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An explanation to Lord's paradox using ordinary least square regression models is given. It is not a paradox at all, if the regression parameters are interpreted as predictive or as causal with stricter conditions and be aware of laws of averages. We use derivation of a super-model from a given sub-model, when its residuals can be modelled with other potential predictors as a solution.

Introduction

In 1967 Frederic Lord posed following question (see [START_REF] Lord | A Paradox in the Interpretation of Group Comparisons[END_REF][START_REF] Pearl | Lord's Paradox Revisted -(Oh Lord Kumbaya!)[END_REF]) that became a paradox among applied statistical community. To see effects and if there is any sex difference of diet provided in a university weights of students at time of their arrival and those a year later are recorded. The data are independently examined by two statisticians. The first examines the mean weight of the girls at the beginning and at the end of the year, and finds that they are to be identical, i.e., frequency distribution of the weight for the girls is not changed, so is for the boys. The second statistician finds that the slope of the regression line of the final weight on the initial weight is essentially the same for both sexes but the regression coefficient of the variable sex to be statistically significant and concludes that the boys showed significantly more gain in weight than the girls when proper allowance is made for differences for initial weight. Conclusions of the two statisticians seem to contradict with each other; the first is predictive and the second is both predictive, and causal if the initial weight is the only confounder of causal relation between the sex and the final weight. The second has given causal effect of the sex on the final weight (weight gain) by a regression coefficient. In fact, to give it by comparing, two supports of the confounder of both sexes should coincide. But one can assume that the population initial weight ranges of boys and girls coincide even though sample counterparts differ (so, extrapolation is meaningful). Let the initial weight, final weight and sex are denoted by WI , WF , S respectively (S = 0, a girl and S = 1, a boy) and weight gain be D = WF -WI . If the effect of This paper was published as a part of the proceedings of the 32nd International Workshop on Statistical Modelling (IWSM), Johann Bernoulli Institute, Rijksuniversiteit Groningen, Netherlands, 3-7 July 2017. The copyright remains with the author(s). Permission to reproduce or extract any parts of this abstract should be requested from the author(s).

S on D is found by difference of conditional means, E{D|S = 1} -E{D|S = 0} then it is no effect. This can be found by running regression of D on S. Note that E{WF |S = 1} = E{WI |S = 1}, (say, µB) and E{WF |S = 0} = E{WI |S = 0}, (say, µG). If E{D|WI = i, S = 1} and E{D|WI = i, S = 0} are calculated simply by partitioning the data by taking WI to be discrete or as a functions of i, then the difference E{D|WI = i, S = 1} -E{D|WI = i, S = 0} may not be zero for each i, so may be difference of their weighted means, i E{D|WI = i, S = 1}p(WI = i)i E{D|WI = i, S = 0}p(WI = i). If the effect of S on WF is calculated by it then it is different from former value (paradoxical!). Now let us see why two types of differences of averages differ by simple algebra, that will say that they should have two different interpretations. First assume that we have a number of subgroups of boys and, for simplicity, the same is true for girls. Let D 1 ij be the weight gain of the j-th boy in the i-th subgroup of boys where sub-group size is ni and D 0 ij be that of the girls where sub-group size is mi and furthermore, let

f 1 i = ni/ k n k , f 0 i = mi/ k m k and fi = (ni + mi)/ k (n k + m k ) for j = 1, ..., ni and i = 1, ..., a.
And let A1 be difference of the average weight gain of the boys and the girls,

D1 i = j D 1 ij /ni and D0 i = j D 0 ij /mi for i = 1, ..., a. So, A1 = a i=1 n i j=1 D 1 ij a i=1 ni - a i=1 m i j=1 D 0 ij a i=1 mi = a i=1 D1 i f 1 i - a i=1 D0 i f 0 i = 1 2 a i=1 D1 i f 1 i + a i=1 D1 i f 0 i - a i=1 D0 i f 0 i - a i=1 D0 i f 1 i ; generally = 1 2 a i=1 ( D1 i -D0 i )(f 1 i + f 0 i ) = a i=1 ( D1 i -D0 i )fi = A2
where fi = αf 1 i + (1 -α)f 0 i for i = 1, ..., a such that α = a i=1 ni/ a i=1 (ni + mi) and A2 is the difference of weighted averages of the sub-group weight gain averages. So, the difference of group averages A1 (which is zero in our case) is different from the difference of pooled-weighted average of the sub-group averages A2. The second statistician compares the boys and the girls subgroup-wise and finds that it is a constant gain for the boys over the girls across the subgroups, i.e., D1

i -D0 i is constant for all initial weight i. Therefore he finds that the boys gain more weight than the girls in corresponding sub-groups. Note that for simplicity we have taken initial weights as discrete values. In fact,

A2 = i E{D|S = 1, WI = i}p(WI = i) -i E{D|S = 0, WI = i}p(WI = i) is the causal effect of S on D if WI
is the only confounder, under the linear assumption. It is different from A1 unless E{D|S, WI } = E{D|S}. The confounding effect (A2 -A1) depends on how different f 1 and f 0 are (can have a measure from them).

