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COMPATIBILITY STRESSES IN DEFORMED BICRYSTALS

Compatibility stresses have been calculated in the model of a bicrystal composed of two semi-infinite crystals. The elastic anisotropy of the component crystals is fully taken into account. Various particular cases chosen for the cubic bicrystals with the (100) and (110) rotation axes commonly used in experiments are discussed in detail. The effects of elastic and plastic deformation have also been.compared. The model provides compatibility stresses as functions of grain boundary geometrical parameters and of the loading axis orientation.

INTRODUCTION

Grain boundaries affect mechanical properties of polycrystalline materials in several ways which can be described on different levels starting <om the macroscopic level of continuum mechanics up to the microscopic level of atomistic physics. Due to the crystalline elastic anisotropy and the anisotropy of plastic deformation of indi� vidual grains, the requirement of strain compatibilities at the grain boundaries leads to additional stresses which must be considered together with the applied stress. This macroscopic effect of grain boundaries will be discussed in detail for a model bicrystal in the present paper.

Macroscopic compatibility effects have been discussed in a large number of papers (see e.g. [1][2][3][4][5][6][7]), usually in connection with the activation of additional slip systems in the vicinity of a grain boundary. The secondary slip was observed even in bicrystals with the identical orientation of the primary slip plane in both component crystals [3,5]. The secondary slip was localized in a narrow region with the grain boundary in its centre and was observed even in places without any primary slip. The occurrence of the secondary slip was explained by the effect of compatibility stresses. The activated slip system was that one for which the total resolved shear stress (composed of the applied and compatibility stresses) was maximum. The calculation of compatibility stresses for an infinite bicrystal formed by two crystals <Êlling the half-spaces separated by the planar boundary was carried out in [ 6 -9 ]. The crystals were considered elastically isotropic and therefore, only the effect of homogeneous plastic deformation different in two grains was analyzed. The incompatibility of plastic deformation at the boundary is accommodated by elastic strains in the case of small differences in plastic strains. The additional stresses were calculated using Kroner's theory of continuous distribution of dislocations. The tensor of surface dislocation density was given by differences of plastic strains.

It was shown that the additiop.al stresses are constant in the two grains and change the sign at the boundary.

In this paper we will introduce a physically simple model for the calculation of additional stresses induced by both crystal elastic anisotropy and plastic aniso tropy of deformation. The bicrystal is considered as two half-spaces corresponding to crystals with different crystallographic orientations. Elastic anisotropy due to the crystal symmetry is fully respected. The model allows to analyse the dependence of the additional compatibility stresses on various geometrical parameters which determine the type of grain boundary (the orientation of rotation axis, the misorien tation angle and the orientation of boundary normal) and the direction of loading .

•, . , axis of tensile or compressive deformation. As far as we know, only particular case$, i.e. bicrystals with special orientations, have been studied in literature and the pro.bforn of additional compatibility stresses has not yet been systematically in \i estigated in the frame of anisotropic theory of elasticity.

GENERAL FORMULAS

Finite bicrystal

i Let us consider a bicrystal composed of two elastically anisotropic parts A and B which are welded together on plane x2 = 0 (fig. la). The bicrystal is loaded at the surface with local normal v by external stress vector where E ;i = }; i i are constants. Such loading would lead to constant stresses };ii in any elastically homogeneous body, anisotropic or isotropic. These constant stresses };ii will be called applied stresses.

However, additional stresses 'C;i (the so called compatibility stresses) will appear in a bicrystal with a welded boundary. The total stresses aii in the bicrystal can be imagined as a sum of the applied and compatibility stresses (la) <1;j = I:ij + 'Cij.

