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Abstract

Of paramount importance in both ecological systems and economic policies are the prob-
lems of harvesting of natural resources. A paradigmatic situation where this question is raised
is that of fishing strategies. Indeed, overfishing is a well-known problem in the management
of live-stocks, as being too greedy may lead to an overall dramatic depletion of the population
we are harvesting. A closely related topic is that of Nash equilibria in the context of fishing
policies. Namely, two players being in competition for the same pool of resources, is it possible
for them to find an equilibrium situation?

The goal of this paper is to provide a detailed analysis of these two queries (i.e optimal
fishing strategies for single-player models and study of Nash equilibria for multiple players
games) by using a basic yet instructive mathematical model, the logistic-diffusive equation.
In this framework, the underlying model simply reads −µ∆θ = θ(K(x) − α(x) − θ) where
K accounts for natural resources, θ for the density of the population that is being harvested
and α = α(x) encodes either the single player fishing strategy or, when dealing with Nash
equilibria, a combination of the fishing strategies of both players. This article consists of two
main parts. The first one gives a very fine characterisation of the optimisers for the single-
player game where one aims at solving supα

´
Ω
αθ, under L∞ and L1 constraints on the fishing

strategies α. In particular, we show that, depending on the value of these constraints, this
optimal control problem may behave like a convex or, conversely, concave problem. We also
provide a detailed analysis of the large diffusivity limit of this problem. In the case where
two players are involved, we rather write α as α1 + α2 where αi, the fishing strategy of the
i-th player, also satisfies L∞ and L1 constraints. Defining I1 :=

´
Ω
αiθ we aim at finding

a Nash equilibrium. We prove the existence of Nash equilibria in several different regimes
and investigate several related qualitative queries, for instance providing examples of the well-
known tragedy of commons.

Our study is completed by a variety of numerical simulations that illustrate our results
and allow us to formulate open questions and conjectures.

Keywords: diffusive logistic equation, optimal control, bilinear optimal control, calculus of vari-
ations, Nash equilibria, game theory.
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1 Introduction

1.1 Scope of the paper & summary of the models

In this paper, we study an optimal harvesting problem motivated by the ecological management
of wild fisheries. One of the main ecological threats we currently face is the depletion of fish
populations in oceans [10, 21, 66]. While many factors can be held accountable for this situation,
one of the overarching ones is overfishing and, more generally, the poor management of fisheries.
The resulting very high strain that is exerted on fishing stocks puts at risk the biomass [20, 65].
While it is clear that this overfishing problem may arise when only one population of fishermen is
present, the situation can be more dramatic when several populations of fishermen are competing
for the same pool of resources. This is an example of the ubiquitous tragedy of commons [31]: the
competition over finite common resources may lead to the extinction of said resources. But not
only does this affect the fish population, it also endangers the fishing-based economies of several
societies [30]. Consequently, the future of fisheries and the study of optimal fishing strategies is
now a central topic both in the scientific community and in society [8, 20, 73, 9].

In the present work, we aim at providing an in-depth analysis of a paradigmatic model of
such (over)fishing problems from the perspective of optimal control of spatial ecology models and
game theory. Using, as a basic building block, the logistic-diffusive equation, we offer several
qualitative results that exemplify the intricate and rich qualitative behaviours of such queries, and
provide theoretical illustrations of the aforementioned concepts in the management of fisheries (in
particular, of the tragedy of commons).

Summary of the models Since the introduction is long let us for the sake of convenience
summarise here the models and questions we investigate. In general, the fishes’ population will be
described using the standard logistic-diffusive equation (see section 1.2 for more details): θ being
the population density, we assume that θ solves

−µ∆θ = θ(K(x)− θ)− α(x)θ︸ ︷︷ ︸
harvested fish

in Ω,

∂θ
∂ν = 0 on ∂Ω,

(1.1)

where α described the fishing rate, µ > 0 is the diffusivity of the population and K(x) accounts
for the natural resources available in the environment. The optimisation problem we seek to
understand is the maximisation of the fishing outcome:

max
α∈L∞(Ω)

ˆ
Ω

α(x)θα(x)dx,

where by θα we indicate the dependence of θ with the variable α in (1.1). Of course we would need
to specify which constraints we enforce on α. We shall make this precise in section 1.2. In certain
cases, this problem can be solved explicitly; this is the case when K is a constant, see Remark 2.
However, when we consider a general capacity K(x) the study becomes more intricate. The first
part of this article is devoted to the study of this optimal fishing problem.

The second part is devoted to understanding a related game-theoretical problem. In this model,
two populations are fishing in the same pool of natural resources. Considering two players, the
state equation becomes:

−µ∆θ = θ(K(x)− θ)− α1θ︸︷︷︸
Player 1

− α2θ︸︷︷︸
Player 2

in Ω,

∂θ
∂ν = 0 on ∂Ω,

(1.2)

2



where each player wants to optimise their fishing output

I1(α1, α2) =

ˆ
Ω

α1θα1,α2
dx, I2(α1, α2) =

ˆ
Ω

α2θα1,α2
dx,

the outcome of one player depends on the strategy of the other player, since, both players have an
impact on the total population θ through equation (1.2). A pair of strategies (α∗1, α

∗
2) is said to be

a Nash equilibria if

α∗1 ∈ arg max
α1

I1(α1, α
∗
2), α∗2 ∈ arg max

α2

I2(α∗1, α2). (1.3)

In general, Nash equilibria do not necessary exist, and obtaining their existence is a core point of
this article. Additionally, we shall give some qualitative contributions to the study of the impact
of competition on the total outcome: is it better, when two fishers’ population are fishing, to be
competing or cooperating? In particular, we will see that competition is sometimes detrimental to
the total fishing outcome. Furthermore, when considering n players we will see a more devastating
effect. We will see that as the number of players increase, there exist a Nash equilibrium such
that the total harvested amount of fishes goes to 0 as the number of players increases. Again, this
result validates the principle known as tragedy of the commons [31]: if one increases the number
of players in the harvesting game, the total amount harvested may decrease dramatically.

In order to avoid overfishing, typically governments impose regulations on the fishing capacity
of the players. Furthermore, players themselves might have limited fishing ability. In this paper
we will model this by imposing an integral constraint on α,

´
Ω
α(x)dx 6 V0 or

´
Ω
α(x)dx = V0.

Throughout this study, we shall also cover several aspects of optimal control problems that are
interesting in their own right, and that belong to a currently very active field of research devoted
to the understanding of spatial heterogeneity in population dynamics and, more generally, in the
study of spatial ecologoy [6, 11, 22, 36, 37, 39, 43, 44, 47, 48, 49, 50, 51, 52, 53, 56, 57, 61, 71]. Let
us give a more mathematical point of view on our contributions:

From the applied mathematics perspective In this paper we investigate several optimal
fishing problems in spatial ecology. The first class of problem corresponds to a single fisher problem,
while the other two deal with multiple players problems. In the single fisher case, we mostly
investigate the influence of the total fishing capacity on the qualitative features of optimal fishing
strategies, while in the other problems we provide some contribution to the existence of Nash
equilibria. For multiple player games, we mostly consider the case of two players. Our approach
can also be used for analysing games with more players. Our theoretical analysis is illustrated by
several detailed numerical solutions.

From the optimal control perspective Another outlook on the results of this paper is to
notice that we are investigating a non-monotonic bilinear optimal control problem. By this we
mean the following in the case of a single fisher problem: the population of fishes being modelled
by its density θ and a fishing strategy being accounted for by a certain function α, the equation
features a loss term −αθ, while the player tries to optimise a criterion of the form

ffl
αθ. Then it

is clear that overfishing will be detrimental to the fisher, as it is going to be detrimental for the
overall population. In this paper, we exemplify the shift this creates in the qualitative analysis;
for instance, maximisers can saturate certain constraints, or not at all depending on the values of
the parameters of the problem.

For further references and discussion, we refer to section 1.6 of the introduction.
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1.2 The single fisher problem

State equation Following the seminal papers [27, 42], we model our population of fishes accord-
ing to the logistic diffusive equation: we assume that the population lives in a domain Ω ⊂ IRd,
assumed to be bounded and with a C 2 boundary. The population is modelled by a population
density θ and depends on the characteristic dispersal rate µ > 0 of the species, on the resources
available in the domain, which are accounted for by a function K ∈ L∞(Ω), and the fishing strategy
α ∈ L∞(Ω) of the single player. In general, we denote by θK,α,µ the population density. In the
course of this paper, when K,α or µ are fixed, we may drop certain of the subscripts and only use
the notations θα or θK,α for instance. Overall, θα,µ solves the following logistic-diffusive equation:

−µ∆θK,α,µ − θK,α,µ (K(x)− α(x)− θK,α,µ) = 0 in Ω ,
∂θK,α,µ
∂ν = 0 on ∂Ω ,

θK,α,µ > 0 , 6= 0.

(1.4)

We refer to [53, Introduction] and the references therein for more details on the modelling. The
question of existence and uniqueness of solutions of (1.4) can be tedious. It is known [11] that for
fixed α ,K there exists a unique solution to (1.4) if and only if the first eigenvalue of the operator
−µ∆ − (K − α) is negative. Since we work on optimisation problems, it is easier to ensure the
existence and uniqueness of the solution for any control. As the first eigenvalue is bounded from
above [24] by

ffl
Ω

(α−K) we will simply work with controls α satisfying

0 <

 
Ω

α <

 
Ω

K. (1.5)

Under these conditions, classical results from [11, 17] guarantee the existence and uniqueness of a
solution of (1.4).

We introduce a parameter K0 ∈ (0; 1) and always assume that K ∈ K(Ω), where K(Ω) is
defined as

K(Ω) :=

{
K ∈ L∞(Ω) , 0 6 K 6 1 ,

 
Ω

K = K0

}
, (1.6)

where, for any f ∈ L1(Ω) we use the notation

 
Ω

f =
1

Vol(Ω)

ˆ
Ω

f.

Single player functional The functional to optimise in the single player case is the total fishing
output

Jµ : α 7→
 

Ω

αθα,µ,

and the relevant optimisation problem is

sup
α
Jµ(α).

Of course, we need to specify which admissible fishing strategies α we consider.
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Admissible controls Beyond the integral condition (1.5), we enforce a pointwise bound

0 6 α 6 κ,

where κ > 0 is a fixed parameter: a single player has a limited fishing capacity at any given spots.
Second, we need to implement a global, L1 constraint (the player has a globally limited fishing

ability); in order to still satisfy (1.5), we fixe a parameter V0 ∈ (0;K0) and we assume that either
all controls satisfy  

Ω

α 6 V0 (Inequality constraint)

or, on the other hand, that  
Ω

α = V0 (equality constraint).

Overall, we thus define, for these two fixed paramers κ , V0, the two admissible classes of controls

M6(κ, V0) =

{
α ∈ L∞(Ω) , 0 6 α 6 κ a.e.,

 
Ω

α 6 V0

}
(1.7)

and

M=(κ, V0) =

{
α ∈ L∞(Ω) , 0 6 α 6 κ a.e.,

 
Ω

α = V0

}
(1.8)

Working in one or the other of these admissible classes changes the features of the prob-
lem drastically. This is related to the problem of overfishing: as we shall see throughout the
proofs, depending on the value of V0, the functional Jµ may be increasing (in the sense that
α1 6 α2 ⇒ Jµ(α1) 6 Jµ(α2)), in which case optimisers for the problem supm∈M=(κ,v0) Jµ(α) are
also optimisers for the problem supm∈M6(κ,v0) Jµ(α), or loose this monotonicity, in which case the
optimisers for the inequality case are strictly better than optimisers for the equality constraint:
supm∈M=(κ,v0) Jµ(α) < supm∈M6(κ,v0) Jµ(α). This is a first major difference between between the
fishing problem and the problem of optimisation of the total population size, where the monotonic-
ity of the functional is a stepping stone for further qualitative analysis of optimisers, see section
1.6.

The main problem Thus, the first two optimisation problems to be considered here and that
are the main foci of the present contribution are:

sup
α∈M6(κ,V0)

Jµ(α) (Psingle
6,V0

)

and

sup
α∈M=(κ,V0)

Jµ(α) (Psingle
=,V0

)

For these two problems, we can provide a fine analysis in the case of low fishing abilities (V0 � 1)
orin the large diffusivity asymptotic regime µ → ∞. In particular, we will show that, in general
(i.e. for a fixed diffusivity), if V0 � 1, Jµ is increasing onM6(κ, V0) (Theorem I), and also concave
(Theorem III) while, in the large diffusivity case µ → ∞, we can attain an explicit description of
optimal strategies (Proposition 4, Theorem V).
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A ”large fishing ability” model to showcase the complexity of fishing problems To
exemplify, however, the breadth of behaviours such fishing problems can display, we also propose
a deep exploration of another asymptotic case, that of large fishing abilities.

Let us make this more precise. What we mean here is that the fishing strategy is going to be a
small perturbation of the resources distribution K, i.e. that any fishing strategy writes α = K+δm
for a small parameter δ > 0.

This leads us to introduce the auxiliary classes

N6(Ω) :=

{
m ∈ L∞(Ω) , ‖m‖L∞(Ω) 6 1 ,−m1 6

 
Ω

m 6= −m0

}
and

N=(Ω) :=

{
m ∈ L∞(Ω) , ‖m‖L∞(Ω) 6 1 ,

 
Ω

m = −m0

}
where m0 is a fixed volume constraint, m1 > −1 and we define, for any m ∈ N (Ω) and any δ > 0,
the fishing strategy

αδ,m := K + δm.

The parameter δ is destined to be small, so we are essentially, through this reparameterisation,
assuming that fishing strategies are close to natural resources distribution, and essentially lead to
killing all the population off.

Remark 1. For any m ∈ N (Ω), the zones {m < 0} correspond to zones where we are not
exhausting the natural resources modelled by K.

