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Summary

The sound emergence is the main regulatory estimator for wind turbine noise in France. This
criterion aims to limit their noise impact on local residents and is highly dependent on the variation
of residual noise over time. Therefore, initially defined curtailment plans can sometimes become
inadequate, in which case they cannot easily be updated without leading to significant production
losses. Machine learning techniques allow today to consider the continuous estimation by
measurements of the sound contribution of wind turbine noise in the ambient noise and thus its
noise emergence, without needing to stop the wind farm. This operation makes it possible not
only to regularly adapt these reduction plans, thus optimizing electricity production, but also
limiting the possible noise annoyance for local residents.

For this purpose, semi-supervised Non-negative Matrix Factorization method is considered,
enhanced by a temporal regularity constraint. This approach combines a wind turbine dictionary
designed on a learning basis and a free dictionary that allows the adaptation of the method to
the variability of residual noise. Tests conducted on simulated measurements reveal satisfactory
performances with mean estimation errors lower than 2 dBA for wind noise emergences lower
than 5 dBA. Finally, the presence of these two types of dictionaries makes it possible to estimate
the wind noise emergence according to one or the other depending on the predominance of the
estimated wind turbine noise.

1. Introduction

In some European countries, the sound impact of wind farms is assessed by their sound
emergences. This indicator is estimated by the difference between the A-statistical sound
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pressure level (SPL) of the ambient noise at the receiving point L, 50 amp. (i.€. Wwhen the wind
farm is operating) and the residual noise Ly s 5. (i.€. when the wind turbine is shutdown):

E = LA,SO,amb. - LA,SO,res. (1)

The statistical SPL presents the advantage to be more suited for the wind turbine (WT) noise,
which remains quite constant during time, while equivalent SPL is more sensitive to extreme
sound pressure levels that might result from emergences of residual noises.

These sound emergences are then limited to regulation thresholds to not exceed. To respect
these criteria, the most common solution is the application of a curtailment plan on WTs to limit
their operation and thus their noise emission (Rogers, 2020). However, this plan affects strongly
the production capacity of the machines.

Furthermore, this solution has the main drawback to depend on the variability of the residual
noise, which is a time varying component that changes over the meteorological conditions, the
ground characteristics and the surrounding infrastructures. Consequently, this may result in two
situations where the curtailment plan might be too strong (i.e. the electrical production is
unnecessarily limited) or too low (i.e. the sound emergences exceed the regulation thresholds).
Currently, to update this plan, on/off cycle measurements are made. These measurements
consist in assessing alternatively the SPLs of the ambient noise and the residual noise by
stopping the wind farm periodically. If needed, a new curtailment plan can then be formulated.

However, these measurements require the shutdown of the machines, which also significantly
affects the electrical production. Furthermore, they are only carried out during a couple of weeks
and are not sufficiently representative over a long period. Consequently, this updated plan does
not guarantee to be still valid few months later. To repeat this process regularly will then increase
again the loss of electrical production and is not a suitable solution.

Consequently, there is an interest to be able to estimate the sound emergence of wind farms
continuously without stopping them. Thus, it would be possible to control regularly the noise
annoyance for neighboring inhabitants, while optimizing the electrical production.

Instead of seeking to improve the sound source emission of WT and the models for outdoor
sound propagation (Cotté, 2019), this emergence could be estimated by measurements made in
situ. Recently, (Gloaguen et al., 2020) propose a first tool to estimate the sound emergence of
WTs. This tool is based on the Non-negative Matrix Factorization (NMF) used as a source
separation method to first extract the WT component from simulated ambient scenes and then
to estimate the sound emergences. This preliminary study has been extended in (Gloaguen et
al., 2021) on a larger number of situations where the WT component has been propagated at
different distances in different propagation conditions. Supervised learning associated with a
temporal constraint reached satisfactory results with a mean error inferior to 2 dBA on many
cases. In this study, only WT noise was considered in NMF. It might be then helpful to better
consider the residual noise in NMF to bring more flexibility but also robustness to this method.
Thus, this paper extends these works and considers a semi-supervised learning, which allows
NMF to consider labelled data (i.e. WT noise) and unknown data that can be adapted to the
diversity of the residual noise. Section 2 introduces Semi-supervised NMF, Section 3 presents
the different corpora used in this experiment and Section 4 summarizes the main results and
details the behavior of the proposed method.