The stresses rr i i must fulfi l the boundary conditions on the bi crystal surface

(lb)

and the conditions at the interface x 2 = 0, (le)

A B

(f i2 = (]' i2 • At the welded interface, other three conditions hold for the total strains e i i (which will be in general case a sum of the elastic and plastic strains)

(ld)

The relations (1a, lb, le, ld) must be . vall d in a ' fi il ite b�crystal under exte � nal surface forces Fi. However, the solution of the equations of th e anisotropic theory of elasticity for this problem is complicated and can be practically found using numerical methods. The distribution of stresses ai i (i.e. also of compatibility stresses ,7: ;J is non-homogeneous and depends on the form of the bi crystal. The compatibility stresses -,ć ii reach high values in the vicinity of the interface x2 = 0 and might approach infi nity at the edge of the interface, i.e. at the line of intersection of the interface with the surface (see discussion in section 4 and papers [6,7,9,10]).

The situation near the interface and far from the external surface can be modelled in a simplified way in an infinite medium. having under the same boundary conditions Fi = v;L:;i the same constant stresses a t and a Pi as the infi nite bicrys tal.

Infinite bicrys tal

An infi nite bicrystal can be imagined as the limiting case of two welded plates of the same thickness hand with dimensions l in the x1 and x3 directions, for l � Cç (fig. lb). Besides the elastic deformation, also plastic deformation ef i will be consi dered, which will be supposed homogeneous in parts A and B, i.e. etP and e�J are given constants.

Then the total deformation ei i can be written as and can be called "induced" elastic deformations. They will appear even in the case when no plastic deformation takes place. We can consider an independent homogene ous plastic deformation which may occur on several slip systems (enumerated by k)

characterized by the vector of the slip direction, m ;, and the normal to the slip plane, n;, and the magnitude of the shear deformation, y,

(s) e � !' = -, ""'(m� k n� k + m Ak n� k ) '} 'Ak IJ 2 -,Ó I ) • j I ' k e�J = t l:( m � k n � k + m � k n � k ) Y Bk.
k If the difference between the deformations of the A and B grains is small, the linear theory of elasticity can be used to determine the additional internal stresses -rt, i-�i •

In the bicrystal the interface conditions for total strains e ii (ld) and total stresses u i i (le) must, of course, be fulfilled. The boundary con d itions (lb) must be, however, adapted for the case of an infinite body.

The solution for the infinite body can be directly written as the compatibility stresses it and T �i must be constant. This is well accepted for the case of a layered 

T�2 = '! � 2 = Q Tt1+T�1=0, T13+T�3=0, Tt3+T�3=0.

For finite l � h, these constant stresses give a good approximation of stresses in the middle part of the layered body, i.e. near the x2 axis, while at the surfaces x1 = x3 = <Ľl the boundary condition (lb) must be fulfilled and a redistribution of stresses near the surface follows.

Note that in an infinite layered body the exact solution (6) leads to a formal violation of the boundary conditions (1 b) at the infinity for x 1 --+ oo and x3 --+ oo.

This is, however, an acceptable violation currently used in an infinite layered body where the boundary condition must be fulfilled for total forces (in our case for the average values of at and u�i' i.e. for E;J The case of bicrystal (fig. lb) is more complicated as the homogeneous plastic deformation in part A and B may also lead to elastic bending of thin plates. Never-theless, if we take the infinite body as a limit l -,M oo and also h -t oo, i.e. the bi crystal is composed of two half spaces A and B, there will be again constant compati bility stresses tt and -r�i which must fulfil conditions ( 6). The violation of the boundary conditions (lb) is again acceptable within the model of an infinite body and has been used e.g. in [6, 7, 9] for isotropic half spaces.

Let us note that for the uniqueness of the solution, the ratio of the thickness h A and ha of plates A and B, respectively, is important. We have assumed hA = h B = h and from the conditions of equilibrium the equations ( 6) follow. If hA =!= hB, then again -r f 2 = -r�2 = 0, however

hA-rt1 + hB'r�l = Q, hA 'r�3 + h B'r�3 = Q, hA -.t3 + hB'r�3 = Q •
The stresses -rii resulting from condition (6) will be taken as an approximation of compatibility stresses in the middle part of the interface in a finite bi crystal (where the assumption hA = h B seems reasonable), i.e. near the point

x1 = x2 = x3 = 0 in fig. la.