We define, for any δ > 0, the map

Jδ,µ : N (Ω) 3 m 7→
 

Ω

αδ,mθαδm,µ.

The related optimisation problems are

sup
m∈N6(Ω)

Jδ,µ(m) (Qsingle
6,δ )

and

sup
m∈N=(Ω)

Jδ,µ(m) (Qsingle
=,δ )

While these two problems seem extremely related to our original formulations (Psingle
6,V0

)-(Psingle
=,V0

) the

qualitative behaviours of (Qsingle
6,δ )-(Qsingle

=,δ ) are very different. For instance, we show in Theorem

I that when δ � 1 the functional Jδ,µ is not monotonic, and that it even behaves like a convex
function, in the sense that its maximisers are extreme points of the admissible set (see Theorem
IV).

Structure of the statement of the results for single fisher models While it would seem
natural to divide our presentation of the results in two batches, one devoted to (Psingle

=,V0
)-(Psingle

6,V0
)

and another to (Qsingle
=,δ )-(Qsingle

6,δ ), the coherence of the methods of proofs used prompts us to rather
present them in the following order:
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1. Monotonicity properties: in the first two theorems, Theorems I and II, we investigate the

monotonicity of the functionals Jµ and Jδ,µ. In Theorem I we show that (Psingle
6,V0

) and (Psingle
=,V0

)

coincide when V0 � 1. In Theorem II we prove that when δ � 1 the problems (Qsingle
6,δ ) and

(Qsingle
=,δ ) do not coincide. While such results can be obtained in a very straightforward

manner when we consider the case of a constant resources distribution K (see in particular
Remark 2), it is not immediate at all in the case of varying K. The interest of Theorem III is
twofold: first, it exemplifies the qualitative change of behaviour of the functional Jµ when the
volume constraint is perturbed. Second, it is an essential building block to obtain concavity
properties for the functional and, therefore, to derive the existence of Nash equilibria when
we will, in the second part of the paper, study multiple players games.

2. Concavity and convexity properties: In Theorems III-IV, we focus on the problems with

equality constraints (Psingle
=,V0

)-(Qsingle
=,δ ). We first show in Theorem III that, if V0 is small

enough and if Ω is one-dimensional then, regardless of the resources distribution K, Jµ is a
concave functional, and we identify the maximising controls for particular values of V0 or for
particular resources distribution K. This relies on very fine properties of the one-dimensional
logistic diffusive equation previously investigated in [6]. We prove the same result in higher
dimensions, provided K remains close to a constant. We show in particular that if K is
constant, then the maximising controls are constant as well. Then, in Theorem IV we show
that, if δ > 0 is small enough, the functional Jδ,µ behaves, conversely, like a convex function

from the point of view of optimisation in N=(Ω): all solutions of (Qsingle
=,δ ) are extreme points

of the admissible sets and so they write m∗ = κ1E∗ for some suitable subset E∗ of Ω.

3. Precised behaviour in asymptotic regimes: finally, to conclude the theoretical contributions
to single player games, we offer an in-depth analysis of the large diffusivity limit µ→∞ of the
optimisation problem (Psingle

=,V0
). Building on techniques of [58], we give explicit maximisers

in the one-dimensional case; we refer to Theorem V. Similarly, this result will be used to
exhibit Nash equilibria in two-players games.

All these results are gathered in subsection 1.3.
In Section 5, we present and comment several numerical simulations.

Remark on the techniques used Throughout this first part of the paper, especially for The-
orems I-III-IV one of the key ingredient is the second-order technique introduced in [59] to tackle
the problem of optimising the total population size. While this method proved fruitful in a variety
of other situations [54, 60], it is here impossible to apply directly, and it needs to be coupled with
some fine analytical study of the functions at hand. The characterisation of optimisers in the large
diffusivity limit is on the obtained using rearrangement-like arguments and Talenti inequalities.
Specifically, we shall use some results of [45] and of [58], the latter being used solely to derive the
limit model.

Terminology: bang-bang functions We shall often refer in this paper to ”bang-bang” func-
tions. They are simply admissible controls that write

α = κ1E .

Such bang-bang functions are known to be important in the optimal control of reaction-diffusion
equations (see in particular section 1.6 of this introduction), and, geometrically, are extreme points
of the convex set M=(κ, V0).
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1.3 Qualitative properties for single player games: general diffusivities

Monotonicity of the fishing output We begin with the monotonicity of the fishing output
functional and explain how the volume constraint may have an influence on the increasing character
of Jµ. Of course, this is a theoretical, optimal control formulation of the overfishing problem. Before
we state our result, let us explain in the following remark that such a result is very much expected
when working in homogeneous environments (K ≡ 1) where explicit computations allow for an
explicit characterisation of maximisers; this shows that monotonicity is not the general rule.

Remark 2 (A standard example with loss of monotonicity). A simple yet instructive case to
exemplify the loss of monotonicity is given by the case K ≡ K0. In this case, for any strategy
α ∈M6(κ, V0), θα,µ solves

−µ∆θα,µ − θα,µ (K0 − θα,µ) = αθα,µ.

As θα,µ satisfies Neumann boundary conditions, this entails

Jµ(α) =

 
Ω

αθα,µ =

 
Ω

θα,µ(K0 − θα,µ).

Besides, if we assume that κ < 2, so that ‖1−α‖L∞ 6 1, the maximum principle implies θα,µ 6 1
almost everywhere. As the maximiser of ϕ : x 7→ x(K0 − x) on [0;K0] is reached at x = K0

2 it
follows that

Jµ(α) 6 ϕ

(
1

2

)
,

with equality if, and only if, θα,µ ≡ K0

2 . However, θα,µ = K0

2 if and only if α ≡ K0

2 . We thus obtain

the following conclusion: for any V0 > K0

2 , α∗ ≡ K0

2 is the unique maximiser of Jµ on M6(κ, V0).

In particular, if V0 >
K0

2 , the volume constraint is not saturated in (Psingle
6,V0

).

We now state our main theorem:

Theorem I. Let κ > 0 be fixed. There exists ε1 > 0 such that, if V0 ∈ (0; ε1), the map α 7→ Jµ(α)
is monotonic on M6(κ, V0):

α1 6 α2 ⇒ Jµ(α1) 6 Jµ(α2).

As a consequence, any solution α∗ of (Psingle
6,V0

) satisfies

 
Ω

α∗ = V0.

Our second theorem deals with (Qsingle
6,δ )-(Qsingle

=,δ ):

Theorem II. There exists δ1 > 0 such that, for any δ ∈ (0; δ1), the functional Jδ,µ is not increasing

on N6(Ω); furthermore, for any solution α∗ of (Qsingle
6,δ ), there holds

 
Ω

α∗ < V0.

As was explained for example in [59], the monotonicity is intimately linked to pointwise proper-
ties of optimisers. In [59, 54] it is shown that for certain bilinear control problems, the monotonocity
of the functional entails that optimisers are extreme points of the convex set under consideration,
the aforementioned ”bang-bang” functions. Here, we show related results, in that we obtain con-
cavity and convexity-like properties. The first theorem deals with the ”low fishing capacity” limit.
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Theorem III. 1. Assume Ω = (0; 1) i.e. that we are working in the one-dimensional case.
There exists ε2 > 0 such that, for any V0 ∈ (0; ε2), the map Jµ is strictly concave on

M6(κ, V0). If K is constant, and if V0 ∈ (0; ε2), the solution of (Psingle
=,V0

) and of (Psingle
6,V0

) is
α ≡ V0.

2. In any dimension d, there exists ε2 > 0 and ε3 > 0 such that for any V0 ∈ (0; ε2) and for
any K ∈ K(Ω) such that, defining K := K0,

‖K −K‖L1(Ω) 6 ε3

then the map Jµ is strictly concave on M6(κ, V0). If K is constant, and if V0 ∈ (0; ε2), the

solution of (Psingle
=,V0

) and of (Psingle
6,V0

) is α ≡ V0.

Theorem IV. There exists δ2 > 0 such that, for any 0 < δ < δ2, any solution m∗ of (Qsingle
=,δ ) is

a bang-bang function: there exists a subset E∗ ⊂ Ω such that

m∗ = −1E∗ .

As mentioned before we stated the Theorem, the parameters δ1 , δ2 are linked to the mono-
tonicity of the functional and it will be shown through the proof that

δk 6 εk (k = 1, 2).

Remark 3. In Theorems II and IV we have interpreted ”large fishing capacity limit” in an L∞

sense, by requiring that the L∞ distance from K to any fishing strategy be small. Another possibility
would be to require that the L1 distance of K to the admissible controls is small.

Comment on the proofs The proofs of the three theorems above rely on the computation of first
and second-orde Gateaux derivatives of the map Jµ. The first order Gateaux-derivative of Jµ will be

denoted by J̇µ. These computations can be used to determine whether or not certain configurations
can be optimal, by checking whether or not they satisfy first order optimality conditions.

The large diffusivity limit for single player games: precised change of convexity All
the information above can be made much more precise in certain asymptotic limits. In this section,
we analyse in depth the behaviour, as µ→∞, of the optimisation problems (Psingle

6,V0
)-(Psingle

=,V0
). This

interest of this part is two fold: first, it allows to make the change of regime of the functional Jµ,
from concave to convex, much more precise and, second, as the problem is linearised, this allows
to gain a full characterisation of certain optimal configurations; this will be used at length in the
section devoted to the analysis of Nash equilibria in two player games.

It should be noted that this approach is natural in the context of the spatial ecology: as the
intricate nature of the problems at hand makes them hard to solve explicitly, it is hoped that
such large diffusivity limits may provide meaningful simplifications of the problem at hand. For
instance, we refer to [32, 33, 34, 58], where such asymptotic regimes are used to tackle both the
optimisation of the total population size and the study of stability of certain equilibria in Lotka-
Volterra systems.

Recall from [32, 33, 34, 58] that uniformly in α ∈ M6(κ, V0)(Ω) there holds, in the W 1,2(Ω)
sense,

θα,µ =

(
K0 −

 
Ω

α

)
︸ ︷︷ ︸

=:Mα

+
vα
µ

+ O
µ→∞

(
1

µ2

)
where


−∆vα −Mα (K − α−Mα) = 0 in Ω ,
∂vα
∂ν = 0 ,ffl
Ω
vα = 1

M2
α

ffl
Ω
|∇vα|2.

(1.9)
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Also note that as we wish to investigate the monotonicity of the functional with respect to α in
order to analyse whether or not the two formulations (Psingle

6,V0
) and (Psingle

=,V0
) are equivalent, we keepffl

Ω
α and do not replace it with V0.
In particular we can already see the influence of the total fishing capacity on the first order

asymptotic expansion of the functional: as in [58], we obtain, uniformly in α ∈M6(κ, V0)(Ω), the
expansion

Jµ(α) = J0(α) +

(
1

µ

)
where J0 : α 7→

( 
Ω

α

)(
K0 −

 
Ω

α

)
,

and it is natural to invest the two asymptotic problems

sup
α∈M6(κ,V0)

J0(α) (P6,single,µ→∞,0)

and

sup
α∈M=(κ,V0)

J0(α) (P=,single,µ→∞,0)

Of course the particularly simple shape of the limit functional J0 makes it amenable to an easy
analysis and we have the following Proposition:

Proposition 4. 1. If V0 <
K0

2 then

sup
α∈M=(κ,V0)

J0(α) = sup
α∈M6(κ,V0)

J0(α).

In particular the two problems (P6,single,µ→∞,0) and (P=,single,µ→∞,0) coincide.

2. If V0 >
K0

2 then

sup
α∈M=(κ,V0)

J0(α) < sup
α∈M6(κ,V0)

J0(α).

In particular the two problems (P6,single,µ→∞,0) and (P=,single,µ→∞,0) do not coincide.

The content of this proposition is that at the first order the asymptotic expansion of the
functional selects an optimal fishing ability. However, it characterises neither its pointwise nor its
geometric properties. This information is carried by the next order of this asymptotic expansion,
and we will only work with equality constraints. To make this more precise we define the functional

J1 : α 7→
 

Ω

αvα where


−∆vα −Mα (K − α−Mα) = 0 in Ω ,
∂vα
∂ν = 0 ,ffl
Ω
vα = 1

M2
α

ffl
Ω
|∇vα|2.

where we recall that Mα is defined in (1.9) and, similarly to [58], we obtain, uniformly in α ∈
M6(κ, V0),

Jµ(α) = J0(α) +
J1(α)

µ
+ O
µ→∞

(
1

µ2

)
so that the next order optimisation problem is

sup
α∈M=(κ,V0)

J1(α). (P=,single,µ→∞,1)

We have a fairly good understanding of this optimisation problem, as showcased by the following
theorem:

10



Theorem V. We have the following results:

1. Concavity for low fishing abilities: if V0 <
K0

2 , the functional J1 is strictly concave onM=(κ, V0).

2. Convexity for large fishing abilities: if V0 > K0

2 , the functional J1 is strictly convex on
M=(κ, V0). Consequently the solutions of (P=,single,µ→∞,1) are bang-bang functions.

3. Characterisation in one dimension: if Ω = (0; 1), if V0 >
K0

2 , if K is non-increasing and non
constant, the optimal fishing strategy α∗ is equal to

α∗ = κ1[1−`;1] with `κ = V0.

The proof of this theorem relies on a rewriting of the functional J1 and, for the characterisation
of optimisers in the one-dimensional case, we use Talenti inequalities [45].

With the elements that will be used in the proof of Theorem V we also derive the following
result that shows the particular role of the volume constraint V0 = K0

3 . Before we state it, let us
simply recall that a critical point of J1 is simply a fishing strategy α ∈ M=(κ, V0) such that the
Gateaux-derivative of J1 at α in any admissible direction is zero.