2. Semi-supervised Non-negative Matrix Factorization

In audio field, Non-negative Matrix Factorization (NMF) is usually introduced as a linear
approximation of an audio spectrogram V. by the product of two matrices, W and H, such as
V =~V =WH. Wry, called dictionary, includes audio spectra and Hyy, called the activation
matrix, corresponds to the temporal evolution of each of the spectra such as V = WH (Dikmen &
Mesaros, 2013; Lee & Seung, 1999). As only amplitude (or power) spectra are considered in
IV and W, only additive combinations are possible. The dimensions of the matrices are chosen
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such as K < min(F,N) to avoid overcomplete representation. In supervised learning, W is
learned on labelled samples and H is the unknown to estimate. In the present case, W includes
WT noise spectra.

For semi-supervised learning (Kitamura et al., 2014), a second dictionary and activation matrix
are considered, respectively Y., and Z;,y. The dimension J corresponds to the number of
considered spectra, which is often set such as J < K in order to allow NMF to stay focused on
the data learned in W.

These two matrices are learned on each spectrogram to represent, the best as possible, the
residual noise. This second part makes it possible to increase the degree of freedom of NMF and
to include residual noise directly learn on the spectrogram V. In supervised learning, it would
have been necessary to learn a residual dictionary on labelled data, which is more complex to
do, as it is a noise composed of multiple different kind of sound sources not easy to define
precisely.

Furthermore, instead of a linear sum between [WH] and [YZ], the energetic sum between the
two components is considered here:

V=~V =,[WH]?+[YZ]2 (2)

This modification of the NMF problem is proposed because the available data are expressed in
Pa, thus the energetic sum is more appropriate (see Sec. 3). The approximation between V
and V is performed by minimizing the cost function Dg V]|V):

) _ . F,N _ N 2
min D (V||V) = min (Z dsWpnl V) + tsm Y (hion = hinr) ) 3)
f=1n=1 n=1

Dﬁ(V||I7) belongs to the g-divergence family where only the Euclidean distance is considered
such as d,(x|y) = %(x — y)?. The added regularization term, weighted by the coefficient ag,,,

corresponds to a temporal regularity constraint applied only on H (Févotte et al., 2018). This
constraint forces the shape of the activations in H to adapt a smoother behaviour and thus to
better corresponds to the time signature of WT noise, which is quite constant in practice. As the
NMF formulation has been modified on Eq. 2, the update algorithms of H,Y and Z are changed.
The new update algorithms are estimated as in (Lee & Seung, 2000) with a descent gradient.
Equation 4 presents the update algorithms for the Euclidean distance for this new formulation:

Y - Y.M (4.1)
[[YZ].V] ZT
Z-> Z.M (4.2)
yT [[YZ]. V]
v WT[[WH].V] + 2a[H, + H_4] 43)

wr [[WH]. 17] +2a [H + Hy,)

with H_; = [0 H;.y_4], Hy; = [H,.y 0] and H;, = [0 H,.y_, 0] where H,,.,,, refers to the selection of
columns n to m of H and 0 a column of K zeros. More details on NMF and some applications
can be found in (Févotte & Idier, 2011) , (Heittola et al., 2011) and (Ludefia-Choez et al., 2017).

In summary, among different parameters, each taking several possible values, one tries to find
an optimal NMF formulation: the number of basis in W (K € {5, 10, 20}), the number of basis in Y
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(J € {2,5,10}) and the weight of the temporal regulation (a,, € {0,0.5,1,2}). Finally, NMF is
performed for 1000 iterations where H,Y and Z are initialized randomly.