Compatibility stresses

The compatibility stresses in an infi nite bicrystal with l -t oo and hA = h B = = h -,Noo can be easily calculated from equations (la), (ld), ( 2), (3), ( 4), (5), (6).

It follows from Hooke's law ( 4) that for constant -r�1, -r�1 also the induced elastic strain components et, et are constant. For the differences Ae i i = et -et we have from (4) and (2)

From these 6 equations three equations for Ae11, Ae33 and Lle13 can be used for calculation of non-zero components of -rt, -r�i • Using eq. ( 6) and (ld) we have LJ e i i = e i i + e ij -e ij -e i i 1or lJ = , , Ae ij = -(stkl + s t k 1 ) .. �I for ij = 11, 33, 13 .

In the matrix notation we can write for the compatibility stresses where s0 are sums of elastic compliances in the usual two-index notation, st = = st + st. The indexing of the additional stress -r i i is expressed by the function sgn x2 (x2 < 0 in the grain A and x2 > 0 in the grain B). Note that the induced elastic strains e12, e22, e32 are generally non-zero and can be calculated from Hooke's law ( 4) using the known compatibility stresses -ri i •

Let us assume the special case when the bicrystal is uniaxially loaded at infinity by a constant tensile or compressive stress I. Generally the loading axis does not lie in the grain boundary plane, makes an angle a with the x3 axis and the projection of the stress axis to the x1x2 plane makes ail angle.p with the x1 axis (see <Ëg. la).

For the stress I: acting along the loading axis, the stress tensor, I:ii' in our coordinate system will be (8) 1: 11 = I: sin 2 a cos 2 f3, 1:12 = I: sin 2 a sin P cos P, <Ţ 22 = I: sin 2 a sin 2 P, 1:33 = I: cos 2 a, I: 13 = I: sin a cos a cos p , 1:23 = I: sin a cos a sin P .

PARTICULAR CASES

Elastically isotropic media

When the two parts of a bicrystal are elastically isotropic and made of the same material, the difference between the elastic strains is equal to zero since the elastic deformation is the same in the two grains. The additional stresses may arise as a result of incompatible plastic def o rmation or when the bicrystal is made of isotropic materials characterized by di<Éerent elastic constants. The elastic compliances, si i ' for an isotropic continuum can be expressed by the Young modulus, E, and the Poisson ratio, v, in the following way

s11 = s33 = 1/E , s13 = -v/E, Sis = S 3 5 = 0' S55 = 2(1 + v)/E.

Plastic deformation of elastically isotropic bicrystals

Let us consider the case when the two grains of the bicrystal possess the same elastic constants, however, are differently plastically deformed, i.e. the plastic strains determined by equation ( 5) are different in the crystals A and B. It can happen when the bicrystal is made for example of tungsten, which is almost elastically isotropic, when the crystallographic orientations of the stress axis are different in the two grains, the Schmid factors have different magnitudes and hence the slip is activated on different slip systems or in particular, only in one grain while the other grain is not plastically deformed. According to equation ( 7) the additional stresses can be written as

( 9 ) T11 = -sgn x2(L1e1;'1 + v L1e�3) µ/(1 -v), T33 = -sgn x2(v L1e 1;'1 + A e �3) µ/(1 -v), T13 = -sgn x2 L1eL µ/2,
where L1e¥i is the difference between the plastic strains in grains B and A and µ is the shear modulus which is equal to tE/(1 + v). The same result has been obtained using a different method for calculation of additional stresses in [ 6].