Proposition 5. Consider the constant fishing strategy α ≡ V0. Then α is a critical point of J1

on M=(κ, V0) if, and only if, one of the following is satisfied:

Either K is constant or V0 = K0

3 .

In particular, for any K, if V0 = K0

3 , the only solution of (P=,single,µ→∞,1) is α.

1.4 Qualitative analysis of Nash equilibria for two-player games: general
diffusivities

In this section, we present the second facet of the fishing problems we laid out in the introduction,
namely, the problem of existence and equilibria of Nash equilibria for multiple player games. For
the sake of simplicity, we will only work on two-players games.

Set-up and definitions We consider two players; the first player plays a fishing strategy α1

and the second player uses a fishing strategy α2. We assume that the fish population still accesses
resources modelled by the function K : Ω → IR, with K0 =

ffl
Ω
K, and that there exists constant

κi , Vi (i = 1, 2) such that
for i = 1, 2 , αi ∈M=(κi, Vi).

Let us note that here we work with equality constraints. We refer to Remark 7 for additional
comments about the constraints but simply note here that this simplifies our presentation. If we
assume that

V1 + V2 < K0

then we can define θα1,α2,µ as the unique solution of
−µ∆θα1,α2,µ − θα1,α2,µ(K − α1 − α2 − θα1,α2,µ) = 0 in Ω ,
∂θα1,α2,µ

∂ν = 0 on ∂Ω ,

θα1,α2,µ > 0 , θα1,α2,µ 6= 0.

(1.10)

It should be noted that throughout this section we once again changed the subscript defining the
solution θα1,α2,µ in order to emphasise that our optimisation variables are α1 , α2.

11



For the i-th player (i = 1, 2) the fishing output is given by the functional

Ii,µ : (α1, α2) 7→
 

Ω

αiθα1,α2,µ.

Each player wants to maximise its fishing outcome, so that we are typically in a situation where
we want to investigate the existence of Nash equilibria, defined as follows:

Definition 6. A Nash equilibrium for our two-players game is a couple of fishing strategies (α∗1, α
∗
2)

such that 
I1,µ(α∗1, α

∗
2) = max

α1∈M=(κ1,V1)
I1,µ(α1, α

∗
2) ,

I2,µ(α∗1, α
∗
2) = max

α2∈M=(κ2,V2)
I2,µ(α∗1, α2).

Remark 7. [Equality vs. Inequality constraints] Of course, the same type of results that we
obtained in the single player case (Theorem I) could be derived in the case of multiple players
games when considering the influence of an (in)equality constraint in the set of admissible fishing
strategies; as the results would be extremely similar, we do not detail the influence of an inequality
constraint and this is why we work with an equality constraint.

Our main research question here is:

Does there exist a Nash equilibrium for the two-players game described above?

Let us note here that, in general, establishing the existence of Nash equilibria is a delicate matter,
that can usually be achieved using concavity or convexity properties of the functionals at hand
[29].

Our first theorem shows that whenever the fishing abilities of both players are small enough, a
Nash equilibrium exists.

Theorem VI. In the one-dimensional case Ω = (0; 1), the constants κ1 , κ2 , µ being fixed, there
exists δ = δ(κ1, κ2, µ) > 0 such that, if

V1 + V2 6 δ

there exists a Nash equilibrium.
In any dimension d, the constants κ1 , κ2 , µ being fixed, there exists δ1 > 0 , δ2 > 0 such that, if

V1 + V2 6 δ1 , ‖K −K‖L1(Ω) 6 δ2

there exists a Nash equilibrium.

Of course this result is linked to Theorem III above, as, since the seminal paper [64], the
concavity of the cost functionals is known to be of paramount importance to obtain the existence
of equilibria. Nonetheless, the proof is not immediate.

The standard results do not enable us to obtain the existence of a Nash equilibrium when, on
the other hand, V1 + V2 is close to K0, and we can not conclude in the general case. We can,
however, pursuing our investigation of asymptotic regimes, show that, even in this case, in which
the cost functionals can behave, from the point of view of optimal control, as convex functions,
(see Theorem IV above), there exists a Nash equilibrium when the diffusivity µ is large enough.
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1.5 Existence of Nash equilibria when the cost functionals are convex:
asymptotic analysis

Our final result deals with a slightly more complicated case, that of convex functionals. Here,
we provide a result for the asymptotic expansion of the fishing functionals, and in the case where
K ≡ K is constant. This problem corresponds to taking the limit µ→∞. Following the analysis
that was succinctly presented when introducing the problem (P=,single,µ→∞,1) we define the two
limiting functionals (in what follows, M = K0 − V1 − V2)

I1
i :M=(κi, Vi) 3 αi 7→

 
Ω

αivα1,α2
where vα1,α2

solves


−∆vα1,α2 −M(K0 − α1 − α2 −M) = 0 in Ω ,
∂vα1,α2

∂ν = 0 on ∂Ω ,ffl
Ω
vα1,α2 = 1

M2

ffl
Ω
|∇vα1,α2 |2.

An asymptotic Nash equilibrium is then defined as follows:

Definition 8. An asymptotic Nash equilibrium for our two-players game is a couple of fishing
strategies (α∗1, α

∗
2) such that{

I1
1 (α∗1, α

∗
2) = maxα1∈M=(κ1,V1) I

1
1 (α1, α

∗
2) ,

I1
2 (α∗1, α

∗
2) = maxα2∈M=(κ2,V2) I

1
2 (α∗1, α2).

Theorem VII. Assume V1 , V2 >
K0

4 , assume K is constant and let

α∗i = κi1[0;`i] with κi`i = Vi (i = 1, 2).

(α∗1 , α
∗
2) is a Nash equilibrium in the sense of Definition 8.

Regarding ”the price of anarchy” and the uniqueness of Nash equilibria We conclude
with two remarks about Theorem VII. First, regarding the uniqueness of Nash equilibria, we can
conclude that it does not hold in general. Indeed, consider the conclusion of Theorem VII and
then compare it with the following analysis: if we assume that

K0 = 1 , V1 = V2 =
1

3
, κ1 = κ2 = 1

and if we let

α1 = α2 ≡
1

3

then it is readily checked that (α1, α2) is also a Nash equilibrium: indeed, this follows from the
consideration of Remark 2 and the fact that with these definitions we have α1 = K0−α2

2 whence
the conclusion. We are thus left with two different Nash equilibria, the one given by Theorem VII
and the constant one (α1, α2). In particular, we can not expect the uniqueness of Nash equilibria
to hold.

Second, we can use this particular example to illustrate a concept known, in economics, as the
”price of anarchy”. As we sketched briefly in the introduction to our paper, the price of anarchy
quantifies the insufficiency of selfish strategies when compared to cooperative strategies. In other
words, is it true that, in general, the two players would be better off collaborating and then sharing
the common fishing output rather than competing in a selfish manner? Consider once again the
Nash equilibrium (α1, α2) and now assume that, instead of competing against each other, the two
players united their strength, and decided to solve

max
α∈M6( 1

2 ,
2
3 )
J1(α). (1.11)
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In the end they would simply split the total fishing outcome associated with an optimal strategy
α∗. However, from Remark 2, the unique solution of (1.11) is α = 1

2 6= α∗1 + α∗2. Thus,

I1
1 (α1, α2) + I1

2 (α1, α2) < J1(α) :

the total fishing output is worse than if the players had convened a strategy before playing.

Competition and cooperation: a drastic example of the ”tragedy of commons” sit-
uation We can actually prove something stronger when the number of players goes to ∞. If
we consider a game between n players, we can construct a sequence of Nash equilibria when K
is a constant. Assuming that K ≡ 1, we can adapt the arguments above to observe that the
configuration where all players have the same strategy, namely when

∀i ∈ {1, . . . n} , α∗i := α∗ =
1

n+ 1
,

then (α∗i )i=1,...,n is a Nash equilibrium. Defining α := (α∗i )i=1,...,n, the associated steady state is

θα = 1− n

n+ 1
−→

n→+∞
0.

We hence conclude that all µ > 0, there exist a Nash equilibria
−→
α∗ = (α∗1, α

∗
2, ..., α

∗
n) such that:

1

4
= max−→α

ˆ
Ω

(
n∑
i=1

αi

)
θ−→α dx >

ˆ
Ω

(
n∑
i=1

α∗i

)
θ−→α ∗dx −→

n→+∞
0

In particular, for this sequence of Nash equilibrium, the total harvested amount goes to zero as the
number of player goes to ∞: cooperation would have been better than competition. For further
discussion of this concept of ”price of anarchy”, we refer to [38, 68].

1.6 Bibliographical references

As there are several bodies of literature the present work fits in, we split the detailed presentation
of our references accordingly.

Optimisation problem in spatial ecology Over the past two decades, a wide range of efforts
have been devoted to provide a better mathematical understanding of spatially heterogeneous
phenomena. Indeed, after the pioneering works of Fisher, Kolmogorov, Petrovski and Piskunoff
[27, 42], a wide body of literature was produced in an attempt to grasp fine propagation or invasion
phenomena but, more recently, a new line of research has emerged that strongly emphasises the
influence of heterogeneous reaction terms. After the works of Shigesada and Kawasaki, which
provided a first qualitative insight into the influence of the geometry of environments [70] on the
survival of populations, and several results of Cantrell and Cosner [14, 17, 16, 15], optimising
the spatial heterogeneity became a fruitful point of view. In other words: which is the optimal
heterogeneity from the point of population dynamics? Of course, we need to specify which criteria
are considered when using the word ”optimal”, but let us point out that this way of looking at the
question brought forth combinations of PDE or ODE techniques and of optimal control theory.
Let us also, on the topic of optimal control of biological models, point to the monograph [46]. A
typical instance of optimal control problem of the type under study in the present paper is that of
the optimal survival ability. A spectral optimisation problem, it has sparked a wealth of scientific
articles devoted to its understanding and is by now fairly well understood [11, 17, 35, 39, 44, 52, 56].
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Let us point out that, in studying this problem, [11] features what is, to the best of our knowledge,
the first use of rearrangement techniques and isoperimetric inequalities to spatial ecology problems.

More recently, a new question that has drawn a lot of attention from the mathematical com-
munity is that of the optimisation of the total population size. In other words, how should we
spread resources in logistic-diffusive models in order to maximise the total population size? Orig-
inating in the works of Lou [49, 50] this question was then explored in details in a series of works
[36, 37, 47, 48, 51, 61, 58, 59, 63]. Of particular relevance in the context of the total population
size was the bang-bang property : are optimisers for the total population size bang-bang functions?
After several partial results [58, 63] the answer was proved to be yes in [59]. It should be noted
that in the proof of Theorem IV we build on the techniques of [59] to prove a bang-bang property
for optimal fishing strategies.

Optimal fishing problems Of course, all the problems we described in the previous paragraphs
describe, in a way, ”nice” problems, in the following sense: since we are trying to optimise a
criterion with respect to resources, it is expected that adding resources will prove beneficial. One
of the conclusion of [59] is indeed that, for monotonic bilinear functionals (i.e. that increasing the
resources increases the criterion) the bang-bang property holds. However, the case under study in
this paper is quite different since, as we already touched upon, the problem of overfishing makes it
so that the functional we are considering is no longer monotonic: it makes no sense to fish as much
as we can for we may risk killing all the population. In that regard, our paper can be seen as a
first detailed analysis of an optimal control problem for spatially heterogeneous fishing problems.

Of course, several authors have considered many different aspects of optimal fishing problems
before. While it is impossible to list all these contributions here, let us single out [19], where a
survey of the early works (e.g. one-dimensional harvesting models, stochastic harvesting models...)
is presented and [12] where several types of models are considered, including the logistic diffusive
models, but where the diffusion operator would be (if we were to adopt our notations) ∆

( ·
α

)
,

which changes the qualitative behaviour of the optimisation problem dramatically. Notably, it
is not possible to lift their results to the case of non-regular fishing strategies α (that may be
discontinuous for instance).

Nash equilibria in optimal control theory Several recent contributions deal with the ex-
istence and computation of Nash equilibria in optimal control theory. Let us single out two of
these works, namely, [18, 25] . In these works, the functionals one seeks Nash equilibria for are of
tracking-type (in the sense that we seek to minimise the distance to certain objective functions)
and, very importantly, consider linearly controlled PDEs with L2 penalisations of the constraints.
This changes the features of the optimisation problem drastically. In [13] on the other hand, the
question of existence and computation of Nash equilibria in bilinear problems, but for ODE models.
Our paper is, to the best of our knowledge, a first contribution to the qualitative analysis of L∞−L1

constrained bilinear optimal control problems with a cost function that is not of tracking-type.

1.7 Plan of the paper

The proofs of the theorems of the paper are grouped by the tools used in their proof. In section 2
we give the proof of Theorems I, II, III and IV as they all rely strongly on the computation of first
and second-order Gateaux derivatives of the functional. In section 3, the proofs of the asymptotic
behaviours described in Theorems V are presented. Finally, we gatherd in section 4 the proofs of
those results dealing with multiple player games, Theorems VI and VII.
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2 Proofs of Theorems I, II, III and IV

Notational simplifications Throughout this section we investigate the influence of the range of
the parameter V0 on the optimisation problems (Psingle

6,V0
)-(Psingle

=,V0
), and we thus drop the diffusivity

µ from all subscripts. Henceforth, θα denotes the solution of (1.4), and we set

J : α 7→
 

Ω

αθα.

Furthermore, the proofs of the three theorems under scrutiny derive from the computations of the
first and second order Gateaux-derivatives of the functional J . We recall that, for an admissible
fishing strategy α, an admissible perturbation h at α is a function h ∈ L2(Ω) such that there exists

two sequences {hn}n∈IN ∈ L2(Ω)IN, {εn}n∈IN ∈ (IR+\{0})IN
satisfying:

εn →
n→∞

0 , hn →
n→∞

h in L2(Ω) and, for any n ∈ IN , α+ εnhn is admissible.

