
HAL Id: hal-03616652
https://hal.science/hal-03616652v1

Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Approximations for Cache-conscious Data
Placement

Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, Andreas Pavlogiannis

To cite this version:
Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, Andreas Pavlogiannis. Efficient Approx-
imations for Cache-conscious Data Placement. 43rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2022), Jun 2022, San Diego, United States.
�10.1145/3519939.3523436�. �hal-03616652�

https://hal.science/hal-03616652v1
https://hal.archives-ouvertes.fr

Efficient Approximations for Cache-conscious Data Placement

ALI AHMADI∗, Sharif University of Technology, Iran

MAJID DALIRI, University of Tehran, Iran

AMIR KAFSHDAR GOHARSHADY†, The Hong Kong University of Science and Technology, China

ANDREAS PAVLOGIANNIS, Aarhus University, Denmark

There is a huge and growing gap between the speed of accesses to data stored in main memory vs cache. Thus, cache

misses account for a significant portion of runtime overhead in virtually every program and minimizing them has

been an active research topic for decades. The primary and most classical formal model for this problem is that of

Cache-conscious Data Placement (CDP): given a commutative cache with constant capacity 𝑘 and a sequence Σ of

accesses to data elements, the goal is to map each data element to a cache line such that the total number of cache

misses over Σ is minimized. Note that we are considering an offline single-threaded setting in which Σ is known a

priori. CDP has been widely studied since the 1990s. In POPL 2002, Petrank and Rawitz proved a notoriously strong

hardness result: They showed that for every 𝑘 ≥ 3, CDP is not only NP-hard but also hard-to-approximate within

any non-trivial factor unless P = NP. As such, all subsequent works gave up on theoretical improvements and instead

focused on heuristic algorithms with no theoretical guarantees.

In this work, we present the first-ever positive theoretical result for CDP. The fundamental idea behind our approach

is that real-world instances of the problem have specific structural properties that can be exploited to obtain efficient

algorithms with strong approximation guarantees. Specifically, the access graphs corresponding to many real-world

access sequences are sparse and tree-like. This was already well-known in the community but has only been used

to design heuristics without guarantees. In contrast, we provide fixed-parameter tractable algorithms that provably

approximate the optimal number of cache misses within any factor 1 + 𝜖, assuming that the access graph of a specific

degree 𝑑𝜖 is sparse, i.e. sparser real-world instances lead to tighter approximations. Our theoretical results are accom-

panied by an experimental evaluation in which our approach outperforms past heuristics over small caches with a

handful of lines. However, the approach cannot currently handle large real-world caches and making it scalable in

practice is a direction for future work.

CCS Concepts: • Theory of computation→ Parameterized complexity and exact algorithms; • Software and
its engineering→Memory management.

Additional Key Words and Phrases: cache management, parameterization, data placement, treewidth, cache misses,

approximation

∗
Authors are ordered alphabetically.

†
Corresponding author

2022. Manuscript submitted to ACM

1

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

ACM Reference Format:
Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2022. Efficient Approximations for

Cache-conscious Data Placement. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,

33 pages. https://doi.org/10.1145/3519939.3523436

1 INTRODUCTION

Cache Misses. Most modern memory systems consist of a large but relatively slow main memory and one

or more small but much faster cache levels. When a program wants to access a specific data item during its

execution, the accessed data must first be present in the cache. Otherwise, it will be copied from the main

memory to the cache, possibly causing the eviction of other data from the cache. This copying is called a

“cache miss”. Given the low speed of main memory, the back-and-forth copying between cache and main

memory caused by cache misses is a significant contributor to runtime overheads in virtually all programs.

Hence, minimizing cache misses has been a central problem in various communities, including programming

languages [13, 18, 26, 34, 37, 49, 50], compilers [13, 35, 42, 45] and operating systems [10, 41, 48] for many

decades.

