM 7→ Jump(εDM) be the function on ]0,+∞[ defined by

Jump(εDM) = λmopt+1(εDM)/λ2(εDM) . (74)

The algorithm is the following:
- set the value of m to mopt = ν + 1;
- identify the smallest possible value εopt of εDM in order that Jump(εopt) ≤ 0.1 and such that
Equation (73) be verified.

Remark concerning the choice of factor 10 for the jump of the eigenvalues. This choice is
justified in [104], which gives the mathematical results in support of PLoM (we refer the reader
to Theorem 7.8 of this paper and its Lemmas 7.5, 7.6, and 7.7 on which the proof is based). In
this paper, it is proven that Eq. (73) must hold for preserving the concentration of the probability
measure, which is quantified by the square of the L2-distance (see Eq. (75)), and which is esti-
mated with the Nar � Nd learned realizations. Note that there are two important hypotheses in
Eq. (73) that must be verified: one is the existence of the plateau for m ∈ {2, . . . ,mopt} and the
other one is the existence of a jump between m = mopt and m = mopt +1. In [104], it is proven that
the plateau and the jump on the eigenvalues are directly related to the variations of the function
m 7→ εDM(m) (denoted as m 7→ εd(m) in [104]), which has to be rapidly decreasing in m in the
neighborhood of mopt by the lower integer values and which has to remain much lower than 1 for
m ≥ mopt (see Fig. 1 of [104]). When Eq. (73) holds, then εDM(m) � 1 for m ≥ mopt, that is a
fundamental property used for proving Theorem 7.8. This property εDM(m) � 1 for m ≥ mopt has
been quantified by choosing one order of magnitude for the jump of the eigenvalues.

(iii) Reduced-order representation of random matrices [H ] and [X ]. The diffusion-maps vec-
tors g1, . . . , gm ∈ RNd span a subspace of RNd that characterizes, for the optimal values mopt and
εopt of m and εDM, the local geometry structure of data set {η j

d, j = 1, . . . ,Nd}. So the PLoM
method introduces the Mν,Nd -valued random matrix [Hm] = [Zm] [gm]T with 3 ≤ m ≤ N, corre-
sponding to a data-reduction representation of random matrix [H], in which [gm] is the ROB and
where [Zm] is a Mν,m-valued random matrix for which its probability measure p[Zm]([z]) d[z] is
explicitly described by Proposition 2 of [104]. The MCMC generator of random matrix [Zm]
belongs to the class of Hamiltonian Monte Carlo methods, is explicitly described in [103],
and is mathematically detailed in Theorem 6.3 of [104]. For generating the learned set, the
best probability measure of [ Hm] is obtained for m = mopt and using the previously defined
[gmopt ]. For these optimal quantities mopt and [gmopt ], the generator allows for computing nMC

realizations {[z`ar], ` = 1, . . . , nMC} of [Zmopt ] and therefore, for deducing the nMC realizations
{[η`ar], ` = 1, . . . , nMC} of [Hmopt ]. The reshaping of matrix [η`ar] ∈ Mν,Nd allows for obtaining
Nar = nMC × Nd learned realizations {η`

′

ar, `
′ = 1, . . . ,Nar} of H. These learned realizations allow

for estimating converged statistics on H and then on X, such as pdf, moments, or conditional
expectation of the type E{ξ(Q) |W = w} for w given in Rnw and for any given vector-valued
function ξ defined on Rnq .

(iv) Quantifying the concentration of the probability measure of random matrix [Hmopt ]. In [104],
for 3 ≤ m ≤ Nd, we have introduced an L2-distance dNd (m) of random matrix [Hm] to matrix [ηd]
in order to quantify the concentration of the probability measure of random matrix [Hm], which
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is informed by the training set represented by matrix [ηd]. The square of this distance is defined
by

d2
Nd

(m) = E{‖[Hm] − [ηd]‖2}/‖[ηd]‖2 . (75)

LetMopt = {mopt,mopt + 1, . . . ,Nd} in which mopt is the optimal value of m previously defined.
Theorem 7.8 of [104] shows that minm∈Mopt d2

Nd
(m) ≤ 1 + mopt/(Nd − 1) < d2

Nd
(Nd), which

means that the PLoM method, for m = mopt and [gmopt ] is a better method than the usual one
corresponding to d2

Nd
(Nd) = 1+Nd/(Nd−1) ' 2. Using the nMC realizations {[η`ar], ` = 1, . . . , nMC}

of [Hmopt ], we have the estimate d2
Nd

(mopt) ' (1/nMC)
∑nMC

`=1{‖[η
`
ar] − [ηd]‖2}/‖[ηd]‖2.