Whenever
ffl

Ω
α < K0, we can adapt in a straightforward manner the proof of [23, Lemma 4.1]

and prove that the functional J and the map α 7→ θα are twice Gateaux-differentiable. In the first
part of this section we give these Gateaux-derivatives in expanded form, and analyse their specific
features when proving our results.

2.1 Computations of the first and second-order Gateaux-derivatives of
the functional Jµ

We fix an admissible fishing strategy α and an admissible perturbation h at α. At this point, since
we do not specify in which admissible set we work, an admissible perturbation is any h ∈ L2(Ω).
From the computations of [23, Lemma 4.1], the first, respectively second, order Gateaux-derivative
of α 7→ θα at α in the direction is the unique solution θ̇α of the equation{

−µ∆θ̇α − θ̇α (K − α− 2θα) = −hθα in Ω ,
∂θ̇α
∂ν = 0,

(2.1)

respectively the unique solution θ̈α of the equation{
−µ∆θ̈α − θ̈α (K − α− 2θα) = −2hθ̇α − 2θ̇2

α in Ω ,
∂θ̈α
∂ν = 0 on ∂Ω.

(2.2)

Remark 9. Existence and uniqueness of solutions of (2.1)-(2.2) follow from the following crucial
observation [49, Comment after eq. (2.6)]: from (1.4), the first eigenvalue of the operator −µ∆−
(K−α− θα) is zero. From the monotonicity of the eigenvalue, the first eigenvalue of −µ∆− (K−
α − 2θα) is positive. The existence and uniqueness of solutions to (2.1)-(2.2) then follow from a
standard variational argument.

Similarly the first, respectively second, order Gateaux-derivative of the map J at α in the
direction h is given by the expression

J̇(α)[h] =

 
Ω

hθα +

 
Ω

αθ̇α, (2.3)

respectively by

J̈(α)[h, h] = 2

 
Ω

hθ̇α +

 
Ω

αθ̈α. (2.4)
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We need to introduce an adjoint state in order to give equations (2.3)-(2.4) tractable expressions.
We introduce the unique solution pα of{

−µ∆pα − pα(K − α− 2θα) = α in Ω
∂pα
∂ν = 0 on ∂Ω.

(2.5)

The following properties are obtained by adapting the reasoning of [59, Lemma 13], which simply
relies on the aforementioned Remark 9 that the first eigenvalue of −µ∆− (K−α−2θα) is positive:

Lemma 10. There exists a unique solution pα of (2.5). Furthermore, if α > 0 , α 6= 0,

inf
Ω
pα > 0.

Now, if we multiply (2.5) by θ̇α and integrate by parts, and, similarly, multiply (2.1) by pα and
integrate by parts we derive the equality

 
Ω

αθ̇α = µ

 
Ω

〈∇θ̇α ,∇pα〉 −
 

Ω

pαθ̇α (K − α− 2θα)

= −
 

Ω

hpαθα,

so that

J̇(α)[h] =

 
Ω

(1− pα)θαh.

Similarly, we obtain
1

2
J̈(α)[h] =

 
Ω

hθ̇α −
 

Ω

pαhθ̇α −
 

Ω

pαθ̇
2
α.

We have thus proved the following lemma:

Lemma 11. The first and second order Gateaux-derivative of the functional admit the following
expressions:

J̇(α)[h] =

 
Ω

(1− pα)θαh, (2.6)

and
1

2
J̈(α)[h, h] =

 
Ω

(1− pα)hθ̇α −
 

Ω

pαθ̇
2
α. (2.7)

2.2 Computation of the first and second-order Gateaux-derivatives of
Jδ,µ

We can adapt the proofs of the previous section to Jδ,µ. Similar to the notational conventions we
adopted above, we now denote by θK+δm the solution of (1.4) with α = K + δm. We define, for
any m ∈ N (Ω), the unique solution qδ,m of{

−µ∆qδ,m − qδ,m (−δm− 2θK+δm) = K + δm in Ω ,
∂qm
∂ν = 0 on ∂Ω.

(2.8)

Similarly to Lemma 11 we obtain the following expression:
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Lemma 12. The first and second order Gateaux-derivative of the functional admit the following
expressions:

J̇δ,µ(m)[h] = δ

 
Ω

(1− qδ,m)θK+δmh, (2.9)

and
1

2
J̈δ,µ(m)[h, h] = δ

 
Ω

(1− qδ,m)hθ̇K+δm −
 

Ω

qδ,mθ̇
2
m, (2.10)

where θ̇K+δm satisfies{
−µ∆θ̇K+δm − θ̇K+δm (−δm− 2θK+δm) = −δhθK+δm in Ω ,
∂θ̇K+δm

∂ν = 0 on ∂Ω.
(2.11)

2.3 Proof of Theorems I-II: monotonicity of the functionals

Plan of the proofs We recall that monotonicity, for instance for Jµ, means that

∀α1 , α2 ∈M6(κ, V0) , α1 6 α2 a.e. ⇒ Jµ(α1) 6 Jµ(α2).

However, by the mean value theorem, we know that, for any α1 , α2 ∈ M6(κ, V0), there exists
ξ ∈ [0; 1] such that

Jµ(α2)− Jµ(α1) = J̇µ(α1 + ξ(α2 − α1))[α2 − α1] (2.12)

and thus Lemma 11 yields the existence of ξ ∈ [0; 1] such that

Jµ(α2)− Jµ(α1) =

 
Ω

(1− pα1+ξ(α2−α1))θα1+ξ(α2−α1)(α2 − α1). (2.13)

We can thus read the monotonicity of Jµ on (2.13): if α1 6 α2 almost everywhere, and since
θα1+ξ(α2−α1) is positive on Ω for any ξ ∈ [0; 1], obtaining the monotonicity of the functional boils
down to deriving the sign of 1− pα1+ξ(α2−α1). Thus the proof of Theorem I is simply to show that
under certain volume constraints we have pα < 1.

Similarly, using Lemma 12, to show the non-monotonicity of Jδ,µ it suffices to prove that, for
δ > 0 small enough, qδ,m > 1 for any m ∈ N=(Ω). This will imply that the optimal values of the

two problems (Qsingle
6,δ )-(Qsingle

=,δ ) differ.

Proof of Theorem I. Following the general idea explained in the plan of the proof, it suffices to
prove the following lemma:

Proposition 13. The two constants κ, µ being fixed, we have the following property: for any δ > 0,
there exists ε1 = ε1(Ω, κ, µ, δ) > 0 such that, for any V0 ∈ (0; ε1), for any α ∈M6(κ, V0), we have

0 < inf
Ω
pα 6 sup

Ω

pα 6 1− δ.

With this result at hand it is easy to obtain the monotonicity property: fixing δ > 0 and
choosing the ε1 given by Proposition 13, we obtain

∀V0 ∈ (0; ε1) ,∀α ∈M6(κ, V0) , inf
Ω

(Ψα := (1− pα)θα) > δ inf
Ω
θα > 0

so that (2.13) implies the conclusion: with δ = 1
2 , the functional is monotonically increasing if

V0 < ε1 where ε1 is given by Proposition 13.
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This implies that any solution α∗ of (Psingle
6,V0

) satisfies

 
Ω

α∗ = V0

and thus that α∗ is a solution of (Psingle
6,V0

). Indeed, should we have
ffl

Ω
α∗ < V0 we simply take any

positive function h ∈ L∞(Ω) such that α∗ + h ∈M=(κ, V0). By monotonicity of the functional,

Jµ(α∗ + h) > Jµ(α∗),

a contradiction.
It remains to prove Proposition 13.

Proof of Proposition 13. Let us note that, as κ is fixed and as K ∈ L∞(Ω), a classical application
of the maximum principle there holds

∀µ > 0 , ‖θα,µ‖L∞(Ω) 6 ‖K‖L∞(Ω) + ‖α‖L∞(Ω) =: M0. (2.14)

We will prove that
lim

V0→0+
sup

α∈M6(κ,V0)

‖pα‖L∞(Ω) = 0.

To control the L∞ norm of any pα, we need to use the first eigenvalue λ(K − α − 2θα) of the
operator

−µ∆− (K − α− 2θα)

endowed with Neumann boundary conditions. As this operator is symmetric, we know that

λ(K − α− 2θα) = inf
u∈W 1,2(Ω) ,

ffl
Ω
u2=1

(
µ

 
Ω

|∇u|2 −
 

Ω

u2 (K − α− 2θα)

)
. (2.15)

As in [49, Proof of Lemma 2.1] (see also Remark 9 above) we know that for any V0 ∈ (0;K0) and
any α ∈M6(κ, V0) there holds

λ(K − α− 2θα) > 0.

To obtain uniform regularity estimates on pα we need to obtain a uniform lower bound on λ(K −
α− 2θα) as V0 → 0+.

Lemma 14. There exists a0, ε0 > 0 such that

∀V0 ∈ (0; ε0) ,∀α ∈M6(κ, V0) , λ(K − α− 2θα) > a0.

Proof of Lemma 14. We observe that from (2.14) and standard Lp elliptic regularity theory, for any
p ∈ [1; +∞) there exists a constant Mp = Mp(µ,Ω) > 0 such that uniformly in V0 and uniformly
in α ∈M6(κ, V0) there holds

‖θα‖W 2,p(Ω) 6Mp.

Using Sobolev embeddings this implies that for any s ∈ [0; 1) there exists a constant Cs such that
uniformly in V0 and uniformly in α ∈M6(κ, V0) there holds

‖θα‖C 1,s(Ω) 6 Cs. (2.16)

It is expected that as V0 → 0 we should have θα → θ where θ is the solution of
−µ∆θ − θ

(
K − θ

)
= 0 in Ω ,

∂θ
∂ν = 0 on ∂Ω ,

θ > 0 , θ 6= 0.

(2.17)
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Let us show that this convergence is uniform in the following sense:

lim
V0→0+

sup
α∈M6(κ,V0)

‖θα − θ‖C 0(Ω) = 0. (2.18)

Argue by contradiction and assume there exists a sequence {Vk}k∈IN, c1 > 0 and, such that, for
any k ∈ IN, there exists αk ∈M6(κ, Vk) such that

‖θαk − θ‖C 0(Ω) > c1.

From (2.16), we extract from {θαk}k∈IN a C 1 converging subsequence, still labeled {θαk}k∈IN and
its C 1 limit θ∞. From [49, Equation (2.4)] there exists a constant c0 uniform in V0 such that

‖θαk − θ‖L1(Ω) 6 c0‖αk‖
1
3

L1(Ω).

We thus conclude that θ∞ = θ, a contradiction.
From this uniform convergence and the simplicity of the first eigenvalue λ(K − α − 2θα), we

deduce that
lim

V0→0+
inf

α∈M6(κ,V0)
λ(K − α− 2θα) = λ(K − 2θ) > 0 (2.19)

where the last inequality comes from the aforementioned [49, Proof of Lemma 2.1]. The proof of
(2.19) is standard and we postpone it to appendix A.1.

Lemma 14 is proved.

We can go back to the proof of Proposition 13. We argue via a standard bootstrap method, as
follows: using pα as a test function in (2.5) we obtain

µ

 
Ω

|∇pα|2 −
 

Ω

p2
α (K − α− 2θα) 6 Vol(Ω)−1‖α‖L2(Ω)‖pα‖L2(Ω) 6 Vol(Ω)−1

√
κV0‖pα‖L2(Ω).

From the Rayleigh quotient formulation of eigenvalue (2.15) and the lower estimate of Lemma 14
we deduce that

‖pα‖L2(Ω) 6

√
κV0

a0Vol(Ω)
,

which in turn yields a uniform W 1,2(Ω) bound on the family {pα}. Using Sobolev embeddings,
the bootstrap method implies the following uniform bound: there exists ε′0 > 0 such that, for any
p ∈ [1; +∞), for any V0 ∈ (0; ε′0), there exists Mp such that for any α ∈M6(κ, V0), there holds

‖pα‖W 2,p(Ω) 6Mp.

It is then clear that for any sequence {Vk}k∈IN converging to zero and for any {αk}k∈IN ∈
∏
k∈INM6(κ, Vk),

the sequence {pαk}k∈IN converges in C 1(Ω) to the solution p of{
−µ∆p− p(K − 2θ) = 0 in Ω ,
∂p
∂ν = 0 on ∂Ω.

As λ(K − 2θ) > 0, p = 0. Adapting the arguments of the proof of Lemma 14, it is easily shown
that such convergence is uniform and that

lim
V0→0

sup
α∈M6(κ,V0)

‖pα‖C 1(Ω) = 0. (2.20)

The proof of Proposition 13 is finished.
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Thus, as we explained how Proposition 13 implied Theorem I, the proof of Theorem I is com-
plete.

Proof of Theorem II. For large fishing abilities, on the contrary, we will prove that

∀η > 0 ,∃δ1 > 0 ,∀0 < δ < δ1 ,∀m ∈ N6(Ω) , inf
Ω
qδ,m >

1

η
.

To do so, we need to investigate the asymptotic behaviour of qδ,m as δ → 0. Given that qδ,m solves
(2.8), this requires a knowledge of the behaviour of θK+δm as δ → 0. This is the object of the
following proposition:

Proposition 15. Uniformly in m ∈ N (Ω) the following asymptotic expansion holds in C 1(Ω):

θK+δm = δm0 + O
δ→0

(δ2).

Proof of Proposition 15. We set zδ,m := θK+δm

δ . Direct computations show that zδ,m solves
−µδ∆zδ,m − zδ,m (−m− zδ,m) = 0 in Ω ,
∂zδ,m
∂ν = 0 on ∂Ω ,

zδ,m > 0 , zδ,m 6= 0.