Sound emergences can be estimated in two different ways with semi-supervised NMF (SS NMF).
First, one estimates from [WH] the WT noise component in V/, deduces the residual component,
its estimated statistical SPL Ly 54 res. and then the estimated emergence Eyy,

Ewy = LA,SO,amb. - LA,SO,res,WH- (5)

In a second way, one considers [YZ] as the exclusively residual noise and directly use it to
estimate the sound emergence, called Ey,. Figure 1 summarizes this process. In Section 4.1.1,
the influence of this choice on the setting on the estimation of the sound emergence is exposed.

Ambient

scenes

[ estimated ~
d(:?arglansge W [[WH] residual noise ] E WH ]

Figure 1: block diagram of the estimation of the sound emergence by NMF.

3. Corpora of environmental sounds

To perform the calculation, two different corpora are used. The first one is a corpus of ambient
scenes, built in order to simulate the method based on on/off cycle measurements (see Section
3.1). However, instead of considering long periods, one considers short periods of 10 minutes of
ambient noise (i.e. on cycles when the WTs operate) and only residual noise (i.e. off cycles when
the WTs are shutdown). This second period simulates the current process used in situ that
estimates the emergence E,, .. This indicator is a baseline method, which will help to compare
the performances of NMF. A second corpus composed of exclusively of WT noise spectra is
dedicated to the learning of the dictionary W and is presented in section 3.2.

All the following data are expressed in Pa for each third octave band between 20 Hz and 10 kHz.

- : - i distance
0 150 300 d (m)
Figure 2: schema of the different measurement points used for the dictionary corpus (150 m) and the corpus of simulated
ambient scenes (300 m). The distance d corresponds to the distance where the ambient scene are located (500 m, 1000 m,

1500 m).

3.1 Corpus of simulated ambient scenes
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A corpus of 30 simulated ambient scenes is built for this experiment. This simulation process
consists in the sum of a WT noise component with a residual noise component. This process
makes it possible to know the ‘exact’ sound emergence E,, (see Eg. 1) and can then be compared
to the one estimated by NMF. By using in situ measurements, this ‘exact’ value would have been
unknown.

3.1.1. Wind turbine noise samples

The WT noise components are collected during on/off cycle measurements at 300 m from the
front line of a wind farm at 1.5 m height (Kayser et al., 2018) (see Figure 2). To consider the most
accurate samples, the residual noise spectra, estimated with the 30 minutes preceding and
following the off measurements, filter the on measurements. From these cleaned samples, 30
samples of 10 minutes are extracted (see Figure 3). To generate ambient scenes accurately, an
attenuation filter must filter the WT noise in order to simulate its propagation at a certain distance
through an inhomogeneous media.

80 , . . 2500
— 2000
<
et ]
5870 1500 =
g &
o 1000 &
> (<]
2 3
= 60 | Boo: =
: )
2 0

50 ' : , u -500
01:00 01:30  02:00 02:30 03:00 03:30  04:00

time Oct 21, 2017
Figure 3: example of the extraction of wind turbine spectra. The emergence on cycle is considered and filtered by the mean
residual spectra estimated from the measurements carried out between the dashed lines.

3 distances between the WTs and a receiving point are considered (d € {500,1000,1500} m)
through one inhomogeneous media, which is considered here as a downward propagation
condition. Propagation conditions are characterized although the vertical profile of the effective
sound celerity, defined as:

Cerf(z) = YRT(2) + U(2) cos(8) (6)
with y the heat capacity ratio of dry air at constant pressure and volume (y = 1.4), R, the specific
gas constant for dry air (R = 287 J.kg*.K?), 6 the angle between the wind direction and the
propagation direction and T'(z) and U(z) the mean vertical profiles of air and temperature and
wind speed respectively. As turbulence is not considered, these profiles are only expressed
according to their mean part:

T(2) = T, + a, log (Zz_od) , (7.1)

U(z) = a, log (ZZ_Od> (7.2)

where T, (K) is the ground surface temperature, d = 0.66h,, is the displacement height accounting
for the influence of the vegetation height h, (m), z, = 0.13h, is the roughness height of flux profiles
and a; and a,, are the coefficients that determine the shape of the temperature and wind vertical
profiles, respectively. The relative humidity is set to 70 %. The settings of the downward refraction
condition used in the study are T, = 15°C, a,, = 100 m.s%, a, = 0.15 K.m™, § = 45.