Deformation of bicrystals formed by two different elastically isotropic materials

Now we will consider an interface between two elastically isotropic materials with different elas . tic constants. This model can be applied to composite materials made of isotropic components. The arising additional stresses can be expressed as a <nction of differences between strains in grains Band A, Lie ii ' if they are deformed separately by the external applied stress and then connected

(10) (T11) = !33 ( EA + EB vA EB + v BEA) (Ae11) -sgn X2Y v AEB + v BE A EA + EB Lle33 ' !13 = -sgn Xz Ae1 3 µ A µ B /(µ A + µ B )'
where the constant Y is given as

3.2.
Elastically anisotropic media

In this section we will consider bicrystals made of component crystals of cubic symmetry. The elastic material parameters can be given as elastic stiffnesses, c�1' c�2, c�4, or as elastic compliances, s�10 s�2, s�4, in the commonly used two-index notation. The anisotropy factor A is equal to

A = 2c�4/( c� 1 -c�2) .
The superscript "o" indicates that the elastic constants are expressed in the cubic crystallographic coordinate system. The elastic compliances re<Èrred to a general coordinate system are given by sfi and the transformation matrix of the cubic crys tallographic directions, a ;i, 3 sklmn = S �2 0k18mn + t s�4 (8km01n + "kn01n) + 8 I ak;a1;amiani' i= 1 Sklmn = s i i for i,j � 3' 2Sklmn = S;j for i or j > 3, 4Sklmn = S;j for i,j > 3.

where 8 = S�1 -S �2 -!s�4
In the following paragraphs we will discuss two classes of bicrystals, namely, the bicrystals containing tilt grain boundaries with the rotation axes (100) and (110).

Elastic deformation of (100) tilt bicrystals loaded along the axis parallel to the boundary plane

When a bicrystal is deformed elastically the difference in strains between B and A grains, /Ji.e;i , is caused entirely by the elastic anisotropy of the c�mponent crystals and it is a <nction of the applied stress only. The dependence of the additional stresses on the magnitude of the applied stress, J:, and on its direction given by the angle CÃ between the loading axis and the [TOO] rotation axis can be written in a simple form (11) where Q depends on the crystallographic orientations of the A and B crystals in the common coordinate system of the bicrystal A = 2•94) has already been discussed in our earlier paper [14]. Here we will focus on those grain boundaries where the compatibility effects are strongest. In fig. 2 the angle <pA, for which the maximum values of <ľ11 and <Ŀ33 are reached, is plotted as a function of the misorientation angle, C= C = <pB -<\ for two magnitudes of the anisotropy factor corresponding to Fe-3 wt.% Si (A = 2•94) and P-brass (A = = 8•91). Full line denotes the limit A = 0. The dependences of compatibility stresses on the orientation of the grain boundary normal for a fixed misorientation are more 

Q = 9{sin2 2<A -sin2 2<B)/[s� 1 (4s�1 -8(sin2 2<pA + sin2 2<pB) -4s�2] , 8 
\ \ 3 0• CcA \ \ \ \ \ \ \ 10• o• o• 0.4 Q2� \ \ \ \ \ \ \ \ \\ \ \ \\ \\ \' \ \\ �\ �\ a 
( S� 1 ) -sgn x2E sin2 <xQ -�� 2 ,
where Q is again equal to

Q = 8(sin2 2<pA -si n2 2cpB)/[s�1(4s11 -8(sin2 2<pA + sin2 2<pB) -4s� 2 ].
Notice that this expression is almost identical with (11), the only difference in the dependence of the additional stresses on the angle <x is the changed sign of the stresses in ( 12) which follows <om the transformation of s12 as a function of crystal rotation by <p.

Plastic deformation of (100) tilt bicrystals

In this paragraph we will study compatibility stresses arising when one grain is deformed plastically and the other grain is strained elastically only. We will consider an asymmetrical bicrystal with the misorientation of 37° and the boundary plane on ( 0 with the (IOl) reference plane for a increasing from 0° to 46° and between [II2] and

[121] with the (Oil) re<Èrence plane f or a rising from 46° to 86°. The magnitude of shear deformation, y, was chosen to be 0• 1.