Cache-conscious Data Placement (CDP). In this work, we focus on Cache-conscious Data Placement
(CDP). CDP is arguably the most classical formulation for the problem of minimizing cache misses. It was

first introduced in ASPLOS 1998 by Calder et al [13] and then further formalized by Petrank and Rawitz in

POPL 2002 [37]. In this model, the memory system consists of two levels: a large main memory storing

a set 𝑂 of 𝑛 distinct objects 𝑜1, 𝑜2, . . . , 𝑜𝑛, and a small cache with 𝑘 lines. Depending on the variant, each

cache line can hold 1 or 𝑡 objects. A placement map is a function 𝑓 : 𝑂 → {1, 2, . . . , 𝑘} that maps each object

to a cache line. When a placement map 𝑓 is fixed and an access to an object 𝑜𝑖 is requested, the system

first checks to see whether 𝑜𝑖 is already present in its corresponding cache line 𝑓 (𝑜𝑖). If so, the access is
successful. Otherwise, a cache miss happens and 𝑜𝑖 must first be copied from the main memory to line

𝑓 (𝑜𝑖) of the cache, potentially evicting another object that was already in this cache line. Only after this

copying can the access go through. Given a sequence Σ = ⟨𝜎1, 𝜎2, . . . , 𝜎𝑁 ⟩ ∈ 𝑂𝑁
of accesses, CDP asks for a

placement map 𝑓 that minimizes cache misses over Σ.

Hardness of CDP. When considering the CDP problem, it is usually assumed that 𝑘 and 𝑡 are small

constants and the complexity is studied with respect to the number of objects, i.e. 𝑛, and the length of

the access sequence, i.e. 𝑁 . In [37], Petrank and Rawitz showed that the CDP problem is NP-hard for any

cache with more than two lines. They also showed that not only is the problem NP-hard, but it is also

hard-to-approximate within any non-trivial factor 𝑂 (𝑁 1−𝜖) unless P=NP. This became a notorious and

well-known hardness result, causing all further works to focus on heuristics with no worst-case bounds

on their approximation ratio. Some examples of this approach are [26, 27, 49, 50]. These heuristics try to

identify and exploit affinities between data items to minimize cache misses.

2

https://doi.org/10.1145/3519939.3523436

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

Access Graphs and Their Sparsity. A recurring structure in the cache management literature is that

of an access graph [11, 34, 45]. Simply put, an access graph is an undirected graph which has one vertex

corresponding to each object 𝑜𝑖 ∈ 𝑂 and an edge between two vertices if they appear consecutively in

the access sequence Σ. Informally, the access graph models the simplest type of affinity between data

items. Several previous works also consider extensions of access graphs to hypergraphs whose edges model

affinities between more than two data items [18, 34, 45]. It is well-known that access graphs of real-world

sequences are often sparse, opening the door to heuristics based on graph sparsity. Moreover, the optimal

algorithm for data packing, which is another formalism for minimizing cache misses, is also based on the

sparsity of access (hyper)graphs [18].

Our Focus. In this work, we consider the classical problem of Cache-conscious Data Placement (CDP) from

an algorithmic and complexity point-of-view. Note that our setting is single-threaded and offline and we

assume that the entire sequence Σ of accesses is given as part of the input. We focus on obtaining efficient

algorithms that provably approximate the optimal number of cache misses within a constant multiplicative

factor, assuming that the instance has sparse access (hyper)graphs. This assumption was already shown to

hold for real-world instances in several previous works, such as [18]. We use the treewidth of the access

(hyper)graphs as a measure of their sparsity.

Treewidth. Treewidth [9, 39, 40] is a well-known and oft-used graph sparsity parameter. Intuitively, the

treewidth of a graph is a measure of its tree-likeness. Only trees and forests have a treewidth of 1 and if a

graph’s treewidth is𝑤, then the graph can be decomposed into parts of size𝑤 + 1 that are connected to each
other in a tree-like manner. See Section 2.2 for a more formal definition. The algorithmic importance of

treewidth is due to the fact that many NP-hard graph problems are solvable in polynomial time over graphs

of bounded treewidth [1, 5, 7, 8, 32]. Moreover, many families of graphs that appear in real-world contexts

are shown to have small treewidth. This includes series-parallel and outer-planar graphs [6]. Control flow

graphs of structured programs also have bounded treewidth [12, 14, 19, 33, 46], leading to faster program

analysis and model checking algorithms [2, 15–17, 20–24, 29–31, 36, 38, 43]. Finally, access (hyper)graphs

of many classical algorithms and programs are also shown to have small treewidth [18]. This is the family

that is most relevant to the current work.