Sound propagation is modelled through the use of Parabolic Equation (PE) (Kayser et al., 2020)
and resolved by the split-step Padé approach with an average ground floor impedance (airflow
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resistivity o = 500 kN.s.m™). To improve the estimation of this filter, the sound emission of WT
noise is defined by the extended source model proposed by Cotté (Cotté, 2019).

PE is performed for all the third octave bands from 20 Hz to 3150 Hz. This process makes it
possible to obtain an accurate estimation of the SPL of WT to ensure the validity of the results of
NMF.

From this resolution, the attenuation filters at the distances d are estimated with a reference
microphone at 300 m (corresponding to the position where the WT samples in the ambient
scenes have been collected) (see Figure 4). Due to computation limit, the attenuations for the
third octave bands from 4 kHz to 10 kHz are modelled only with the geometrical divergence and
the atmospheric absorption. This limitation is not prohibitive as the WT noise contribution in these
bands are very low.

att. (dB) rel. ref. mic.

-40
—d=500m—d=1000m —d=1500m
T \

20 50 160 500 1600 5000
frequency (Hz)
Figure 4: attenuation filters used to propagate the wind turbine noise at distance d with a reference receiver located at 300 m
from the front line of the wind farm and at 1.5 m height above the ground.

3.1.2. Residual noise samples

The residual noise samples come from two different locations (called WF1 and WF2) and have
been collected during on/off cycle measurements, but this time during the off periods. For each
location, 30 samples are collected. The residual noises from WF1 account for weak residual SPL
as the wind farm is located far from any anthropogenic noise sources. In the opposite, WF2 is
located close to a highly frequently road. The residual noise samples related to this place are
then much more dynamic.

Each sample lasts 25 minutes. The first 10 minutes are used to build the ambient noise sample
with the WT noise sample. The last 10 minutes are used as only residual noise to simulate the
shutdown of the wind farm and to estimate the baseline emergence E,;, /o5y,

Eon/off = Ly 50,amp. — LA,SO,res.,off (8)

The last 5 minutes (between the 10" minutes and the 15" minutes) can be seen as the transition
time before the WT are shut down and are then discarded.

3.1.3. Building of the ambient scenes

From the WT and residual noise samples, the 30 simulated ambient scenes are built. These
scenes length 10 minutes with a 1 second step. The WT noise is first propagated to 3 different
distances (d € {500, 1000, 1500} m) for one propagation condition (see Section 3.1.1). The WT
and the residual noise samples are then summed following the Signal-to-Residual-Ratio (SRR)
defined as:

SRR = Lasowr — Laso,res.,ons 9
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where Ly 5o w7 IS the A-statistical SPL of the WT component and L 5 res.on the A-statistical SPL
of the residual component used for the ambient scene. The SRR is defined for {-9; -6; -3; 0; 3; 6;
9} dBA. When SRR < 0 dBA, the residual noise is predominant over the WT noise and inversely
when SRR > 0 dBA. These SRR values correspond to ‘exact’ sound emergences E,, of {0.5; 1.0;
1.8; 3; 4.8; 7.0; 9.5} dBA respectively. Finally, the simulated ambient scenes are the
spectrograms V of NMF with dimensions F = 28 (i.e. number of third octave bands between 20
Hz and 10 kHz) and N = 600. The adjustments made to set the residual noise at a SPL
corresponding to the SRR are also made on the last 10 minutes of the residual noise to assure
its continuity. The Figure 5 displays for 2 SRR values the different parts of an ambient scene and
Figure 7 summarizes the steps to build the ambient scenes.

65 : ' | : 65 ' v -
! ! |-+-wind turbine noise ! ! |[-+-wind turbine noise
60 E E -*-residual noise (on) | 60 E E -*-residual noise (on) |
1 ! |——ambient noise 1 ! |——ambient noise
| i |-o-residual noise (off) | i |-©-residual noise (off)
Q 551 H | |-*-discarded residual || 2 5571 i | |-*-discarded residual ||
/m ! ' [aa) ' '
£ -x i E X i :
45T R 145 X
g A g : |
= 40 —— = 40 3 T ;
35 i i 3ol % i\_ ’Ek i
| | N
30 1 r§ 30 1 k3
0 5 10 15 20 25 0 5 10 15 20 25
time (min) time (min)
5-a 5-b

Figure 5: details on the building of the simulated ambient scene for SRR = -6 dBA (5-a) and SRR = 6 dBA (5-b) (scene 6, WF1, d
=500 m).