(2.21)

Thus the large fishing ability limit corresponds to a large-diffusivity limit for a standard logistic
diffusive equation. We can now apply [58, Appendix A-Convergence of the series]. Let us simply
recall the main steps: first it is proved that, uniformly in m, the asymptotic expansion

zδ,m = m0 + O
µ→∞

(δ) (2.22)

holds in W 1,2(Ω). We then use a standard bootstrap argument, to obtain that (2.22) holds in any
W 2,p(Ω). From the definition of zδ,m we infer that θK+δm admits the expansion

θK+δm = δm0 + O
µ→∞

(
δ2
)

(2.23)

in C 1(Ω). This concludes the proof.

From this proposition we obtain an asymptotic expansion of the adjoint state qδ,m:

Proposition 16. Uniformly in m ∈ N (Ω), the following asymptotic expansion holds in C 1(Ω):

qδ,m =
1

δ
· K0

m0
+ o
δ→0

(
1

δ

)
.

Proof of Proposition 16. From Proposition 15 the function qm,δ solves

− µ∆qm,δ − δqm,δ
(
−m− 2m0 + O

δ→0
(δ)

)
= K + δm. (2.24)

We set zδ,m := δqδ,m. Direct computations show that zδ,m solves−µδ∆zδ,m − zδ,m
(
−m− 2m0 + O

δ→0
(δ)

)
= K + δm in Ω ,

∂zδ,m
∂ν = 0 on ∂Ω.

(2.25)
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We can apply exactly the same reasoning as in [58] to obtain that, in C 1(Ω), we have

zδ,m =
K0

m0
+ o
δ→0

(1) ,

whence the conclusion.

From Proposition 16 we obtain that, for any η > 0 there exists δ1 > 0 such that, for any
0 < δ < δ1, for any m ∈ N (Ω),

1− qδ,m 6 1− K0

2m0δ
6 −1

η
.

However, we may proceed as in the proof of Theorem I: for any m1 6 m2 ,m1 6= m2, Jδ,µ(m2) <
Jδ,µ(m1), so that the functional is no longer monotonic.

2.4 Proofs of Theorems III-IV

Reformulation of the second-order Gateaux-derivatives The proofs of the concavity of
Jµ and the characterisation of maximisers of Jδ,µ as extreme points of the admissible sets rely on
the type of computations carried out in [54, 59, 60] and in particular on a certain reformulation of
the second-order Gateaux-derivatives of the functionals under consideration.

Reformulation of J̈µ We start with J̈µ(α)[h, h], which for notational convenience we write here

J̈(α)[h, h] (in other words we have dropped the subscript µ). Throughout the computations that
follow we work with a fixed α ∈M=(κ, V0) and a fixed admissible perturbation h at α. We recall
that from Lemma 11 we have the expression

1

2
J̈(α)[h, h] =

 
Ω

(1− pα)hθ̇α −
 

Ω

pαθ̇
2
α.

Now observe that we may rewrite

h :=
µ∆θ̇α + θ̇α (K − α− 2θα)

θα
,

whence, defining

ψα :=
1− pα
θα

,

we derive  
Ω

(1− pα)hθ̇α =

 
Ω

ψα

(
µθ̇α∆θ̇α + θ̇2

α(K − α− 2θα)
)

=

 
Ω

ψα

(
µ

2
∆
(
θ̇2
α

)
− µ

∣∣∣∇θ̇α∣∣∣2 + θ̇2
α(K − α− 2θα)

)
= −µ

 
Ω

ψα

∣∣∣∇θ̇α∣∣∣2
+

 
Ω

θ̇2
α

(µ
2

∆ψα + ψα(K − α− 2θα)
)
.

We have thus established the following lemma:

Lemma 17. For any α ∈M=(κ, V0), for any admissible perturbation h at α, there holds

1

2
J̈(α)[h, h] = −µ

 
Ω

1− pα
θα

|∇θ̇α|2 +

 
Ω

θ̇2
α

(
µ

2
∆

(
1− pα
θα

)
+

1− pα
θα

(K − α− 2θα)− pα
)
.
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Reformulation of Jδ,µ We can carry the same type of computations for the second-order
Gateaux derivative of Jδ,µ: let m ∈ N (Ω) be fixed and h be an admissible perturbation at h.
We know from Lemma 12 that

1

2
J̈δ,µ(m)[h, h] = δ

 
Ω

(1− qδ,m)hθ̇K+δm −
 

Ω

qδ,mθ̇
2
K+δm.

However, we may rewrite

h =
µ∆θ̇K+δm + θ̇K+δm (−δm− 2θK+δm)

δθK+δm

and thus obtain, defining

ϕδ,m :=
qδ,m − 1

θK+δm

δ

 
Ω

(1− qδ,m)hθ̇K+δm = µ

 
Ω

ϕδ,m

∣∣∣∇θ̇K+δm

∣∣∣2 +

 
Ω

θ̇2
K+δm

(µ
2

∆ϕδ,m − (−δm− 2θK+δm)
)
.

Hence the following lemma holds:

Lemma 18. For any m ∈ N=(Ω), for any admissible perturbation h at m, there holds

1

2
J̈δ,µ(m)[h, h] = µ

 
Ω

qδ,m − 1

θK+δm

∣∣∣∇θ̇K+δm

∣∣∣2
+

 
Ω

θ̇2
K+δm

(
µ

2
∆

(
1− qδ,m
θK+δm

)
− (−δm− 2θK+δm)

)
−
 

Ω

qδ,mθ̇
2
K+δm.

Proofs of Theorems III-IV We now get to the core of the proofs.

Proof of Theorem III. Theorem III contains two statements, one dealing with the one-dimensional
case, the other one dealing with the multi-dimensional case. Both rely on the same estimate of the
expression of the second order gateaux derivative give by Lemma 17.

From the proof Lemma 14 we lift estimate (2.20), which ascertains that

lim
V0→0

sup
α∈M6(κ,V0)

‖pα‖C 1(Ω) = 0.

Let us introduce, for any α ∈M6(κ, V0), the potential

Wα :=

(
µ

2
∆

(
1− pα
θα

)
+

1− pα
θα

(K − α− 2θα)− pα
)

as well as, for any α ∈M6(κ, V0), with V0 small enough to ensure that for any α ∈M6(κ, V0) we
have 1− pα > 1

2 , the operator

Lα := −µ∇ ·
(

1− pα
θα

∇
)
−Wα.

Let ξ(α) be the first eigenvalue of Lα. ξ(α) is defined, by its Rayleigh quotient, as

ξ(α) := inf
u∈W 1,2(Ω) ,

ffl
Ω
u2=1

(
µ

 
Ω

1− pα
θα

|∇u|2 −
 

Ω

Wαu
2.

)
. (2.26)
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From Lemma 17, there holds, for any α ∈M6(κ, V0) and any admissible perturbation h at α,

1

2
J̈(α)[h, h] 6 −ξ(α)

 
Ω

θ̇2
α. (2.27)

The goal is now to get the asymptotic behaviour of ξ(α) as V0 → 0 and, more precisely, to obtain
that

lim
V0→0+

inf
α∈M6(κ,V0)

ξ(α) > 0, (2.28)

which would suffice to prove the concavity of the functional. To do so, a first step is to understand
the behaviour of the potential Wα as V0 → 0 .

As

µ∆

(
1− pα
θα

)
= −µ∆pα

θα
+ 2µ

〈∇pα,∇θα〉
θ2
α

− (1− pα)µ
∆θα
θ2
α

+ 2(1− pα)
|∇θα|2

θ3
α

and as
−µ∆pα = α+ pα(K − α− 2θα)

we deduce that, if we define the limit potential

W0 :=
µ

2
∆

(
1

θ

)
+

1

θ
(K − 2θ),

then it follows from (2.18)-(2.20) that

∀p ∈ [1,+∞) , lim
V0→0

sup
α∈M6(κ,V0)

‖Wα −W‖Lp = 0. (2.29)

Let ξ be the first eigenvalue of the operator

L := −µ∇ ·
(

1

θ

)
−W.

By a standard method that we detail in Appendix A.2 this implies

lim
V0→0

sup
α∈M6(κ,V0)

∣∣ξ(α)− ξ
∣∣ = 0. (2.30)

In particular, the proof of the Theorem is complete, provided we can prove that

ξ > 0.

First analysis of ξ Let us first observe that we can expand W as follows:

W =
µ

2
∆

(
1

θ

)
+

1

θ
(K − 2θ)

=
µ

2

(
−∆θ

θ
2 + 2

∣∣∇θ∣∣2
θ3

)
+

1

θ
(K − 2θ)

=
1

2θ
(K − θ) since θ solves (2.17)

+ µ

∣∣∇θ∣∣2
θ

3 +
1

θ
(K − 2θ)

24



=
3

2
· K − θ

θ
+ µ

∣∣∇θ∣∣2
θ

3 − 1

=
3

2
· K − θ

θ
+

3

4
µ

∣∣∇θ∣∣2
θ

3

+

(
µ

4
·
∣∣∇θ∣∣2
θ

3 − 1

)
.

Our last rewriting may seem mysterious at first, but it is justified by the following fact: if we define

Z :=
3

2
· K − θ

θ
+

3

4
µ

∣∣∇θ∣∣2
θ

3 (2.31)

we can actually prove that the first eigenvalue A of the operator

F := −µ∇ ·
(

1

θ
∇
)
− Z (2.32)

is equal to 0. We will then use a monotonicity principle for eigenvalues. We start with the fact we
just claimed:

Lemma 19. Z being defined by (2.31) and F being defined by (2.32), the first eigenvalue A of F
is zero, and its associated eigenfunction is ϕ = θ

3
2 .

Proof. Let ϕ := θ
3
2 . We have

∇ϕ =
3

2
·
√
θ∇θ

and so
∇ϕ
θ

=
3

2
· ∇θ√

θ
.

Thus

−µ∇ ·
(
∇ϕ
θ

)
=

3

2
· −µ∆θ√

θ
− µ3

4

∣∣∇θ∣∣2
√
θ

=
3

2
· θ(K − θ)√

θ
− µ3

4

∣∣∇θ∣∣2
√
θ

=
3

2
·
√
θ(K − θ)− µ3

4

∣∣∇θ∣∣2
√
θ

= ϕ

(
3

2
· K − θ

θ
− µ3

4
·
∣∣∇θ∣∣2
θ

3

)
.

Thus ϕ is an eigenfunction of F associated with the eigenvalue 0. As ϕ = θ
3
2 > 0 and as the

first eigenvalue of F is the only eigenvalue whose associated eigenfunctions have constant signs, we
deduce that ϕ is a principal eigenfunction and that the first eigenvalue of F is 0.

Now, if we can ensure that W 6 Z ,W 6= Z then by virtue of the monotonicity of the first
eigenvalue [24, Lemma 2.1] we have

ξ > 0
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so that (2.28). Thus the proof would be complete.
We now notice that

W − Z =

(
µ

4
·
∣∣∇θ∣∣2
θ

3 − 1

)
.

Proving that ξ > 0 boils down to investigating whether or not

(
µ
4 ·
|∇θ|2
θ
3 − 1

)
< 0. We do that in

the one-dimensional case and, in the higher dimensional case, for resources distributions that are
close to a constant.

1. In the one-dimensional case: here we use an estimate of Bai, He and Li [6, Estimate (2.2)],
namely, that, in the one-dimensional case, provided K is bounded (which is the case here by
assumption) there holds

µ

2

(
θ
′
(x)
)2

6
θ(x)3

3
.

Remark 20. It should be noted that in [6, Estimate (2.2)] this estimate is proved when θ is
monotonic, and that they then integrate this identity on such an interval to obtain an integral
estimate. Then, they present, in [6, Steps 2 and 3, proof of Theorem 2.2], a way to glue these
integral estimates. The very same strategy works to prove that [6, Estimate (2.2)] is valid on
the entire interval.

In particular,

1− µ

4
·

(
θ
′
(x)
)2

θ
3 > 1− 1

6
=

5

6

so that the proof is concluded.

2. In the higher-dimensional case: in that second case, since we work with variable K, let us

add the subscript K to the notation θ and denote by θK the solution of (2.17). In this case
the only thing that should be noted is that, when K is constant, θK ≡

1
Vol(Ω)K0 = K. In

that case,
W − Z = −1 < 0.

However, a simple adaptation of the arguments of (2.18) proves that for any δ′ > 0 there
exists a constant ε3 > 0 such that, for any K ∈ K(Ω), if ‖K −K‖L1(Ω) 6 ε3 then

‖θK − θK‖C 1(Ω) 6 δ′.

If δ′ is small enough, this implies that for any K ∈ K(Ω) such that ‖K −K‖L1(Ω) 6 ε3 we
have

−1 +
1

4

|∇θK |2

θ
3

K

< −1

2
.

The conclusion follow in exactly the same way.

Proof of Theorem IV. For the proof of Theorem IV we follow the same type of strategy as the
one used for the proof of Theorem III. We start with the expression of the second-order Gateaux
derivative given in Lemma 18: for any m ∈ N=(Ω) and any admissible perturbation h at m we
have
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1

2
J̈δ,µ(m)[h, h] = µ

 
Ω

qδ,m − 1

θK+δm

∣∣∣∇θ̇K+δm

∣∣∣2
+

 
Ω

θ̇2
K+δm

(
µ

2
∆

(
1− qδ,m
θK+δm

)
− (−δm− 2θK+δm)

)
−
 

Ω

qδ,mθ̇
2
K+δm.

Recall that, from Proposition 16, there exists δ2 > 0 small enough such that, for any δ 6 δ2 and
for any m ∈ N=(Ω) there holds

qδ,m − 1 >
supm∈N=(Ω) ‖θK+δm‖L∞(Ω)

2
.