(v) Generation of learned realizations {η`
′

ar, `
′ = 1, . . . , Nar} of random vector H. The genera-

tion of learned realizations [z1
ar], . . . , [z

nMC
ar ] of random matrix [Zmopt ] is carried out by using the

MCMC generator detailed in [103], which is based on a reduced-order Itô stochastic differen-
tial equation (ISDE) that is constructed as the projection on the ROB of the ISDE related to
a dissipative Hamiltonian dynamical system for which the invariant measure is the pdf of ran-
dom matrix [H] constructed with the Gaussian kernel-density estimation method and [ηd]. Let
{([Z(t)], [Y(t)]), t ∈ R+} be the unique asymptotic (for t → +∞) stationary diffusion stochastic
process with values in Mν,mopt×Mν,mopt , of the following reduced-order ISDE (stochastic nonlinear
second-order dissipative Hamiltonian dynamical system), for t > 0,

d[Z(t)] = [Y(t)] dt ,

d[Y(t)] = [L([Z(t)])] dt −
1
2

f0 [Y(t)] dt

+
√

f0 [dWwien(t)] ,

with [Z(0)] = [ηd] [a] and [Y(0)] = [N ] [a], in which

[a] = [gmopt ] ([gmopt ]
T [gmopt ])

−1 ∈ MNd ,mo pt .

(1) [L([Z(t)])] = [L([Z(t)] [gmopt ]
T )] [a] is a random matrix with values in Mν,mopt . For all [u] =

[u1 . . . uNd ] in Mν,Nd with u j = (u j
1, . . . , u

j
ν) in Rν, the matrix [L([u])] in Mν,Nd is defined, for all

k = 1, . . . , ν and for all j = 1, . . . ,Nd, by

[L([u])]k j =
1

p(u j)
{∇u j p(u j)}k , (76)

p(u j) =
1

Nd

Nd∑
j′=1

exp{−
1

2ŝ 2
ν

‖
ŝν
sν
η j′ − u j‖2} ,

∇u j p(u j)=
1

ŝ 2
ν Nd

Nd∑
j′=1

(
ŝν
sν
η j′− u j)

× exp{−
1

2ŝ 2
ν

‖
ŝν
sν
η j′− u j‖2} ,

in which ŝν is the modified Silverman bandwidth sν, which has been introduced in [120],

ŝν =
sν√

s2
ν +

Nd−1
Nd

, sν =

{
4

Nd(2 + ν)

}1/(ν+4)

.
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(2) [Wwien(t)] = [Wwien(t)] [a] where {[Wwien(t)], t ∈ R+} is the Mν,Nd -valued normalized Wiener
process.
(3) [N ] is the Mν,Nd -valued normalized Gaussian random matrix that is independent of process
[Wwien].
(4) The free parameter f0, such that 0 < f0 < 4/ŝν, allows the dissipation term of the nonlinear
second-order dynamical system (dissipative Hamiltonian system) to be controlled in order to kill
the transient part induced by the initial conditions. A common value is f0 = 4 (note that ŝν < 1).
(5) We then have [Zmopt ] = limt→+∞ [Z(t)] in probability distribution. The Störmer-Verlet
scheme is used for solving the reduced-order ISDE, which allows for generating the learned
realizations, [z1

ar], . . . , [znMC
ar ], and then, generating the learned realizations [η1

ar], . . . , [ηnMC
ar ] such

that [η`ar] = [z`ar] [gmopt ]
T .

(6) The learned realizations {x`′ar, `
′ = 1, . . . ,Nar} of random vector X are then calculated (see

Eq. (71)) by x`′ar = x + [ϕ] [µ]1/2 η`
′

ar.

(vi) Constraints on the second-order moments of the components of H if loss of normalization
occurs. In general, the mean value of H estimated using the Nar learned realizations {η`

′

ar, `
′ =

1, . . . ,Nar}, is sufficiently close to zero. Likewise, the estimate of the covariance matrix of H,
which must be the identity matrix, is sufficiently close to a diagonal matrix. However, sometimes
the diagonal entries of the estimated covariance matrix can be lower than 1 (for instance 0.8).
Such a case is application-dependent. Normalization can be recovered by imposing constraints

{E{(Hk)2} = 1, k = 1, . . . , ν} ,

in the algorithm presented in paragraph (v). For that, we use the method and the iterative algo-
rithm presented in [105] (that is based on Sections 5.5 and 5.6 of [106]). The constraints are
imposed by using the Kullback-Leibler minimum cross-entropy principle. The resulting opti-
mization problem is formulated using a Lagrange multiplier v = (v1, . . . , vν) associated with the
constraints. The optimal solution of the Lagrange multiplier is computed using an efficient iter-
ative algorithm. At each iteration, the MCMC generator detailed in paragraph (v) is used. The
constraints are rewritten as