Our Contributions. We present the first positive theoretical results for the classical and notoriously-hard

problem of Cache-conscious Data Placement (CDP). Our detailed results are as follows:

• Approximation Scheme: For every constant 𝜖 > 0, we provide an efficient linear-time algorithm for

CDP that is guaranteed to obtain a (1 + 𝜖)-approximation of the optimal number of cache misses,

assuming that the access graph of a specific degree 𝑑𝜖 has bounded treewidth. In other words, our

scheme obtains tighter approximations for sparser instances.

• Hardness Result: We provide a stronger hardness result and show that CDP is NP-hard even when

restricted to instances in which access hypergraphs of a fixed degree 𝑑 have bounded treewidth.

Intuitively, this suggests that both parameterization (sparsity) and approximation are needed in

3

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

solving CDP. It is impossible to approximate CDP without a sparsity assumption as shown by [37].

On the other hand, our hardness result shows that it is also impossible to solve the problem exactly

(without approximation) even when we assume that access hypergraphs of a fixed degree 𝑑 are sparse.

• Experimental Results: We provide experimental results on the benchmarks of [18] and caches with

3–6 lines. On these small caches, our approach beats several well-known heuristics in the literature

in terms of the number of cache misses.

Novelty. In summary, we provide the first positive theoretical result for CDP through a combination

of approximation and parameterization. We also show a stronger hardness result that suggests both

approximation and parameterization are probably necessary. Our algorithms are the first to provide provable

bounds on the approximation ratio. To the best of our knowledge, graph sparsity parameters such as

treewidth were not previously used in the context of CDP. We are also not aware of any other systems

problem that is solved by applying both parameterization and approximation.

Intuition behind the Parameter. At first sight, treewidth of the access graph might come off as a

surprising parameter. However, it is quite natural to expect this parameter to be small and this expectation

was already confirmed by experiments in [18]. The intuitive reason behind this is that most real-world

algorithms manipulate linear or tree-based data structures, such as arrays, vectors, linked lists, heaps, binary

search trees and tries. Hence, the resulting access sequences consist of accesses to these tree-like structures

and other helper variables which often have a short lifetime. So, the access graph inherits much of the

sparsity and tree-likeness of the underlying data structures and the additional complexity introduced by

temporary variables does not make it significantly denser. Treewidth is the classical parameter for capturing

and formalizing such tree-like properties.

Limitations. The primary limitation of our approach is that it is only applicable in the offline setting in which

the entire access sequence is known a priori. Note that all previous hardness results were also for the same

offline case. Our experimental results demonstrate that our approach leads to fewer misses than previous

heuristics in the literature. However, it can currently handle only small caches with a handful of lines. More

specifically, we provide algorithms with runtimes of either𝑂 (𝑁 ·𝑘𝑤+2) or𝑂 (𝑛 ·𝑘𝑤+1 · (𝑘 +𝑑 ·𝑤𝑑)), in which

𝑘 is the cache size, 𝑑 is the order of the access hypergraph and𝑤 is the treewidth. Thus, while we overcome

the hardness-of-approximation and provide the first polynomial-time algorithms with approximation-ratio

guarantees, more improvement is needed to handle larger instances. Our results strongly indicate that

solving real-world instances of CDP, within a provably-bounded approximation factor, is likely within reach

and not as hard as previously thought. Moreover, they show that while the general case of the problem is

NP-hard and hard-to-approximate, this is not the case for the sparse instances that are often encountered in

practice. Another limitation is that our problem only models the single-threaded case and no parallelism is

allowed in accesses to the cache.

Offline vs Online.While it is more desirable to minimize cache misses in an online setting, where the

entire access sequence Σ is not known in advance, the problem is often studied in offline mode and Σ is

4

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

assumed to be part of the input. This applies not only to this work but also all previous theoretical results

on both data packing [18, 34] and CDP [37]. It is partly because the offline variants are already too hard,

i.e. NP-hard and hard-to-approximate. On the other hand, solving the offline version is also useful in the

following two cases (taken from [18]):

• Limit studies: To test the performance of a compiler for data placement, various inputs are generated

as benchmarks, and the baseline comparison of the performance is performed against the best-known

offline algorithm [37]. Hence, an almost-optimal algorithm with guaranteed approximation ratio for

the offline case is needed.