Finally, a pre-processing step is performed on the ambient scenes before considering it in NMF.
This pre-process consists in the attenuation of the most energetic frames. One considers here
that these frames are due to high emergences of residual noises. Thus, to help the approximation
made by NMF and limit the influence of the residual noise, it might be beneficial to remove them.
To do so, the temporal frames where the equivalent SPLs are superior to the L, ;, are discarded
and replaced by interpolated values to ensure coherent continuity in the spectrogram. Figure 6
displays an example. To know its impact, NMF is also performed without this operation.

Wi

Ly

\ ||I

g

C o E I

w\‘ TR I

LN

0 100 200 300 400 500 600 0 100 200 300 400 500 600
time (s) time (s)
6-a 6-b

Figure 6: influence of the pre-processing step on the spectrogram and on the A-SPL. On the initial spectrogram (6-a), the
residual noise provokes high emergences. On the pre-processed spectrogram (6-b), these emergences are reduced, for
instance in the intervals {327; 334} s and {386; 396} s
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£ ambient scenes [ o scenes

pre-processing

Figure 7: block diagram of the ambient scene corpus building.

3.2 Corpus for the dictionary W

To build a dictionary of WT spectra, measurements made during on/off cycle measurements on
the same wind farm than in Section 3.1 are collected. To ensure to have spectra the less polluted
by surrounding residual noise samples, only measurements made following the IEC standard
protocol are considered as they are closed to WTs (see Figure 2). In addition, only the most
emerging measurements are considered. They are then filtered by the estimated residual noise
spectra measured during the off cycle as in Section 3.1.1, to ensure the most accurate WT
spectra.

In all, 14200 third octave band spectra (ranking from 20 to 10 kHz) are extracted. This large
number of spectra cannot be directly in the multiplicative update algorithms (Egs. 4) as it will
highly increase the computation cost. Furthermore, these spectra present redundant information.
Consequently, a K-mean algorithm reduces these 14200 spectra to K € {5, 10, 20}.

As the ambient scenes simulate the WT noise contribution at 3 distances from the front line of a
wind farm, an attenuation ‘transfer function’ filters is also applied on the initial dictionary at the
considered distances. Instead of using PE, one chooses a simpler approach to facilitate the
implementation of the proposed method in an industrial process. The Weyl’'s Van der Pool
equation is then considered and solved by the sound rays model (Salomons, 2012). The sound
emission models the WT noise by 3 moving monopoles (hub height = 80 m, speed rotation = 20
rpm). A downward meteorological condition is chosen with a linear vertical profile of the effective
celerity: c.rr(2) = ¢o + byinz With ¢, the sound celerity (m/s) with an air temperature of 10°C, by;,,
= 0.1 mand z the height (m). The ground impedance is defined by the Miki’s model (Miki, 1990)
with an air flow resistivity representative of countryside (¢ = 500 kN.s.m*). The corresponding
attenuation filters are displayed on Figure 8. They are generated for the 3 distances with a
reference microphone corresponding to the one on the ground located at 150 m from the front
line of the wind farm (see Figure 2). Finally, each filtered spectra of the dictionary is normalized
such as ||[Wi |l =1
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att. (dB) rel. ref. mic.
s
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-40
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frequency (Hz)
Figure 8: attenuation filters for the dictionary with a reference receiver located at 150 m from the front line of the wind farm and

on the floor.