The compatibility stresses, 'l:;i' can be calculated again <om equation ( 7) where the elastic Compliances, Sij> have a simple form S11 = S�1 -f<Ĩ sin2 2<p, S13 = srz, s33 = s�1, s55 = s�4 and s15 = s35 = 0 in the used coordinate system (the x3 axis is parallel to the [TOO] rotation axis, the x 2 axis is perpendicular to the grain boundary plane and hence the x1 axis lies also in the boundary as shown in fig. la). When plastic deformation is taken into account, the elastic strains must be considered for the flow stress under which the A grain with higher Schmid factor is plastically deformed. The strain differences are given by equations (4,5).

For a comparison with experiments it is important to know shear stresses acting on various slip systems. We will not discuss the dependence of compatibility stresses on the loading direction here, instead we will assess the effect of plastic deformation on shear stresses resolved to four possible slip systems as it is done in the next para graph.

Modifi cation of resolved shear stresses by the additional compatibility stresses

Redistribution of stresses in a bicrystal due to the requirements on the compati bility of elastic and plastic strains can lead to the initiation of slip systems which would not operate in separated grains or to the suppression of some of the active slip systems. To explain such e<Éects it is essential to determine the resolved shear stresses, RSS, for four possible slip systems given by the (1 11) slip directions in b.c.c. metals. The orientation of the slip plane in b.c.c. metals has been discussed in detail in a recent review [15]. It was shown that at room temperature, the slip plane is close to the plane with maximum RSS. A deviation of the actual slip plane from the maximum RSS plane increases with decreasing temperature. In this paper a complex character of slip will not be considered, we will assume that the slip plane is the plane with maximum RSS for each respective slip direction.

First we will estimate the magnitude of elastic compatibility stresses in the co ordinate systems attached to the loading axis (now parallel to the x3 axis). The grain boundary normal is still parallel to the x 2 axis. Again we will consider the asym metrical bicrystal with the (100) rotation axis, the (0 114)A/(O 20 23)B boundary plane and the loading axis lying in the boundary. The dependences of non-zero components of the transformed compatibility stress tensor Tij as a function of the angle C are depicted in fi g. 4 for the elastic constants of Fe-3 wt.% Si and �-brass. The compatibility stresses due to the anisotropic elastic deformation are positive in the B grain and negative in the A grain. For C < 45°, the component T11 (per pendicular to the loading axis) is higher than T33. On the other hand, for C > 45°, T33 which is parallel to the loading axis is signifi cantly larger. The orientation of respective slip pla<šes for all four <111) slip systems in the calculations of the RSS was determined in the following way. The normal to the slip plane, n, is expressed as a linear combination of two chosen vectors, n1 and n2, perpendicular to the slip direction, b, which is parallel to the respective Burgers vector n = n1 + A.n2, n1b = n2b = 0. _,,.,,.... "

/ " -,. The effect of the plastic deformation is given by the difference between long-dashed and short-dashed lines in fig. 5. It should be emphasized that the additional stresses due to compatibility of anisotropic elastic deformation have a magnitude comparable with the additional stresses due to compatibility of shear plastic deformation of the order of y � 10% which took place only in one grain. Hence the effect of elastic compatibility is negligible only for very large plastic strains. stresses is shown as a function of a for a chosen asymmetrical bicrystal (001)A/(221)B still with the same misorientation of 70•53°. It is seen that all three non-zero stress components reach maximum magnitudes of the order 0•3 of the applied stress, however, the maxima for different components are reached at different values of a for fixed <pA and <pB (fig. 7) or at different values of <pA for fixed a and Ll<p = <pB -<pA (fig. 6). In both fig. 6 and 7 only the stress components in the A grain are depicted since in the B grain they have the same magnitude but the opposite sign according to (8).