For δ 6 δ2 we can thus bound the second-order derivative as

1

2
J̈δ,µ(m)[h, h] >

µ

2

 
Ω

∣∣∣∇θ̇K+δm

∣∣∣2 +

 
Ω

Yδ,mθ̇
2
K+δm,

where the potential Yδ,m is defined as

Yδ,m :=

(
µ

2
∆

(
qδ,m − δ
θK+δm

)
− (−δm− 2θK+δm)

)
− qδ,m.

However, expanding Yδ,m as was done in the proof of Theorem III for ∆
(

1−pα
θα

)
we obtain the

existence of a constant β = β(δ) such that

∀m ∈ N=(Ω) , ‖Ym‖L∞(Ω) 6 β.

Defining γ := µ
2 we thus have, for the second-order Gateaux-derivative, the lower estimate

1

2
J̈δ,µ(m)[h, h] > γ

 
Ω

∣∣∣∇θ̇K+δm

∣∣∣2 − β  
Ω

θ̇2
K+δm.

However, we are now exactly in the proper situation to mimic the proof of [59, Theorem 1]: argue by

contradiction and assume that there exists a non-bang-bang solution m∗ of (Qsingle
=,δ ). In particular

the set ω∗ := {0 < m∗ < 1} has a positive measure. Let M > 0 be arbitrarily large. Following
[59, Proof of Theorem 1, Eq. (2.20) and below] there exists an admissible perturbation hM at m∗

supported in ω∗ such that  
Ω

∣∣∣∇θ̇K+δm∗

∣∣∣2 > M

 
Ω

θ̇2
K+δm∗ .

Taking M := β
γ + 1 we obtain the required contradiction: for the perturbation h β

γ
there holds

1

2
J̈µ,δ(m

∗)
[
h β
γ
, h β

γ

]
> γ

 
Ω

θ̇2
K+δm∗ > 0,

in contradiction with the optimality of m∗.

3 Proofs of Theorem V

3.1 Proof of Proposition 4

Before we prove Theorem V we prove Proposition 4.
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Proof of Proposition 4. We recall that

J0 : α 7→
( 

Ω

α

)(
K0 −

 
Ω

α

)
.

Clearly, J0 is twice Gateaux-differentiable at every α and, for any α ∈M6(κ, V0) and any admis-
sible perturbation h at α there holds

J̇0(α)[h, h] =

( 
Ω

h

)(
K0 − 2

 
Ω

α

)
.

In particular, if
ffl

Ω
α 6 V0 <

K0

2 the functional J0 is increasing onM6(κ, V0), so that any solution
α∗ of (P6,single,µ→∞,0) satisfies

ffl
Ω
α∗ = V0. Thus, α∗ is also a solution of (P=,single,µ→∞,0).

If, on the contrary, we assume that V0 >
K0

2 , consider a solution α∗ of (P6,single,µ→∞,0). Let
us prove that we necessarily have

ffl
Ω
α∗ < V0. If, by contradiction, we had

 
Ω

α∗ = V0

then, for any non-positive, non-zero perturbation h, we have

J̇0(α∗)[h] =

( 
Ω

h

)(
K0 − 2

 
Ω

α∗
)
> 0,

in contradiction with the optimality of α∗. In particular,
ffl

Ω
α∗ < V0 and so the two problem

(P=,single,µ→∞,0) and (P6,single,µ→∞,0) do not coincide.

3.2 Proof of Theorem V

Proof of Theorem V. Reformulation of J1: To prove Theorem V, we need a tractable rewriting
of the function J1. Let us recall that we defined the constant

Mα := K0 −
 

Ω

α.

As we are working with an equality constraint we may drop the subscript α and simply define

M0 := K0 − V0.

The functional J1 is defined as

J1(α) =

 
Ω

αvα where


−∆vα −M0(K − α−M0) = 0 in Ω ,
∂vα
∂ν = 0 on ∂Ω ,ffl
Ω
vα = 1

M2
0

ffl
Ω
|∇vα|2.

Let us introduce, for any α ∈M6(κ, V0), the solution v̂α of
−∆v̂α −M0 (K − α−M0) = 0 in Ω,
∂v̂α
∂ν = 0 on ∂Ω ,ffl
Ω
v̂α = 0.

(3.1)
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Clearly we have

vα = v̂α +
1

M2
0

 
Ω

|∇v̂α|2,

so that

J1(α) =

 
Ω

αvα

=

 
Ω

αv̂α

+
1

M2
0

 
Ω

|∇v̂α|2
 

Ω

α

=

 
Ω

(α+M0 −K)v̂α

−
 

Ω

(M0 −K)v̂α

+
V0

M2
0

 
Ω

|∇v̂α|2

= − 1

M0

 
Ω

|∇v̂α|2

+

 
Ω

Kv̂α

(
as

 
Ω

v̂α = 0

)
+

V0

M2
0

 
Ω

|∇v̂α|2

=

(
2V0 −K0

M2
0

) 
Ω

|∇v̂α|2 +

 
Ω

Kv̂α.

Analysis of the second order derivative of J1: But now observe that, if we define

j1 : α 7→
(

2V0 −K0

M2
0

) 
Ω

|∇v̂α|2 , j2 : α 7→
 

Ω

Kv̂α,

then j2 is linear in α as the map α 7→ v̂α is linear. As

J1 = j1 + j2

the second order derivative of J1 is determined by the second-order derivative of j1. However, it
is straightforward to see, mimicking the computations of [58, Proof of Theorem 1, Step 1], that,
for any α ∈M=(κ, V0) and any admissible perturbation h at α, we have

j̈1(α)[h, h] =

(
2V0 −K0

M2
0

) 
Ω

∣∣∣∇ ˙̂vα

∣∣∣2 where


−∆ ˙̂vα +M0h = 0 in Ω ,
∂ ˙̂vα
∂ν = 0 on ∂Ω ,ffl
Ω

˙̂vα = 0.

In particular, if 2V0 > K0 the functional is (strictly) convex. Thus, any solution of (P=,single,µ→∞,1)
is an extreme point of M=(κ, V0) that is, any solution is a bang-bang function. Conversely, if
2V0 < K0, the functional is (strictly) concave. This ends the proof of the two first-points of the
theorem.

Now let us move to the characterisation of optimisers in the convex regime (point 3 of the
theorem). Assume Ω = (0; 1), assume that 2V0 > K0 and that K is a non-increasing, non constant
function. To give an explicit description of the maximiser α we need to use the notion of non-
increasing rearrangement. Let us recall the following definition:
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Definition 21. For any non-negative function f ∈ L1(0; 1) there exists a unique non-increasing,
non-negative function f# ∈ L∞(0; 1) such that

∀t > 0 ,Vol ({f > t}) = Vol({f# > t}).

Similarly, there exists a unique non-decreasing, non-negative function f# ∈ L∞(0; 1) such that

∀t > 0 ,Vol ({f > t}) = Vol({f# > t}).

Two inequalities are of paramount importance when dealing with rearrangements:

1. The celebrated Pólya-Szegö inequality: it states that, if f ∈ W 1,2(0; 1), then f# ∈ W 1,2(Ω)
and, furthermore, that we have  1

0

∣∣∣(f#
)′∣∣∣2 6

 1

0

∣∣f ′2∣∣ . (3.2)

2. The Hardy-Littlewood inequality: it states that, if f , g ∈ L1(Ω) are bounded functions then 1

0

f#g
# 6

 1

0

fg 6
 1

0

f#g#. (3.3)

While rearrangements are central in the calculus of variations (we refer for instance to [5, 7, 11,
40, 41, 67]) and has wide ranging applications, we focus here on Talenti inequalities. Originating
in the seminal [72], in the case of the Schwarz rearrangement for Dirichlet boundary conditions,
these inequalities aim at comparing the solution u of a Poisson equation of the form −∆u = f with
Dirichlet boundary conditions with the solution v of a symmetrised equation. Among the many
results related to possible extensions and to the qualitative analysis of these inequalities to other
operators [1, 3, 7, 55, 62, 69] let us focus on the results of [45]. To use them, we need to recall the
rearrangement order on L1(0; 1): for any two non-negative functions f, g ∈ L1(0; 1), we say that f
dominates g in the sense of rearrangements and we write

f ≺ g

if, and only if,

∀r ∈ [0;R] ,

 r

0

f# 6
 r

0

g#.

Our goal is to show that minor adaptation of [45, Chapter 5] yields the following result: defining,

for any f ∈ L1(Ω) such that
ffl 1

0
f = 0, the solution uf of
−(uf )′′ = f in (0; 1) ,

u′f (0) = u′f (1) = 0 ,ffl 1

0
uf = 0.

(3.4)

we claim that, for any g such that f ≺ g, there holds

uf ≺ ug# . (3.5)

Before we prove (3.5), let us investigate why this yields the required result.

Lemma 22. If estimate (3.5) holds for any non-negative f ∈ L1(Ω), if K = K# is not constant
and if V0 >

K0

2 then the unique solution of (P=,single,µ→∞,1) is given by

α∗ = κ1[1−`;1]

where κ` = 1.

Proof of Lemma 22. The proof of this Lemma rests upon a rewriting of J1 in terms of natural
energy functional associated with v̂α.
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Rewriting of J1 in terms of an energy functional We start from the fact that for any α we
have

J1(α) =
2V0 −K0

M2
0

 1

0

|v̂′α|2 +

 1

0

Kv̂α

where v̂α satisfies (3.1) To alleviate notations, define

C0 := 2
2V0 −K0

M2
0

> 0,

so that

∀α , J1(α) = C0

 1

0

|v̂′α|2 +

 1

0

Kv̂α.

However, (3.1) admits a natural variational formulation: introduce the space

X :=

{
u ∈W 1,2(0; 1) ,

 1

0

u = 0

}
and define the energy functional

Eα : X 3 u 7→ 1

2

 1

0

|u′|2 −M0

 1

0

(K − α−M0)u.

Then v̂α is the unique solution of
min
u∈X
Eα(u).

Now observe that from the weak formulation of (3.1) we have 1

0

|v̂′α|2 = M0

 1

0

(K − α−M0)v̂α = −Eα(v̂α) +
1

2

 1

0

|v̂′α|2 (3.6)

so that in the end  1

0

|v̂′α|2 = −2Eα(v̂α).

This allows us to rewrite J1 as

J1(α) = −2C0Eα(v̂α) +

 1

0

Kv̂α. (3.7)

We will prove that rearranging the coefficients of the equation increases each term appearing
in the right-hand-side of (3.7).

Rearranging α increases −Eα(v̂α) Let us start with the energy functional. From the Pólya-
Szegö inequality (3.2) we know that  1

0

|v̂′α|2 >
 1

0

∣∣∣(v̂#
α

)′∣∣∣2 .
Furthermore, from equimeasurability of the rearrangement, we have 1

0

M0v̂α =

 1

0

M0(v̂#
α ).

Finally, from the Hardy-Littlewood inequality (3.3) there holds 1

0

Kv̂α 6
 1

0

K#v̂#
α =

 1

0

Kv̂#
α and

 1

0

α#v̂
#
α 6

 1

0

αv̂α.

This gives
Eα#

(
v̂α#

)
6 Eα#

(
v̂#
α

)
6 Eα(v̂α).
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Rearranging increases
ffl 1

0
Kv̂α Let us now observe the effect of rearrangement on the equation

satisfied by v̂α. Assume that the Talenti inequality (3.5) holds. Then we know (taking f = g in
(3.5)) that

v̂α ≺ z

where z solves 
−z′′ = M0 (K − α−m0)

#
in (0; 1) ,

z′(0) = z′(1) = 0 ,ffl 1

0
z = 0.

In general it is not true that (K − α)# = K# − α#. However, we always have the inequality

(K − α)# ≺ K# − α# = K − α#.

See, for instance, [2, Proposition 3]. Thus, applying (3.5) with f = M0(K − α −M0) and g =
M0(K# − α# −M0) yields

z ≺ v̂α#
,

whence
v̂α ≺ v̂α#

.

From the Hardy-Littlewood inequality (3.3) and the definition of the order relation ≺ this gives

 1

0

Kv̂α 6
 1

0

K#v̂α#
=

 1

0

Kv̂α#
.

Conclusion In conclusion, we have established that

J1(α) = −2C0Eα(v̂α) +

 1

0

Kv̂α 6 −2C0Eα#
(v̂α#

) +

 1

0

Kv̂α#
= J1(α#),

whence the conclusion. To guarantee uniqueness, it suffices to check that equality holds in the
Pólya-Szegö inequality if and only if v̂α = v̂#

α or v̂α = (v̂α)#. This, however, follows from [26].
We then conclude that either α = α# or α = α#. However, as K = K# is not constant, the only
possibility to also achieve equality in the Hardy-Littlewood inequality is to have α = α#.

It remains to prove the Talenti inequality (3.5). As we said, the proof can be quickly derived
from the considerations of Langford in [45]. For the sake of completeness, we sketch the details of
the proof of [45] here.

Proof of the Talenti inequality (3.5). We may extend f by parity to an even function (still denoted
f in the following) on (−1; 1). Similarly, since uf satisfies Neumann boundary conditions at 0, it
may be extended by parity to (−1; 1). Thus extended, the function uf satisfies

−(uf )′′ = f in (−1, 1) ,

u′f (−1) = u′f (1) = 0 ,ffl 1

−1
uf = 0.

(3.8)

Furthermore, by parity of f , we have

 1

−1

ξf(ξ)dξ = 0.
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We will establish a comparison inequality on this new problem. To this end, let us introduce the
fundamental solution of the Neumann Laplacian on (−1, 1). It is the function K defined by

G(x) :=
1

2
x2 − |x|+ 1

3
.

We extend it to IR by 2-periodicity. Consequently (see [45, Proposition 5.2]), we have an explicit
formula for uf :

uf = G ? f : x 7→
 1

−1

K(x− y)f(y)dy.