4. Computation and discussions

The objective of the experiment is to find an optimal setting of NMF (f,K, ], ag,, humber of
iteration, estimation by [WH] or [YZ], pre-processing step) on 30 simulated ambient scenes with
the WT noise propagated at different distances (d € {500,1000,1500} m), for one downward
propagation condition and for two locations of residual noises (WF1 and WF2). For each ambient
scene, one gets the ‘exact’ sound emergence E,,, thanks to the simulation process, the
estimated emergence by the simulated on/off cycle scenes E,, s and the estimated one by

To compare these indicators, the Mean Absolute Error MAE is considered. It is expressed such
as:

M_L|E —E
MAEWH/YZ _ Zm_ll WH/;’;,m ex.,ml (10)

This metric is also computed with E,,, , ¢ instead of E. M is the number of considered scenes. It

can be computed for the total number of scenes (M= 180, see Section 4.1.1) and for each
distance and residual noise (see Section 4.1.2).

4.1.1. Global results on all the corpus of simulated ambient scenes

The MAE error is computed for each association of setting (384 associations in all) on all the
corpus (M =180 scenes). Instead of summarized all of these, only the ones with the lowest errors
are displayed in Table 1 according to the dimension J, the use of the pre-processing step (no or
La10) and the choice of the component in 17 used to estimate the sound emergence ((WH] or
[YZ]). Then, the association of settings reaching the lowest error is the optimal SS NMF
formulation the most efficient that is considered.

Table 1: lower errors of SS NMF among all the tested association of settings according to the dimension J, the choice of the
component in ¥ estimation and the pre-processing step. In bold letters, the best results.

Pre-
Method K ] A Iteration processing Corri\rg])ovnent MAE (dBA)
step
Baseline - - - - - - 2.7(+2.8)
5 2 0.5 50 no [WH] 2.1 (+1.8)
5 2 0.5 50 Lao [WH] 1.9 (£ 1.7)
5 5 0.5 50 no [WH] 2.1 (+1.8)
SS NMF
5 5 0.5 50 Lao [WH] 1.9 (+1.7)
5 2 1 5 no [YZ] 6.2 (+5.8)
5 2 0.5 1000 Lao [YZ] 3.1 (+2.0)
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5 5 1 1000 no [Yz] 4.0 (+ 4.5)
5 5 0.5 1000 Laso [YZ] 2.5 (+ 1.8)

The lowest error is reached when emergences are estimated from [W H], with the pre-processing
step and for ] € {2; 5}. More generally, the lowest MAE errors are obtained when the emergence
Is estimated from [WH] instead of [YZ]. This choice happens to be the most influential as the
NMF settings are for the most part similar (i.e. the dimensions K and J, the number of iteration,
the smoothness weight a4, stay the same).

The addition of the pre-processing step improves the results, even if its impact is more reduced
when emergences are estimated from [WH]. This result can be understandable as it limits on the
spectrogram V' the presence of the residual noise, which can naturally help the approximation of
the WT component by NMF.

Furthermore, the increase of basis in Y only improves the results when [YZ] is considered. The
approximate WT component is then constant for J = 2 or ] = 5. This behavior reveals that the
estimation of the [WH] component is quite robust and the increase of the dimension J does not
result in more confusion. For the next, we consider ] =5 as it is also where the estimations of the
sound emergence with [YZ] are the best.

Finally, the proposed method shows lower errors with reduced standard deviations than the
baseline method on this corpus, which reveals that the estimation by SS NMF is more accurate.
The baseline method, based on on/off measurement process, makes the hypothesis that residual
noise is constant over time, which might not be the case. This is particularly the case for the
samples that come from the WF2 wind farm. Applied directly to the ambient scenes, this versatility
does not affect SS NMF, in addition to not having to shut down the wind farm.

4.1.2. Behaviors of the optimal SS NMF detailed

From this main results, the behavior of the optimal SS NMF (K =5, ] =5, a4, = 0.5, 50
iterations, with the pre-processing step and with the emergence deduced from [WH]
component) is now according to the distance and the location of the residual noises in Figure 9.

6 WF1 6 WF2
500 m Bl 1000 m Z01500 m| (500 m EE1000 m £01500 m

5 | %
:lwwWW“g :Mm@wn[ |

-9 -9 9
SRR (dBA) SRR (dBA)
Figure 9: errors of the optimal SS NMF details according to the distance d, the location of the residual noises and the SRR.