30' 60' � go• f i--[ 1-11] . . -•. --•• slip 1n A gram 0.5 0 . 4 � / � "' / -,¢2 c) 0 {).
It has been stressed in section 3.2.4 that the shear stresses resolved for various slip systems are necessary for the interpretation of experimental results. Let us consider three asymmetrical bicrystals with the inclination to the (OOl)A plane 75°, 90° and 120°, i.e. with the grain boundary planes lying approximately on ( 552 )A/ (I12 )B, (I10)A/(I14)B and (554)A/(I18)B respectively. In all three cases the misorientation angle with respect to the [110] rotation axis is 70•53°. Again the shear stresses were calculated for each shear direction of the (111) type on planes with the maximum resolved shear stress. In fig. 8 RSS normalized by the applied stress E are plotted as a function of the orientation of the loading axis given by the angle a. Only values for slip systems with the maximum stress level are depicted. The full lines correspond to the applied stress tensor and the dashed lines correspond to the total stress tensor including the additional stress due to compatibility of elastic deformation. The computation was performed again for the elastic constants of Fe-3 wt. % Si.

Plastic behaviour of an asymmetrical bicrystal with a chosen loading axis can be predicted from fig. 8 in the following way. First compare the applied stress level in the A and B grains. If the maximum RSS in both grains are of about the same magnitude, the plastic deformation on appropriate slip systems can be expected in the interiors of both grains far from the boundary. When maximum RSS is higher in one grain, only the interior of this grain will be plastically deformed in the early deformation stages. Now let us concentrate on the total stress level including the elastic compatibility stress. If the total stress level (dashed line) is higher than the applied stress level (full line), the slip will be more intense near the boundary and will initiate there. On the other hand if the total stress level is lower than the applied stress level, the slip activity will decrease towards the boundary. It may also happen that the applied stress level in one grain is low but the total stress level in this grain is sufficiently high. Then the plastic deformation will be localized only in the boundary region. Of course, since the compatibility of plastic strains has not been taken into account in fig. 8, it is applicable only to early deformation stages.

DISCUSSION

'The model described in this paper enables us to an<Ċlyse the comp1tibility stresses in dependence 0-,Ô various para:neters which characterize the type of grain b:mndary and the loading direction. However, the results of the m:>del are applicable, strictly speaking, only to the middle part of the thin region adjacent to the interface, fat from its edges. The distribution of stresses in bicrystals with finite dimensions in the boundary plane has been studied in a few special cases in literature. Chou and Hirth [16] considered two elastic isotropic media differing in the magnitude of shear ' modulus. The shape of each grain was a semiin<~nite plate and the area of the interface separating the grains had a <nite width equal to the thickness of the plates. For the uniform applied compressive (normal to the plate) and shear stresses (with both shear plane normal and shear direction lying in the interphase boundary plane), the compatibility stresses decrease exponentially with the distance from the interface. At a distance from the interface greater than the plate thickness, the compatibility stresses approach zero. '

The stress distribution in fi nite bicrystals loaded in the direction parallel to the interface was calculated using the <nite element method in [START_REF] Kitagawa | Proc. JIMIS-4[END_REF]. The stresses were determined for two types of bicrystals and their dependence on the grain shape was investigated. The grain shape was described by the bicrystal dimensions in the direction lying in the boundary perpendicularly to the loading axis (thickness) and in the direction normal to the boundary (width). For the thickness smaller than the width the variations of the stress tensor were localized near to the grain boundary similarly as in [16], while for the thickness greater than the width the stress variations spread practically to the whole grains. The peak values of the compatibility stresses at the grain boundary were found to be proportional to the anisotropy factor of considered cubic crystals. Maximum resolved shear stresses were always reached at the intersection of the grain boundary with the free surface of the bicrystal.