Furthermore, G is, on (0, 1), a decreasing function, and so it is equal to its decreasing rearrange-
ment. Now, by the Riesz convolution inequality [4, Theorem 1]), for any E ⊂ (−1, 1) of volume
2r < 2,

 
E

uf =

 1

−1

1E (G ? f) 6
 1

−1

1(−r,r) (K ? f∗) 6
 1

−1

1(−r;r)(G ? g#) =

 r

−r
ug# ,

which gives the required result. However, ug# which is, a priori, only defined on (−1, 1), is
necessarily symmetric with respect to 0, as g# is. Thus, its restriction to (0, 1) is the solution of
the Neumann problem with datum g#. This concludes the proof.

We note that the computations we carried out in the course of proving this theorem also provides
an efficient way to reach Proposition 5.

Proof of Proposition 5. We use the optimality conditions for the problem (P=,single,µ→∞,1). Note
that α is an interior point of M=(κ, V0), so that α is a critical point if, and only if, for any
admissible perturbation h at α,

J̇1(α)[h] = 0.

Adapting the proof of Lemma 11 we obtain the following expression for the first order Gateaux-
Derivative of J1 at any α in any admissible (at α) direction h:

J̇1(α)[h] = 2

(
2V0 −K0

M2
0

)
︸ ︷︷ ︸

=:C1

 
Ω

〈∇v̂α ,∇ ˙̂vα〉+

 
Ω

K ˙̂vα with


−∆ ˙̂vα +M0h = 0 in Ω ,
∂ ˙̂vα
∂ν = 0 on ∂Ω ,ffl
Ω ˙̂vα = 0.

Introduce the adjoint state q as the solution of
−∆q = K −K0 in Ω ,
∂q
∂ν = 0 on ∂Ω,ffl
Ω
q = 0.

(3.9)

This allows to rewrite J̇1(α)[h] as

J̇1(α)[h] = C1

 
Ω

〈∇v̂α,∇ ˙̂vα〉+

 
Ω

K ˙̂vα

= C1

 
Ω

v̂αh−M0

 
Ω

qh.

33



Thus, if α is a critical point of J1, we must have

C1v̂α −M0q = µ

where µ is a real constant. Taking the Laplacian on both sides of this equality, this implies that

C1M0(K − α−M0) = K −K0.

However,

C1M0(K − α−M0) = K −K0 ⇔ K − α−M0 =
K −K0

C1M0

⇔ (K −K0)

(
1− 1

C1M0

)
= 0.

We develop

1− 1

C1M0
= 1− M0

2K0 − 4α
=

2K0 − 4α−K0 + α

2K0 − 4α
=

K0 − 3α

2K0 − 4α
.

and we thus derive the conclusion: for α to be a critical point, we must either have K constant, or

K0 − 3V0 = 0.

4 Proofs of Theorems VI and VII

Proof of Theorem VI. The proofs of Theorems VI follow in an almost straightforward manner from
the previous considerations on single player games.

Indeed, observe the following fact: from Theorem III, µ > 0 being fixed, in the one-dimensional
case, there exists δ1 , δ2 > 0 such that

V1 < δ1 , V2 < δ2 ⇒ ∀α2 ∈M=(κ2, V2) , I1,µ(·, α2) is concave in α1,

and
V1 < δ1 , V2 < δ2 ⇒ ∀α1 ∈M=(κ1, V1) , I2,µ(α1, ·) is concave in α2.

Indeed, it suffices, for the concavity of I1,µ, to apply Theorem III with K − α2 as a resources
distribution, and similarly for the concavity of I2,µ.

Similarly, in any dimension d, we obtain δ1 , δ2 > 0 such that, if

V1 + V2 6 δ1 , ‖K −K‖L1(Ω) 6 δ2

then the maps I1,µ(·, α2) and I2,µ(α1, ·) are concave in their respective variables.
So what matters about the assumptions of smallness of V1, V2 (and ‖K −K‖L1(Ω)) is that the

functionals for which we are seeking a Nash equilibrium are concave. The rest of the proof does
not depend in any way on the dimension.

This concavity property is the natural one in the context of existence of Nash equilibria. Indeed,
let us recall [28, 64]: if ∆i ⊂ IRd (i = 1, 2) is a convex, compact set, and if Li = ∆1 ×∆2 → IR is
a concave, continuous function (i = 1, 2) then the game

find x∗i ∈ ∆i (i = 1, 2) such that

{
L1(x∗1, x

∗
2) = maxx1∈∆1 L1(x1, x

∗
2) ,

L2(x∗1, x
∗
2) = maxx2∈∆2 L2(x∗1, x2)

has a Nash equilibrium (x∗1, x
∗
2).

To apply this result to the situation under investigation in the present paper, we need to
approximate our infinite dimensional problem by a finite dimensional one.
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Reduction to the finite-dimensional setting Let us explain how this reduction is carried
out: consider, a fixed integer N being fixed, a measurable partition of Ω as

Ω = tn(N)
k=0 ωk,N (4.1)

where, for any k ∈ {0, . . . , n(N)} we have

Vol(ωk,N ) 6 2−N .

We consider the auxiliary admissible sets

MN
= (κi, Vi) :=


N∑
k=0

ak1ωk,N , 0 6 ak 6 κi ,

n(N)∑
k=0

akVol(ωk,N ) = Vi

 (i = 1, 2),

and we define ∆i :=MN
= (κi, Vi) (i = 1, 2).

Of course, for any α2 ∈ ∆2, the map I1,µ(·, α2) is concave on ∆1 and, similarly, for any α1 ∈ ∆1,
the map I2,µ(α1, ·) is concave on ∆2. The continuity of Ii,µ (i = 1, 2) on ∆1×∆2 is obvious. Thus,
by the existence theorem for pure Nash equilibria, we conclude that there exists a Nash equilibrium
(α∗1,N , α

∗
2,N ) for the problem

find α∗i ∈ ∆i (i = 1, 2) such that

{
I1,µ(α∗1, α

∗
2) = maxα1∈∆1 I1,µ(α1, α

∗
2) ,

I2,µ(α∗1, α
∗
2) = maxα2∈∆2 I2,µ(α∗1, α2).

Conclusion of the proof We fix, for any N ∈ IN, a Nash equilibrium (α∗1,N , α
∗
2,N ). Up to a

(non-relabelled) subsequence, there exists a couple (α∗1, α
∗
2) ∈M=(κ1, V1)×M=(κ2, V2) such that

α∗i,N ⇀
N→∞

α∗i (i = 1, 2)

where the convergence holds weakly in L∞-*.
However, this weak convergence implies that, weakly in W 2,2(Ω) (in particular, strongly in

L2(Ω)), there holds
θα∗1,N ,α∗2,N ,µ →

N→∞
θα∗1 ,α∗2 .

Let us check that (α∗1, α
∗
2) is a Nash equilibrium for our initial problem.

To this end, let α1 ∈M=(κ1, V1) and let us prove that

I1,µ(α∗1, α
∗
2) > I1,µ(α1, α

∗
2).

By (4.1), there exists a sequence {α1,N}N∈IN such that, for any N ∈ IN, α1,N ∈ MN
= (κ1, V1) and

such that, strongly in L1(Ω),
α1,N →

N→∞
α1.

By definition of α∗1,N we have, for any N ∈ IN,

I1,µ(α∗1,N , α
∗
2,N ) > I1,µ(α1,N , α

∗
2,N ).

Passing to the limit as N →∞ we obtain

I1,µ(α∗1, α
∗
2) > I1,µ(α1, α

∗
2).

As the symmetric property for I2 (i.e that α∗2 is a maximiser of I2,µ(α∗1, ·) over M=(κ2, V2)) is
proved in the very same fashion we omit it here. The conclusion follows: (α∗1, α

∗
2) is indeed a Nash

equilibrium.
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Proof of Theorem VII. The proof of this theorem follows from Theorem V. Indeed, observe that,
if V1 , V2 > K0

4 , then we have

V1 >
K0 − V2

2
, V2 >

K0 − V1

2
.

Consequently, for any α2 ∈M=(κ2, V2), it follows from Theorem V that, for any α2 ∈M=(κ2, V2)
fixed, the map

α1 7→ I1
1 (α1, α2)

is strictly convex on M=(κ1, V1). Similarly, for any fixed α1 ∈M=(κ1, V1), the map

α2 7→ I2
1 (α1, α2)

is strictly convex on M=(κ2, V2).
Now let us take α∗1 , α

∗
2 as defined in the statement of the theorem. We apply Theorem V:

taking as a resources distribution K = K0−α2, which is a non-constant, non-decreasing function,
we deduce (from the convexity of the functional) that any solution of

max
M=(κ1,V1)

I1
1 (α1, α

∗
2)

is a bang-bang function and (from Theorem V) that the solution is a non-increasing function.
Thus, the solution is exactly α∗1.

Similarly, α∗2 is the solution of
max

M=(κ2,V2)
I1
2 (α∗1, α2).

Thus, (α∗1, α
∗
2) is indeed a Nash equilibrium in the sense of Definition 8.

5 Numerical simulations and comments

5.1 Simulations of the optimal harvesting problem

In this section we consider a random1 positive continuous function K : [0, 1]2 7→ R represented

in Figure 1 and we consider the optimal harvesting problem (Psingle
6,V0

). Figure 2 exemplifies the
richness of different qualitative behaviours this simple problem can exhibit under modifications of
the constraints. More specifically we notice the following facts:

1. The switch function θ(1− p), can be constant and hence the optimal controls are not neces-
sarily bang-bang. This is a case already emphasised in the particular case in which K(x) = 1.

2. For certain parameters, the switch function does not have any flat region and it is uniformly
positive. In this case, we have a bang-bang strategies due to the well known bathtub principle:
the optimal policy is a characteristic function κ1ω, where ω is the level set of the switch
function with volume V0

κ .

3. The switch function can combine both aspects, it can have flat region and a nonflat one. This
is the case of the third column in Figure 2, where a qualitative mixture of the phenomenology
described in the previous two points is observed. In this case, one observes that the flat region
is at the maximum of the switch function. This is the reason why the optimal strategy does
not saturate the upper bound α 6 κ and shows a non-bang-bang structure. In addition, as
in the previous case, one can observe that the support of α is not the whole square [0, 1]2.

1In the sense that we pick random Fourier coefficients
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Figure 1: Capacity K(x) used for the simulations shown in Figure 2.

This can be seen also with the same philosophy of the bathtub principle, observing that the
optimal strategies have to be supported in a subset of a level set of the switch function.
Indeed, if the integral constraint V0 satisfied that V0/κ = |{x ∈ R2 : θ(x)(1 − p(x)) =
maxx θ(x)(1− p(x))}| we would nonetheless observe a bang-bang strategy. However, for this
simulation, the above property is not satisfied and one has the V0/κ is smaller than the
volume of the level set corresponding to the maximum of the switch function. Hence, what
one observes is supp(α) ⊂ {x ∈ R2 : θ(x)(1− p(x)) = maxx θ(x)(1− p(x))}.

5.2 Simulations of the Nash equilibria

In this section, we provide several numerical simulations that illustrate some of the phenomena
described in the article. Moreover, it allows us to formulate open problems that may lead to further
research on the topic. For all the simulations we have employed a fixed-point algorithm to find
Nash equilibria. The algorithm used is the following

Algorithm 1. .

1. Initialization: Take a pair of strategies, α
(0)
1 , α

(0)
2 ∈M6(κ, V0).

2. Recursion: For every k ∈ N, solve sequentially the optimization problems

max
α

(k)
2 ∈M6(κ,V0)

ˆ
Ω

α
(k)
2 θdx restricted to

{
−µ∆θ = θ(K(x)− θ)− α(k−1)

1 (x)θ − α(k)
2 (x)θ,

+ Boundary conditions.

and then

max
α

(k)
1 ∈M6(κ,V0)

ˆ
Ω

α
(k)
1 θdx restricted to

{
−µ∆θ = θ(K(x)− θ)− α(k)

1 (x)θ − α(k−1)
2 (x)θ,

+ Boundary conditions.

If the algorithm (1) converges, i.e. if there holds

α
(k)
1 → α∗1 and α

(k)
2 → α∗2

then the pair (α∗1, α
∗
2) is a Nash equilibrium by definition. We do not have a proof of convergence

of the above algorithm. The proof itself would imply the existence of Nash equilibria (but not the
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Figure 2: In this figure, several optimal policies α (first row) are depicted along with the cor-
responding switch functions (second row). All the simulations have been done using the same
capacity K = K(x) of Figure 1 and same diffusivity µ = 1 although with different control limi-
tations. In the first and second column the integral constraint is V0 = 0.3, but κ = 7 in the first
column while κ = 0.1 in the second column. In the third column, V0 = 0.05 and κ = 7.

other way around). In the case of potential games, Algorithm 1 always converges. However, it can
be seen, using a contradiction argument, that our game is not a potential game.

We will employ this algorithm numerically to try to discover if a Nash equilibrium exists and we

will use the stopping condition ‖α(k+1)
i − α(k)

i ‖L2 6 tol for i = 1, 2. Since the algorithm above is
forced to stop given a tolerance, one cannot guarantee that the convergence is at a Nash equilibria,
but rather at an ε-Nash equilibria.

Definition 23 (ε-Nash equilibria). Fix ε > 0. A pair of strategies (α1, α2) ∈ M6(κ, V0)2 is an
ε-Nash equilibria if

∀α ∈M6(κ, V0) I1(α1, α2) > I1(α, α2)− ε, ∀α ∈M6(κ, V0) I2(α1, α2) > I2(α1, α)− ε

Note that if ε = 0 one has the definition of a Nash equilibria. Furthermore, it is important
to observe that an ε-Nash equilibria (with ε > 0) does not need to be close to a Nash equilibria.
Moreover, it is worth noting that an ε-Nash equilibria can exist without a Nash equilibria existing.
If it converges, Algorithm 1 converges to an ε-Nash equilibria (see Proposition 24 in the Appendix).