• Profiling: Programs usually have similar memory access behaviors over different inputs [37]. Hence,

an effective approach for online cache management is to consider several representative inputs, run

an almost-optimal offline algorithm for profiling, and then synthesize an answer to the online case

from the offline solutions [13, 37]. Specifically, the traditional approach of [13] for online CDP is

to assign a cost to each pair (𝑜𝑖 , 𝑜 𝑗) of elements which roughly correlates with the number of extra

cache misses that will be caused by assigning both 𝑜𝑖 and 𝑜 𝑗 to the same cache line. This cost is

always approximated using various profiling techniques. For example, we can run a program over

thousands of random inputs and solve the offline variant of CDP for each run. Then, the cost we

assign to (𝑜𝑖 , 𝑜 𝑗) should be inversely correlated with the number of test cases in which 𝑜𝑖 and 𝑜 𝑗 were

put in the same cache line. The online algorithm will then simply work greedily and, upon the first

access to an element 𝑜𝑖 , assign it to a cache line that minimizes its cost. Alternatively, we can devise a

supervised machine learning algorithm for the online case in which the outputs of the optimal offline

algorithm are used as the training set.

As such, the offline case considered in this work, while not leading to practical algorithms that can be

directly used for cache management, is still useful both theoretically and for the applications above.

Paging. Paging is a related well-studied problem, in which objects (or blocks) are not assigned to any

specific cache line. This is equivalent to having a cache with a single line that can hold up to 𝑘 objects. The

goal is to find an optimal replacement policy that minimizes the total number of cache misses [11], i.e. to

find the optimal policy for choosing which object should be evacuated each time new data is brought into

the cache. Common replacement policies include FIFO, which evicts the object that has been in the cache

for the longest, and LRU, which evicts the least-recently used/accessed object [18, 34, 50]. In the offline case,

where the sequence Σ of accesses is known in advance, the Optimal Replacement Policy (ORP) is to evict

the object whose next access is furthest in the future [11].

Data Packing. Data packing is another formulation of the problem of minimizing cache misses. In this case,

the objects are not assigned to specific cache lines. Instead, they are “packed” into blocks of a fixed size and

the cache can hold a fixed number of blocks. The goal is to find a packing that minimizes the total number

of cache misses over a given access sequence Σ [45]. Similar to CDP, data packing is also NP-hard and

5

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

hard-to-approximate within any non-trivial factor unless P=NP [34]. However, many real-world instances

of data packing can be solved in polynomial time using parameterization [18].

Comparison with [18]. The work [18] provides an algorithm for the problem of data packing using a

parameterization by the treewidth of the access hypergraphs. The parameter we use in this work is similar,

but not exactly the same. Specifically, we consider the treewidth of a sparsified subgraph of the access

hypergraphs (Section 3.2). This sparsification is a key part of our theoretical contribution and necessary for

obtaining a constant-ratio approximation. Additionally, the two works also differ in the following ways:

• Modeling of the Cache: [18] considers the problem of Data Packing (DP), whereas we study Cache-

conscious Data Placement (CDP). As mentioned above, DP and CDP model the cache differently. In

CDP, each data item is mapped to a specific cache line, whereas in DP, the items do not have a fixed

position in the cache but are instead grouped (packed) together to form blocks.

• Hardness and Parameterized Complexity:While both CDP andDP areNP-hard and hard-to-approximate,

the DP problem of [18] becomes fixed-parameter tractable and admits a polynomial-time algorithm

when the treewidth is bounded. In contrast, our problem remains NP-hard even when limited to

graphs of constant treewidth (Section 4) and can only be approximated. Hence, we are considering

a strictly harder problem in terms of parameterized complexity and the techniques of [18] are not

applicable to our setting.

• Solution Concepts: Both our solution and that of [18] reduce cache management problems to variants

of graph coloring. In [18], the number of vertices of any given color is bounded, whereas in our case

the number of colors is at most the cache size 𝑘 .