It is obvious that the effect o' f the free surfaces on the stress distribution in fi nite bicrystals is fairly complicated in particular for the grains with rectangular cross section having the longer side attached to the other grain. Then all particular cases have to be treated separately and it is necessary to consider in addition to the crystallo graphic parameters (rotation of the grains, orientations of the boundary normal and of the loading axis) also the ratios of sample dimensions. The model used in the present paper provides an evaluation of compatibility stresses which can be easily applied to various types of bicrystals. Although it does not give the detailed stress distribution it is useful f o r a systematic investigation of the compatibility stresses near the interface as functions of relatively large number of crystallographic par ameters.

Compatibility stresses were calculated by means of fi nite element method also in [START_REF] Meyers | [END_REF]. However, only a two-dimensional model was used and thus the crystal anisotropy could not be fully taken into account. In [19] the finite element method was applied to a polycrystalline sample. The two-dirnensiona � method was adapted for a three-dimensional problem and the anisotropic elastic constants of . cubic ct-brass were employed. The results of the model were compared with the observation of slip onset in the sample with the grain size of 2•5 mm. On the basis of a detailed analysis it was concluded that the elastic compatibility stresses play an important role in the yield process and may exercise in<uence for strains of at least several percent. This conclusion is in agreement with the quantitative evaluation of the relative infl uence of plastic deformation and elastic compatibility stresses as discussed in sec. 3.2.4 in the present paper.

'

Besides the compatibility stresses, grain boundaries have a pronounced in<uence also on the distribution of dislocations which are sources of internal stresses. In dependence on dislocation properties and mutual orientation of possible slip systems, the lattice dislocations can be stopped on the slip plane by the grain boundary, may cross-slip in front of the boundary, can be transmitted into the other grain forming residual grain boundary dislocations or may spread into the grain boundary. Stress discontinuities and the structure imperfections at the grain boundary may activate dislocation sources which signi<Êcantly affect plastic deformation. Though the effect of grain boundaries on mechanical properties is rather complex, the macro scopic distribution of stresses is an important factor that cannot be neglected. The results of our model were compared with the observation of slip activity in an asym metrical bicrystal loaded along different directions parallel to the boundary plane [START_REF] Sittner | [END_REF]. In spite of the fact that all details of slip pattern, in particular activation of extra slip systems related to the dislocation transfer from one grain to another one, cannot be explained using an elastic continuum model, the overall slip activity is controlled by the sum of applied and compatibility stresses.

Fig. 1 .

 1 Fig. 1. a) The orientation of the loading axis. The x 2 coordinate axis is perpendicular to the grain boundary plane. The angle between the loading axis and x3 is denoted as°' and between the pro jection of the loading axis on the x1 x2 plane and the x1 direction as [J. b) Model of the central part of a finite bicrystal: an infinite bicrystal with/-+ oo, h-+ oo. c) Layered body with/-+ oo,

( 2 )

 2 where the elastic de<rmation corresponding to stresses a ii is <rmally divided into two parts e�i + e;i• The first terms due to applied stress C>u <llow <om Hooke's law (3) Ae S A "°' eu = ii kl CĖ, kt ' Be S B '<' e i i = ijklCĘ.kl and are, therefore, constants; S ii kl are the elastic compliances. The second terms correspond to compatibility stresses T ii• (4) A S A A e ij = i jkl T kl '

body [ 11 ]

 11 composed of an odd number or of an infinite number of plates A and B of the same thickness h (fig. le). It then follows for the constant stresses cr t and �i from the conditions of equilibrium A B � (]' i2 = (]' i 2 = .:. i 2 ' <1�3 + <1�3 = 2433 ' ut1 + <1�1 = 21:11 , ut3 + <1�3 = 21:13 • Therefore, for constant components of compatibility stresses we have <om (la)