S

—

MAE,, (dBA)
w
MAE,,,, (dBA)
w

First, one notices the strong dependence of the results to the SRR values. The evolution of the
errors according to the residual noise location or the distance follows the same pattern. The
MAE,y tends to decrease when SRR increases and is inferior to 0 dBA. Then, it increases
strongly with the SRR as the WT become more and more predominant over the residual noise.
To apprehend these results, the 1 second equivalent SPL are displayed in Figure 10 for SRR =
-6 dBA and for SRR = 6 dBA in Figure 11.
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In these representative examples, when SRR is negative, the estimated WT noise is
overestimated, which results in the underestimation of the estimated residual noise and so the
overestimation of the sound emergence.

Conversely, when SRR = 6 dBA, the estimated WT noise is more equivalent to its ‘exact’ value.
Consequently, the strong errors observed in Figure 9 are not due to a bad estimation of the WT
component, but to a higher sensitivity of the emergence indicator in these cases when SSR is
negative. For instance, an underestimation estimation of the WT SPL of 1 dBA for SRR = 9 dBA
results of an error on the residual noise SPL of 4 dBA. This behavior happens specifically when
the sound emergence is high (above 5 dBA) and can still be detected.

60

70

T T T T
—ambient — est. specific specific — est. residual residual —ambient — est. specific specific — est. residual residual

0 20 40 60 80 100 120 0 20 40 60 80 100 120
time (s) time (s)

10-a 10-b

Figure 10: a 120 seconds extract of the 1 second equivalent SPL for SRR = -6 dBA with residual noise from WF1 (scene 4, d =
500 m) (10-Erreur ! Source du renvoi introuvable.) and WF2 (scene 4, d = 500 m) (10-Erreur ! Source du renvoi
introuvable.).

60

T T T T
——ambient —est. specific specific — est. residual residual ——ambient —est. specific specific — est. residual residual

65

60 55

0 20 40 60 80 100 120 0 20 40 60 80 100 120
time (s) time (s)

11-a 11-b

Figure 11: a 120 seconds extract of the 1 second equivalent SPL for SRR = +6 dBA with residual noise from WF1 (scene 4, d =
500 m) (11-a) and WF2 (scene 2, d = 500 m) (11-b).

If the SRR is the main influence parameter, the location and the distance have also a significant
impact (but reduced). According to their evolution on Figure 9, it might be some interaction
phenomena between these parameters. At 500 m for SRR< 0 dBA, for WF1 residual samples,
the errors are higher than at 1500 m. They decrease with WF2 residual noise samples. When,
SRR becomes positive, these patterns reverse. At d = 500 m, residual samples from WF1 are
less noisy, which results in more similar spectral shapes to the WT noise and then generates
confusion. With the distance, the attenuation filters altered the spectra, which results in a better
fit of the estimated and the ‘exact’ WT noise spectra. This observation can be seen in Figure 12
where the mean spectra of each component are displayed. Finally, when SRR increases, the
error becomes higher with the distance. This might be due to the difference in the propagation
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filter applied on the dictionary W (see Section 3.2) emphasized with the distance and the high
value of the SRR where the sound emergence is more sensitive.

< WF1-500m
% 60 ’;WTN —residual — [WH]‘
g 40 M \
@]
(o]
.20
B
© 1600
oo WF1-1500 m
%J 60 .‘—WTN —residual [WH]‘
< V¢
g 40 - ﬁ X\\/\
o
=
.20 - \
£
@©

20 160 1600
freq. (Hz)

WF2 - 500 m
60 - —WTN —residual [WH]

\

160 1600

20/

WF2 - 1500 m
60 -— WTN —residual [WH]:

T\

20 160 1600
freq (Hz)

Figure 12: influence of the distance and the location of the wind farms of the residual noise samples on the mean spectra of
wind turbine noise, residual noise and estimated WTN ([WH]) (scene 2, SRR = -6 dBA).