2 PRELIMINARIES

In this section, we provide a formal definition of the CDP problem (mostly following [37]) as well as the

necessary background from parameterized complexity.

2.1 Cache-conscious Data Placement

Memory System. We consider a memory system consisting of a large main memory and a small cache with

𝑘 lines. We also fix a set 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛} of objects (data items). We do not make any assumptions about

the locations of objects in the main memory or its size.

Placement Map. A placement map is a function 𝑓 : 𝑂 → {1, 2, . . . , 𝑘} that maps each object to a cache line.

Direct Mapping vs 𝑡-way Mapping. In direct mapping, each cache line can hold at most one data item at a

time. In 𝑡-way mapping, each cache line can hold up to 𝑡 objects. Our main focus is on the direct mapping

case, but our approaches extend to 𝑡-way mapping as well.

Accesses and Cache Misses. Given a fixed placement map 𝑓 , when an access to an object 𝑜𝑖 is requested,

𝑜𝑖 must first be present in cache line 𝑓 (𝑜𝑖). If this is not the case, then a cache miss occurs and 𝑜𝑖 is copied
from the main memory to cache line 𝑓 (𝑜𝑖). If this cache line is already full, another data item will be evicted

6

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

from it. Note that if each cache line can hold more than one object, then we should also fix a replacement

policy for each line. In this work, we assume that the replacement policy is LRU, i.e. the least recently used

element is always evicted. This is because LRU is the most commonly-used policy in practice [50]. Our

algorithms are also extensible to FIFO and ORP with minimal changes
1
.

Access Seqence. An access sequence is simply a sequence Σ = ⟨𝜎1, 𝜎2, . . . , 𝜎𝑁 ⟩ ∈ 𝑂𝑁
of objects. Intuitively,

Σ represents the order in which a program accesses the data items. We denote by Misses𝑡
𝑘
(𝑓 , Σ) the number

of cache misses that occur in a 𝑡-way cache with 𝑘 lines if the placement map is 𝑓 and the accesses are

made according to Σ. We assume the cache is empty at the beginning and drop 𝑘 when it is clear from the

context. We also drop 𝑡 = 1 in direct mapping.

Cache-conscious Data Placement (CDP). Given a set 𝑂 = {𝑜1, . . . , 𝑜𝑛} of objects, an access sequence

Σ ∈ 𝑂𝑁 , and cache parameters 𝑡 and 𝑘 as input, the Cache-conscious Data Placement problem asks for

an optimal placement map 𝑓 ∗ that minimizes the number of cache misses. More formally, it asks for a

placement map 𝑓 ∗, such that for any other placement map 𝑓 , we have Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(𝑓 , Σ).

Approximations. For an 𝜖 > 0, we say that an algorithm is a (1 + 𝜖)-approximation of CDP if given the

same inputs, it always produces a placement map 𝑓 such that Misses𝑡
𝑘
(𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

Instances. An instance of the CDP problem is a tuple 𝐼 = (𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) specifying all parts of the input.

2.2 Parameterized Complexity, Tree Decompositions and Treewidth

Parameterized Complexity. The central idea in parameterized complexity is to analyze the runtime of an

algorithm not only based on its input size 𝑛, but also based on another parameter 𝑝 [28]. The parameter

itself can be explicit, i.e. part of the input, or implicit, e.g. a structural property.

Fixed-parameter Tractability (FPT). A problem is called Fixed-parameter Tractable (FPT) wrt a parameter

𝑝 , if there exists an algorithm that solves the problem in time 𝑂 (𝑛𝑐 · 𝑔(𝑝)), where 𝑛 is the input size, 𝑐 is a

constant that does not depend on either 𝑛 or 𝑝 and 𝑔 is an arbitrary computable function [25, 28]. Intuitively,

when a problem is FPT, the instances in which the parameter 𝑝 is small are easy to solve and can be handled

in polynomial time.

When dealing with a hard problem, such as CDP, the main challenge is to come up with a suitable

parameter 𝑝 , such that (i) all or most real-world instances have a small 𝑝 , and (ii) the problem becomes FPT

wrt 𝑝 . Finding such a parameter would effectively lead to efficient solutions for the real-world instances of

the problem. We now define the parameter that will be used in this work, i.e. treewidth.