5.2.1 Symmetric bounds for both players

In this subsection we perform simulations and discuss the case in which both players have the same
fishing capacity, i.e. the game is symmetric. After looking at Figures 3 and 4, one should observe
five things:
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Figure 3: The blue line is the state θα1,α2
. The grey area indicates the are the subgraphs of the

strategy of the players (both players play the same strategy). Both players have the same capacity
and K(x) = 1.

Figure 4: In this figure, several simulations following the fixed point Algorithm 1 have been
performed. In all the simulations, both players play the same strategy, and hence, only one
strategy is depicted. K(x) = 1 was choosen for all simulations.
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1. All simulations have converged to an ε-Nash equilibria in which the strategies of both players
are the same. Therefore, they suggest that the search of such Nash equilibria can be phrased
as finding fixed points for the map Λ : L∞(Ω) −→ L∞(Ω) defined as

Λ(K) = 1− α∗K

where by α∗K is an element of the minimizers of the single player game. Of course, for such

map to be well defined, we would need to ensure uniqueness for (Psingle
6,V0

).

2. When the integral bound V0 is small, the Nash equilibria are not exhibiting a bang-bang
structure and instead are constants (for K = 1, Figure 3 left column). This is in the line
with the concavity properties observed in Theorems III and V in this paper.

3. When V0 is big, the algorithm converges, for both the one and two dimensional problems
to a Nash equilibrium that is bang-bang. We have observed that, in the asymptotic regime
there are two Nash equilibria for V0 = 1

3 , (V0, V0) and (1(0,V0),1(0,V0)) (as a consequence
of Theorem VII). For every µ, (V0, V0) is a Nash equilibria for the non-linear problem. An
interesting question is to determine whether or not bang-bang symmetric Nash equilibria
exist for general diffusivities.

4. Simulations in Figure 4, also point that in the two dimensional case, there is no uniqueness.
For the same diffusivity, and for the same integral bound, two different ε-Nash equilibria were
found (left and middle columns of Figure 4).

5. An apparent fragmentation phenomena as observed in the simulations. The TV semi-norm
of the strategies increases as µ → 0+. This is a phenomenon observed in the maximisation
of the total population size [36, 59, 61]. However, this phenomenon is quite surprising with
respect to the previous studies since, in this problem, we are dealing with Nash-equilibria for
a game whose pay-offs are different from maximizing the total population.

5.2.2 Non-symmetric bounds

In this subsection we introduce some asymmetry in the problem by considering different capacities
for the players Figures 5 and 6. We remark the following

1. As observed in the previous case, when the integral bound is low, the observed ε-Nash
equilibria consists of a pair of constants (left column in Figure 5). As before, this is a
manifestation of Theorem III and Theorem VI.

2. In contrast with the symmetric case, we no longer observe a full bang-bang strategy. Both in
the one dimensional case in Figure 5 and in the two dimensional one in Figure 6, we observe
that the player with higher capacity adopts a bang-bang strategy while the player with less
capacity is not showing this feature.

3. Figure 5 also shows that for high integral bound, the players do not necessarly share the
supports of their strategies. In contrast, the simulation done in the two dimensional case,
Figure 6 is not showing this particularity. There, it is observed that the player with less
capacity fishes in the same area than the player with higher capacity but at a ”lesser”
intensity in some areas.

4. Note that all the comments made for (Psingle
6,V0

) in the previous subsection regarding Fig-
ure 2 apply in the context of Nash equilibria for understanding a posteriori its geometrical
properties.

40



0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: The blue line represents the state θα1,α2 . The strategy of the first (and second) player,
with higher (lower) capacity, has been depicted as a blue (orange) subgraph. The second player
has a lower integral bound than the first player. In all these simulations, K ≡ 1.

5. Furthermore, we also observe an apparent fragmentation of the Nash equilibria shown for
high capacity.

6 Open problems

Concavity for low fishing abilities in higher dimensions One of the main drawbacks of
Theorem III is the fact that it holds only in one-dimension or, in higher dimensions, if the resources
distribution K is close to a constant in the L1 norm. As was seen during the proof, the main
possibility to derive a result is so far to establish that

1− µ

4
· |∇θ|

2

θ
3 > 0 (6.1)

for any K ∈ K(Ω), θ being the solution of (2.17). In the on-dimensional case this was obtained
through an estimate of [6]. In the higher-dimensional setting, however, it is quite likely that there
is some serious difficulty in obtaining such an estimate for the following reason: in [37], it is proved
that, if we simply assume that K > 0 ,K 6= 0, the quantity supµ>0 ,K ,K 6=0 ,K>0

ffl
Ω
θ/

ffl
Ω
K is

infinite. Should an estimate of the form (6.1), such a result could not be true (as one could then
apply the technique of [6] and obtain supµ,K ,K 6=0 ,K>0

ffl
Ω
θ/

ffl
Ω
K 6 4, an obvious contradiction. Of

course, in constructing a sequence such that the biomass to resources ratio diverges, the authors of
[37] blow the L∞ bound up, but the fact that such phenomena occur in higher dimensions indicates
the potentially very intricate nature of the problem.
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Figure 6: At the left the strategy of the first player, at the right the strategy of the second player.
The second player has a lower integral bound than the first player. K(x) = 1.

The question of fragmentation for Nash equilibria We have also observed a clear frag-
mentation phenomenon of Nash equilibria in the low diffusivity limits. Building on [36, 61], is it
possible to prove a theorem of the form

lim
µ→0+

inf
(α∗1 ,α

∗
2) Nash equilibria

min (‖α∗1‖BV , ‖α∗2‖BV ) =∞?

At this stage, it seems thoroughly unclear how one could approach that question, as this would
require a very fine knowledge of the set of all Nash equilibria of the problem. We plan on tackling
this question in future works.

Optimal Game Regulation Problem In this article we have studied several regimes for which
Nash equilibria exist. Furthermore, we also illustrated how Nash equilibria lead to an under-
performance of resources, in the sense that there are Nash equilibria for which the sum of the
pay-offs of the players is strictly lower than what is optimal to fish. This also has been illustrated
in the numerical simulations. Behind this lines, there is a relevant problem to be addressed. What
is the optimal regulation so that we avoid overfishing as much as possible?

In Figure 7 the total fish harvested is depicted with respect to the volume constraint. One can
observe that, for the Nash equilibria found, there is an optimal volume constraint for maximising
the total amount harvested. This allows us to propose an optimal regulation problem for the
harvesting problem. Let us first define the set of all Nash equilibria given a volume constraint V0

N (V0) := {(α∗1, α∗2) ∈M6(1, V0) such that (α∗1, α
∗
2) is a Nash equilibria} .

Now, the optimal game regulation problem for the harvesting game is the maximisation of the worst
Nash equilibria with respect to V0, mathematically

max
V0

min
(α1,α2)∈N (V0)

ˆ
Ω

(α1(x) + α2(x))θα1,α2
(x)dx

where θ follows (1.2). To address this problem, it is necessary to characterise all Nash equilibria
given a volume constraint V0. In Figure 7, we only used the Nash equilibria found with Algorithm
1, but we do not know if there are other Nash equilibria. It is worth noting that, in the case of
Figure 7 (K ≡ 1), it would be sufficient to prove that the unique Nash equilibria for V0 = 0.25 is
α1(x) = V0, α2(x) = V0.
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Figure 7: In the vertical axis, the sum of the total fish harvested for both players at the Nash
equilibria found, in the horizontal axis the volume constraint for both players. K(x) = 1.
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A Proof of technical results

A.1 Proof of (2.19)

Proof of (2.19). We argue by contradiction. Thus there exists η > 0, a sequence {Vk}k∈IN con-
verging to 0, and, for any k ∈ IN, there exists αk ∈M6(κ, Vk) such that∣∣λ(K − αk − 2θαk)− λ(K − 2θ)

∣∣ > η.

For the sake of simplicity, define

λk := λ(K − αk − 2θαk).

47



For any k ∈ IN, define ϕk as the principal eigenfunction of −µ∆ − (K − αk − 2θαk). Up to
renormalisation we may thus assume that ϕk satisfies

−µ∆ϕk = (K − αk − 2θαk)ϕk + λkϕk in Ω ,
∂ϕk
∂ν = 0 on ∂Ω ,

ϕk > 0 in Ω ,
´

Ω
ϕ2
k = 1.

(A.1)

Let Vk = K − αk − 2θαk . By the maximum principle there exists M0 such that

∀k ∈ IN , ‖Vk‖L∞(Ω) 6M0

whence we derive that there exists M1 ∈ IR such that

sup
k∈IN
|λk| 6M1.

In particular, by the weak formulation of (A.1) there exists M2 ∈ IR such that

sup
k∈IN
‖ϕk‖W 1,2(Ω) 6M2.

Let λ∞ be a closure point of {λk}k∈IN and ϕ∞ be a (weak W 1,2, strong L2) closure point of
{ϕk}k∈IN. As

Vk
L2(Ω)−→
k→∞

K − 2θ.

Passing to the limit in the weak formulation of (A.1), as well as in the normalisation conditions,
we obtain, on ϕ∞, the equation

−µ∆ = (K − 2θ)ϕ∞ + λ∞ϕ∞ in Ω ,
∂ϕ∞
∂ν = 0 on ∂Ω ,

ϕ∞ > 0 in Ω ,
´

Ω
ϕ2
∞ = 1.

It thus appears that ϕ∞ is a constant-sign eigenfunction of the operator −µ∆− (K − 2θ). As the
first eigenfunction of an operator is the only one having constant sign we deduce that ϕ∞ is a first
eigenfunction of −µ∆− (K − 2θ), so that λ∞ = λ(K − 2θ). As λ∞ = limk→∞ λ(K − αk − 2θαk),
this is a contradiction.

A.2 Proof of (2.30)

Proof of (2.30). We argue by contradiction and assume that (2.30) does not hold. In particular
there exists η > 0, a sequence {V0,k}k∈IN converging to zero and, for any k ∈ IN, αk ∈M6(κ, V0,k)
such that

∀k ∈ IN ,
∣∣ξ(αk)− ξ

∣∣ > η > 0.

As Wα is uniformly bounded in L∞(Ω) for V0 small enough from (2.18)-(2.20), the sequence
{ξ(αk)}k∈IN is uniformly bounded, say by a constant M0 > 0:

∀k ∈ IN , |ξ(αk)| 6M0

and thus, up to extracting a subsequence, it converges to some ξ∗.
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In turn this implies that, if we define, for any k ∈ IN, the normalised eigenfunction ϕk as the
solution of 

−µ∇ ·
(
|∇ϕk|
θαk

)
−Wαkϕk = ξ(αk)ϕk in Ω ,

ϕk > 0 ,
ffl

Ω
ϕ2
k = 1 ,

∂ϕk
∂ν = 0 on ∂Ω,

the estimate (2.18) and the fact that infΩ θ > 0 yield the existence of a constant M1 such that

∀k ∈ IN , ‖ϕk‖W 1,2(Ω) 6M1.

We can thus extract a converging (weakly in W 1,2(Ω), strongly in L2(Ω)) subsequence of {ϕk}k∈IN,
and, without relabelling we assume that the entire sequence thus converges to a ϕ∗ ∈ W 1,2(Ω).
Passing to the limit in the normalisation conditions provides us with

ϕ∗ > 0 in Ω ,

 
Ω

(ϕ∗)2 = 1.

Since Wαk →
k→∞

W strongly (in particular, weakly) in L2(Ω) we finally obtain, passing to the limit

in the eigenequation, that ϕ∗ solves
−µ∇ ·

(
∇ϕ∗

θ

)
−Wϕ∗ = ξ∗ϕ∗ in Ω ,

∂ϕ∗

∂ν = 0 on ∂Ω ,

ϕ∗ > 0 ,
ffl

Ω
(ϕ∗)2 = 1.

In particular, ϕ∗ is a positive eigenfunction of L. As an eigenfunction of L has a constant sign if,
and only if, it corresponds to the first eigenvalue, we deduce that ξ∗ = ξ, a contradiction.

A.3 Proof of convergence to an ε-Nash equilibria

Proposition 24. Algorithm 1 with tol= ε > 0, in case of convergence it converges to an ε1/3-Nash
equilibria.

Proof. Assume that one has set the tolerance of the algorithm up to ε > 0 and that the algorithm
has converged. Then one has that

I1(αk+1
1 , αk2)−I1(αk1 , α

k
2) =

ˆ
Ω

αk+1
1 θαk+1

1 ,αk2
dx−

ˆ
Ω

αk1θαk1 ,αk2dx

=

ˆ
Ω

αk+1
1 θαk+1

1 ,αk2
dx−

ˆ
Ω

αk+1
1 θαk1 ,αk2dx+

ˆ
Ω

αk+1
1 θαk1 ,αk2dx−

ˆ
Ω

αk1θαk1 ,αk2dx

=

ˆ
Ω

αk+1
(
θαk+1

1 ,αk2
− θαk1 ,αk2

)
dx+

ˆ
Ω

θαk1 ,αk2 ε(x)dx

where ε(x) is a function in L1 such that ‖ε(x)‖L1 6 ε. Then, by adapting the estimate obtained
in [49, Equation 2.4] one has the follow estimate

∀(α, α′) ∈M6(κ, V0)2 ‖θα′,αk2 − θα,αk2‖L1 6 C‖α− α′‖1/3L1

where C is independent of µ and α. This allows us to state

I1(αk+1
1 , αk2)− I1(αk1 , α

k
2) 6 Cε1/3

The same argument applies for the second player and with that the proposition is proved.
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