4.1.3. Comparison of the estimated residual noises

In this last part, the residual noise deduced from the estimated WT noise and the residual noise
directly computed with [YZ] are compared. To do so, the best setting with [WH] and [YZ] (see
Table 1) are selected and their errors according to SRR are displayed in Figure 13.
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Figure 13: MAE errors according the SRR of the optimal error of SS NMF and the one that reached the lowest MAE error with
the residual noise estimated with [YZ] (see Table 1).
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For both settings, the errors follow a similar respond according to the SRR, meaning that the
estimation of the residual component is similar too. To illustrate this observation, Figure 14
summarizes 120 seconds of the residual components of one scene.

The behavior of the two residual components are similar in this example. The one deduced from
[WH] does not present the effects of the pre-processing step (between 46 s and 66 s, see Figure
14) as it is deduced from the ambient noise and from [WH]. Conversely, [YZ] is learned on
processed spectrograms. Finally, both approaches reveal to be very similar and to be mostly
influenced by the approximation of the WT component by [WH], which provokes the
overestimation of the residual component (between 74 s and 83 s for instance, see Figure 14).

By using [YZ], the main limit is the reduced number of spectra to approximate this sound source.
The results in Table 1 reveal that the increase of the dimension J is beneficial (MAEy, = 3.1
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(£ 2.0) dBA with ] = 2 and MAEy,; = 2.5 (£ 1.8) dBA with J = 5). However, increasing this
dimension also increases the risk that the cost function (Eq. 3) might be minimized mainly with
this component at the expanse of [WH], which is moreover subject to a temporal constraint.
Consequently, the dimension J must stay low in order to not include in [YZ] some WT noise
component.

Furthermore, the reduced number of spectra in Y might be limited in some cases to model a
component that includes many kinds of sound sources and might be insufficient to model it
properly. From [WH], the WT noise is more constant over time, if the dimension K is also low, it
Is still sufficient to approximate this component. Consequently, deduced directly from the ambient
signal, the sound diversity of the residual component is better considered even if the estimated
WT component presents some mistakes. This way limits the error and then improves the
estimation.
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Figure 14: extract of 120 seconds of the exact residual components and obtained with SS NMF from [WH] and from [YZ]
(scene 10, WF2, d = 500 m).

5. Conclusions

Semi-Supervised Non-negative Matrix Factorization (SS NMF) has been considered to estimate
the sound emergence of wind turbine noise. To estimate the optimal settings, simulated ambient
scenes have been built. This process makes it possible to compare the estimated emergences
with their ‘exact’ values, which is not possible with in situ measurements without stopping the
machines. The semi-supervised learning consists in adding in the dictionary a free part that can
be adapted on each ambient scene. In addition, a regulation term is added through a temporal
continuity constraint applied only on H (i.e. the temporal activations of the wind turbine spectra).
This constraint makes it possible to have more continuous shapes of the activations and then
more similar to the wind turbine noise behavior.

The common formulation of SS NMF has been adapted to correspond to the form of the input
data through an energetic sum instead of a linear sum. This change required generating new
update algorithms.

After computation, the settings of the optimal SS NMF have been found (K =5, ] =5, a,,,, = 0.5,
50 iterations, with the pre-processing step and with the emergence deduced from [WH]
component), which result in a global MAE error of less than 2 dBA. The simulated ambient
scenes enables the study of this result according to the SRR, the distance and the location of the
residual noise. The SRR reveals to be the more influential setting as it impacts directly the sound
emergence. For negative SRR, SS NMF performs appropriately, but the estimation errors
increase significantly as the wind turbine noise becomes more predominant. This behavior is
more due to a high sensitivity of the emergence indicator than to a poor estimation of wind turbine
noise. The different locations of residual noise in the scene have also an impact on the results
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according to its similarity of its audio spectra with the wind turbine noise: the more similar they
are, the higher the risk of confusion.

Finally, this proposed method, despite its limitations, still generates estimation errors lower than
the ones based on on/off cycle measurements, which is a great improvement for wind farm
operators. Now, these results and observations make it possible to consider this method using
real in situ measurements and allow a better apprehension of the estimations according to the
dynamic of the ambient noise or the distance between the wind farm and the measurement point.
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