Graphs and Hypergraphs. A directed graph is a pair 𝐺 = (𝑉 , 𝐸) where 𝑉 is a finite set of vertices and

𝐸 ⊆ 𝑉 ×𝑉 is a finite set of edges. Each edge 𝑒 ∈ 𝐸 is an ordered pair of vertices. An undirected graph is

defined similarly, except that each edge 𝑒 is a subset {𝑢, 𝑣} ⊆ 𝑉 . An ordered hypergraph is a pair𝐺 = (𝑉 , 𝐸)

1
The FIFO and ORP cases are removed since the space is limited and they do not provide new insights. We will publish them as a tech

report.

7

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝑜1 𝑜2

𝑜3 𝑜4

𝑜5 𝑜6

𝑜7

{𝑜1, 𝑜3, 𝑜4}
𝑏1

{𝑜1, 𝑜2}𝑏2 {𝑜3, 𝑜4, 𝑜6} 𝑏3

{𝑜4, 𝑜5, 𝑜6}𝑏4 {𝑜4, 𝑜6, 𝑜7} 𝑏5

Fig. 1. A graph 𝐺 = (𝑉 , 𝐸) (left) and a tree decomposition 𝑇 of width 2 for 𝐺 (right).

where 𝐸 ⊆ 𝑉 +, i.e. each hyperedge 𝑒 ∈ 𝐸 is an ordered tuple of vertices in 𝑉 . Similarly, in an unordered

hypergraph, each edge 𝑒 is simply a subset of vertices. The base (hyper)graph of a directed graph/ordered

hypergraph is obtained by ignoring the order of vertices in each edge.

Tree Decompositions [25]. Consider an undirected / unordered (hyper)graph 𝐺 = (𝑉 , 𝐸). A tree decompo-
sition of 𝐺 is a rooted tree 𝑇 = (𝐵, 𝐸𝑇 , 𝑟) where:
(1) 𝐵 is the set of nodes in the tree and 𝐸𝑇 is the set of edges. We call each node in 𝐵 a bag and 𝑟 ∈ 𝐵 is the

root bag.
(2) Each bag 𝑏 ∈ 𝐵 has an associated subset𝑉𝑏 ⊆ 𝑉 of vertices. We reserve the word vertex for vertices of𝐺 .

(3) Each vertex appears in at least one bag, i.e.

⋃
𝑏∈𝐵 𝑉𝑏 = 𝑉 .

(4) Each (hyper)edge appears in at least one bag. Formally, for every 𝑒 ∈ 𝐸, there exists a bag 𝑏 ∈ 𝐵, such
that 𝑒 ⊆ 𝑉𝑏 . In other words, 𝑏 contains all endpoints of 𝑒 .

(5) Each vertex appears in a connected subtree of 𝑇 . Equivalently, if a bag 𝑏3 ∈ 𝐵 is on the unique path

between the bags 𝑏1 and 𝑏2 in 𝑇, then 𝑉𝑏3 ⊇ 𝑉𝑏1 ∩𝑉𝑏2 , i.e. if 𝑣 ∈ 𝑉 appears in the two bags 𝑏1 and 𝑏2,

then it must also appear on any bag 𝑏3 that is on the unique path between them.

Note that tree decompositions do not distinguish between ordered/directed and unordered/undirected edges,

i.e. a tree decomposition of an ordered/directed (hyper)graph is simply a tree decomposition of its base

graph.

Example 1. Figure 1 shows a graph𝐺 and one of its tree decompositions. Intuitively, in a tree decomposition
the graph is broken into several small pieces (bags) that are connected to each other in a tree-like manner.

Treewidth [25, 39]. The width of a tree composition is defined as the size of its largest bag minus 1,

i.e.𝑤 (𝑇) := max𝑏∈𝐵 |𝑉𝑏 | − 1. The treewidth of a (hyper)graph 𝐺 is the smallest width among all of its tree

decompositions.