Regression Solution

Now we define interpretation of ordinary least square (OLS) estimates of the regression coefficients (parameters). The OLS estimation is based on the variation of the response variable Y for a given functional form of the values of explanatory factors. Regression coefficients are estimated so that sum of squared prediction errors for the data in the sample is the minimum. So, reverse regression is not generally obtainable from forward regression and may not be consistent with the latter. For simple linear regression one can easily establish that the reverse regression and the forward regression are consistent with each other if and only if one of the regressions have symmetric residuals about and uni-modal at conditional expectation of response, that implies other regression too. Now consider the OLS linear regression model Y = β0 + β1X1 + β2X2 + , then linear effect of X1 on Y when X2 is held unchanged is given by β1 if Y values are symmetric about and uni-modal at β0 + β1X1 + β2X2. It is clear that the supports of X2 for each value of X1 are the same (or extrapolation is meaningful if empirical supports differ). Symmetry and uni-modality of Y values for given values of X1 and X2 are observed if all other factors that affect or are associated, but are not taken into consideration are allowed to vary pure randomly. This is a fundamental assumption used in statistical modelling often implicitly. Let us do a regression of WF on the binary variable S. Then we get the model WF = µG +(µB -µG)S + 1. where the regression co-efficient of S is the predictive effect of S on WF provided that above requirement is fulfilled. The residuals of the model are just individual values of D, i.e., 1 = D for each subject and it is easy to see in Fig. 1 of [START_REF] Lord | A Paradox in the Interpretation of Group Comparisons[END_REF], that the residuals are predictive by WI for each sex category separately, 1 ⊥ WI |S. However, it may be that 1 ⊥ S. So, if the two clusters of values of WF for two sexes are symmetric about and uni-modal at the respective means then the effect of S on WF is the regression coefficient of S in the model. But it is uncontrolled confounders that are associated with WF , then it should be interpreted accordingly. That is, it is the predictive effect of sex differences and causal if there are no confounders such as WI . And we see that we get zero predictive effect from the meal change since the regression coefficient is the same as that when the girls and boys had previous meal type. Let we can write the distribution of residuals for each value s of S, say, f ( 1|s) as a mixture, f ( 1|s) = g( 1|x, s)π(x, s)dx for some random variable X, and for each value x of X the component distribution g( 1|x, s) may have non-zero mean such that E{ 1|s} = E{ 1|x, s}π(x, s)dx = 0 and then we have that V ar{ 1|x, s} ≤ V ar{ 1|s} where π(x, s) = h(x|s)p(s); here h(x|s) is the conditional probability density of X given S = s and p(s) is the marginal probability distribution of S. If X could be identified meaningfully, then model should include such feature variables too. In this case, X could be identified as the initial weight WI . Then one should accept the upgraded model that includes WI too. It has residuals that have a smaller conditional standard deviation given WI and S. Furthermore, if WI is the only confounding factor and when it is also included in the model the the coefficient of S is the causal effect of S on WF . Let the residual 1 corresponds to the context that WI = wI and S = s and then it can be written as 1 = µ w I ,s 1 + 2 where µ w I ,s 1 is the expectation of it. So, we have E{ 2|WI = wI , S = s} = 0 and also that V ar{ 2|WI = wI , S = s} ≤ V ar{ 1|S = s}. And furthermore, we can have that µ w I ,0 1 = a0 + b0wI for s = 0 and µ w I ,1 1 = a1 + b0wI for s = 1 where a0, b0 and a1 are constants. Now, given that WI = wI and S = s, for s = 0, 1, and I(A) = 1 when A is a true statement and I(A) = 0 otherwise, we have

WF = WF = µG + (µB -µG)s + µ w I ,s 1 + 2 = µG + (µB -µG)s + (a0 + b0wI )I(S = 0) + (a1 + b0wI )I(S = 1) + 2 = µG + (µB -µG)s + a0I(S = 0) + a1I(S = 1) + b0wI + 2 = µG + (µB -µG)s + a0(1 -s) + a1s + b0wI + 2 = µG + a0 + (µB -µG -a0 + a1)s + b0wI + 2
So we can obtain a super-model (regression) from a given regression model (it is a sub-model of the former) as long as its residuals are predictive (linearly in this case) with another explanatory variable. The predictive effect of S on WF when controlled for WI is µB -µG -a0 + a1 that is generally different from earlier value of µB -µG and for each individual model prediction is more accurate than that of the previous model, therefore new model is preferred to the previous one. If WI is only a confounder but not an intermediate variable between the causal pathway between S and WF , and has a common support for all values of S, then β1 is the average causal effect of S on WF in the linear case. In our example, sample supports of WI for S = 1 and S = 0 differ but we can assume that they are the same in the population (so, extrapolation is meaningful). Note that the above arguments can be generalised. For restrictions of space, we avoid presenting solution to the paradox, that is based on causal diagrams. We object recent solution by Pearl. Our explanations comply with Lord's initial comments.