E{h(H)} = b ,

in which the function h = (h1, . . . , hν) and the vector b = (b1, . . . , bν) are such that hk(H) =

(Hk)2 and bk = 1 for k in {1, . . . , ν}. To take into account the constraints in the algorithm of
paragraph (v), Eq. (76) is replaced by the following one,

[Lv([u])]k j =
1

p(u j)
{∇u j p(u j)}k − 2 vku j

k .

The iteration algorithm for computing vi+1 as a function of vi is the following,

vi+1 = vi − αi[Γ′′(vi)]−1 Γ′(vi) , i ≥ 0 ,

v0 = 0ν ,
(77)

in which Γ′(vi) = b− E{h(Hvi )} and [Γ′′(vi)] = [cov{h(Hvi )}] (the covariance matrix), and where
αi is a relaxation function (less than 1) that is introduced for controlling the convergence as a
function of iteration number i. For given i2 ≥ 2, for given β1 and β2 such that 0 < β1 < β2 ≤ 1,
αi can be defined by:
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- for i ≤ i2, αi = β1 + (β2 − β1)(i − 1)/(i2 − 1);
- for i > i2, αi = β2.
The convergence of the iteration algorithm is controlled by the error function i 7→ err(i) defined
by

err(i) = ‖b − E{h(Hvi )}‖/‖b‖ . (78)

At each iteration i, E{h(Hvi )} and [cov{h(Hvi )}] are estimated by using the Nar learned realizations
of Hmopt (vi) obtained by reshaping the learned realizations.

A.2. Values of the PLoM parameters and results for Nd = 75
In order to limit the developments and the number of figures, we only present the case Nd =

75. The values of the PLoM parameters and the results are similar for the other values of Nd.

(i) PCA of random vector X = (Q,W). We have nq = 1 and nw = 12. Consequently, X is a Rn-
valued random variable with n = 1 + 12 = 13. The PCA of X is constructed using the training set
Dd defined by Eq. (68), with a relative tolerance εPCA = 10−6. Using Eq. (72) yields ν = n = 13
(so there is no statistical reduction).

(ii) Computation of the diffusion-maps basis. The graph of function εDM 7→ Jump(εDM) defined
by Eq. (74) is shown in Fig. 35 and allows for identifying the optimal value εopt = 19.6 of εDM.
The function α 7→ λα(εopt) of the eigenvalues of the transition matrix for εDM = εopt is shown in
Fig. 36 and shows that the optimal value mopt of m is 14. The diffusion-maps basis is made up of
the columns of matrix [gmopt ] ∈ Mν,mopt .
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Figure 35: For Nd = 75, graph of function εDM 7→ Jump(εDM) yielding the optimal value εopt = 19.6 of εDM.

(iii) Values of the parameters that control the integration scheme of the reduced-order Itô stochas-
tic differential equation. The dissipation coefficient is f0 = 4 and the integration step is ∆r =

0.018399. The number of realizations of random matrix [H] with values in Mν,Nd is nMC = 133 400
yielding Nar ' 107 realizations for the Rν-valued random variable H.

(iv) Constraints. The constraints {E{H2
k } = 1, k = 1, . . . , ν} are applied for generating the Nar

realizations {η`
′

ar, `
′ = 1, . . . ,Nar} of random vector H. The parameters of the relaxation function

are β1 = 0.01, β2 = 0.2, and i2 = 20. The graph of the error function i 7→ err(i) defined
by Eq. (78) is shown in Fig. 37. The convergence is obtained at iteration i = 45 for which
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Figure 36: For Nd = 75, graph of function α 7→ λα(εopt).

err(45) = 4.1 × 10−3. Fig. 38 shows the estimation of {E{H2
k } for k = 1, . . . , ν performed with

{η`
′

ar, `
′ = 1, . . . ,Nar} generated in taking into account the constraints. It can be seen that the

constraints are satisfied because E{H2
k } ' 1 for all k.
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Figure 37: For Nd = 75, error function err(i) as a function of iteration number i of the iterative algorithm for the
computation of the Lagrange multipliers.

(v) Quantifying the concentration of the probability measure of random matrix [Hmopt ]. The use
of Eq. (75) yields d2

Nd
(mopt) = 0.073 � 2, which shows the concentration of the measure is kept.
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