Cut Property [5, 25]. Consider a (hyper)graph 𝐺 and a tree decomposition 𝑇 of 𝐺 and suppose that

the vertices 𝑣1, 𝑣2 ∈ 𝑉 appear in bags 𝑏1, 𝑏2 ∈ 𝐵 respectively. Then every path from 𝑣1 to 𝑣2 in 𝐺 has to

8

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

pass through every bag 𝑏3 that is on the path from 𝑏1 to 𝑏2 in 𝑇 . This is called the cut property of tree

decompositions.

Example 2. The tree decomposition in Figure 1 has a width of 2 and is an optimal decomposition. So, the
treewidth of the graph 𝐺 is also 2. Consider vertices 𝑜1 ∈ 𝑉𝑏2 and 𝑜7 ∈ 𝑉𝑏5 . Since 𝑏1 and 𝑏3 are on the unique
path from 𝑏2 to 𝑏5 in 𝑇 , then any path that connects 𝑜7 to 𝑜1 in 𝐺 has to intersect both of these bags. As an
example, consider the path ⟨𝑜7, 𝑜6, 𝑜5, 𝑜4, 𝑜1⟩. It intersects 𝑏3 in both 𝑜4 and 𝑜6. Similarly, it intersects 𝑏1 in both
𝑜1 and 𝑜4.

Dynamic Programming. The cut property enables one to perform dynamic programming on low-treewidth

graphs in a similar manner to trees. Intuitively, in dynamic programming approaches, each bag in a tree

decomposition serves the same purpose as a vertex in a tree whose removal breaks the graph/tree down into

several completely independent connected components. This can potentially lead to much faster algorithms,

especially when the bags, and hence the treewidth, are small. See [5, 25] for some examples and a more

detailed treatment.

Nice Tree Decompositions [25].We say that a tree decomposition 𝑇 = (𝐵, 𝐸𝑇) is nice if (i) the root bag
and every leaf bag ℓ are empty, i.e. 𝑉𝑟 = 𝑉ℓ = ∅, (ii) every bag has at most two children, (iii) if a bag 𝑏 has a

single child 𝑐 , then 𝑏 and 𝑐 differ in exactly one vertex, i.e. |𝑉𝑏 Δ 𝑉𝑐 | = 1, and (iv) if a bag 𝑏 has two children

𝑐1 and 𝑐2, then 𝑉𝑏 = 𝑉𝑐1 = 𝑉𝑐2 . Every tree decomposition can be easily converted to a nice decomposition

of the same width in linear time [25]. Nice decompositions help us in designing dynamic programming

procedures in Section 3.3.

Computing Optimal Tree Decompositions. Given a graph 𝐺, computing its treewidth𝑤 and an optimal

tree decomposition are FPT problems wrt𝑤 . Specifically, [4] provides a linear-time algorithm. Hence, we

always assume that an optimal tree decomposition is given as part of the input.

3 AN EFFICIENT PARAMETERIZED APPROXIMATION SCHEME FOR CDP

In this section, we first define the notions of access graphs and their extensions. Then, we prove a sparsifi-

cation lemma which reduces the approximation of CDP to a coloring problem over a “sparsified” subgraph

of the access graphs. Finally, we provide a tree-decomposition-based dynamic programming algorithm that

solves the coloring problem in linear time parameterized by the decomposition’s width. Throughout this

section, we assume that an input instance 𝐼 = (𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) is fixed.

3.1 Access Graphs and Access Hypergraphs

Access Graph. The access graph of a CDP instance 𝐼 = (𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) is a directed graph 𝐺 = (𝑂, 𝐸) in
which every vertex is a data item and there is an edge between 𝑜𝑖 and 𝑜 𝑗 if and only if 𝑜𝑖 appears directly

before 𝑜 𝑗 somewhere in the access sequence Σ. We do not add self-loops in 𝐺 .

9

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

Fig. 2. Access graph of the sequence Σ = ⟨𝑜1, 𝑜2, 𝑜1, 𝑜4, 𝑜5, 𝑜3, 𝑜3, 𝑜1, 𝑜2⟩.

Example 3. Consider the access sequence

Σ = ⟨𝑜1, 𝑜2, 𝑜1, 𝑜4, 𝑜5, 𝑜3, 𝑜3, 𝑜1, 𝑜2⟩.

Figure 2 shows the access graph of this sequence.