  sis) (Aeu) 'r 33 =sgn Xz st3 st3 sts . L1e33 ' 'r1 3 Sis S 3 s Sss Ae13

  = s� 1 -s� 2ts:4 • Only bicrystals stressed along the axis lying in the boundary plane are considered in this paragraph. Then the angle f3 in equation (8) is equal to zero. The crystallo graphic orientation of the grains is determined by the angles <pA, <pB between the grain boundary normal, x 2 , and the [010] axes in the grains A and B, respectively. The [100] crystallographic direction parallel to the rotation axis is identical in the two grains.For example, for the misorientation A<p = 36•88° which corresponds to the reci procal density of coincidence sites equal to 5, the angle <B depends on the angle <pA which determines the crystallographic orientation of the boundary normal in the grain A, <pB = <A + 36•88°. If <A = -18•44° or 26•52° we get symmetrical grain boundaries on the {013} or {012} planes, respectively, and the additional stresses are equal to zero. When the boundary normal bisects the angle between the normals to the respective {013} and {012} planes, i.e. when <pA = 4•04°, then all the nonzero components of the additional stress tensor are close to the maximum values. This special orientation of the boundary plane, (0 114)A/(O 20 23)B was chosen for the experimental investigation of the effects of additional compatibility stresses[START_REF] Sittner | [END_REF].The dependence of the additional stresses on the orientation of the grain boundary normal for a fixed misorientation of 36-88° and for elastic constants of silicon-iron alloy, Fe<Ő<ő3 wt. % Si, (s�1 = 8•75, s�2 = -3•356, s:4 = 8•23 x 10-12 Pa-1 and
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 23 Fig. 2. The orientation of the grain boundary normal (given by rp A ), for which the additional compatibility stresses have a maximum, as a function of misorien• tation Arp. Full line corresponds to the angle rp A which bisects the dihedral angle of two symmetrical grain boundary planes. Long and short dashed lines were cal• culated for Fe-3 wt. % Si (A= 2•94) and P-brass (A= = 8•91), respectively.

  1 14)A/(O 20 23)8. The homogeneous shear deformation is caused by the opera tion of a single slip in the [111] direction on the plane with maximum resolved shear stress in the A grain. The slip plane orientation changes between [211] and [II2]

Fig. 4 .

 4 Fig. 4. Components of the compatibility stress tensor in the coordinate system where the x3 axis is parallel to the loading axis (x2 is still perpendicular to the boundary) as a function of the angle Cě between the loading and ( 100) rotation axes. The asymmetrical ( 100) tilt bicrystal (0 1 14) A /(0 20 23) B is deformed elastically only. Figure a and b are for Fe-3 wt.% Si and f3•brass, respectively. For example, if the n1 and n2 vectors are parallel to [011] and [101], respectively, the orientation of the slip plane normal in the range from [121] to [112] {for b parallel to [111]) is described by A. from the interval (-0•5, 1) . The resolved shear stress, -,ĝ, for a slip system defined by b and n can be written as

Fig. 5 .

 5 Fig. 5.
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 5 Fig. 5. Resolved shear elastic and plastic compatibility stresses for all four possible slip systems as functions of the orientation of the loading axis with respect to the < 100) rotation axis. Full, short-dashed and long-dashed lines were calculated for the external applied stress, for the sum of the applied and elastic compatibility stresses and for the total stress including both elastic and plastic compatibility stresses, respectively. The A or B grain and the respective slip systems are indicated in each figure. The stresses are normalized by the magnitude of the external applied stress, -,ę. decreases the stress level for the [111] and [lII] slip systems, when;: the elastic compatibility leads to a slight stress increase, and also changes the stress level in the opposite direction than the elastic compatibility for the [lil] and [llI] slip systems.
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 6 Fig. 6. Components of the compatibility stress tensor for < 110) tilt bicrystals with the mis• orientation of 70•53°. The angle rp A determines the orientation of the grain boundary normal, -,Ğ is the angle between loading and rotation axes. Full, dashed and dot-dashed lines denote T11, T33 and T1 3 stress components, respectively.
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 2557 Fig. 7. Compatibility stresses for the (00l) A /(22l) B asymmetrical bicrystal as functions of the angle � between the loading and rotation axes. Different lines denote the same quantities as in fig. 6.