Access Hypergraphs. The access hypergraph of order 𝑑 of the instance 𝐼 is an ordered hypergraph

𝐺𝑑 = (𝑂, 𝐸), in which there is an edge 𝑒𝑖 corresponding to each access 𝜎𝑖 in Σ = ⟨𝜎1, 𝜎2, . . . , 𝜎𝑛⟩. The edge 𝑒𝑖
is of the form ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ in which 𝑗 ≤ 𝑖 is the largest index where at least one of the following holds:

(1) ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ contains two accesses to 𝜎𝑖 .

(2) ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ contains accesses to 𝑑 distinct objects.

(3) 𝑗 = 1.

Informally, to form the edge corresponding to 𝜎𝑖 , we start from 𝜎𝑖 and move backwards in the access

sequence until we either reach another access to 𝜎𝑖 or see 𝑑 distinct data items or get to the beginning of

the sequence.

Example 4. Consider the same access sequence as in Example 3. Let 𝑑 = 3. The access hypergraph of order 3
has the following edges:

𝑒1 = ⟨𝑜1⟩ 𝑒2 = ⟨𝑜1, 𝑜2⟩ 𝑒3 = ⟨𝑜1, 𝑜2, 𝑜1⟩

𝑒4 = ⟨𝑜2, 𝑜1, 𝑜4⟩ 𝑒5 = ⟨𝑜1, 𝑜4, 𝑜5⟩ 𝑒6 = ⟨𝑜4, 𝑜5, 𝑜3⟩

𝑒7 = ⟨𝑜3, 𝑜3⟩ 𝑒8 = ⟨𝑜5, 𝑜3, 𝑜3, 𝑜1⟩ 𝑒9 = ⟨𝑜3, 𝑜1, 𝑜2⟩

It is well-known that access (hyper)graphs are often very sparse. In [18], the sparsity was formalized and

it was shown that the access (hyper)graphs of many real-world algorithms and programs have bounded

treewidth
2
. Based on this observation, we will design FPT algorithms using the treewidth of a sparsified

subgraph of the access (hyper)graphs as our parameter.

3.2 Sparsification and Reduction to Graph Coloring

We now show how an approximation of the number of optimal cache misses in CDP can be obtained by

reduction to a graph coloring problem over certain subgraphs of access hypergraphs.

2
The definition of access hypergraphs provided here is a bit different from [18] since we allow our hyperedges to include the same

vertex more than once. However, this difference does not affect the treewidth.

10

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

Colorings. Consider a placement map 𝑓 : 𝑂 → {1, 2, . . . , 𝑘}. By definition, 𝑓 assigns a cache line to

every object 𝑜𝑖 ∈ 𝑂 . However, given that 𝑂 is also the set of vertices in our access hypergraphs, one can

equivalently think of 𝑓 as a coloring of vertices in these graphs with 𝑘 colors
3
.

Direct Mapping. Let us first assume that we have a direct mapping instance, i.e. 𝑡 = 1 and each cache line

can hold only one object.

Sparsification. Consider the access hypergraph𝐺𝑑 of order 𝑑 . Recall that𝐺𝑑 has an edge 𝑒𝑖 corresponding

to each access 𝜎𝑖 in Σ. We divide the edges of 𝐺𝑑 in two groups: 𝐸1 is the set of edges 𝑒𝑖 that contain the

vertex 𝜎𝑖 only once and 𝐸2 is the set of edges 𝑒𝑖 that contain 𝜎𝑖 twice. Let �̃�𝑑 = (𝑂, 𝐸2) be the subgraph of

𝐺𝑑 containing only the edges of the second kind. We call �̃�𝑑 the sparsified access hypergraph of order 𝑑 .

Informally, �̃�𝑑 keeps the edge corresponding to an access 𝜎𝑖 iff the number of other distinct data items seen

since the last access to 𝜎𝑖 is less than 𝑑 . The intuition is to focus on data items that are accessed regularly

and whose placement in the memory really matters in the number of cache misses. These are elements that

can likely cause capacity/conflict misses. In contrast, we would rather ignore elements that are accessed

only once or rarely and cause a compulsory first-time cache miss anyway. In other words, if many distinct

data items have been accessed since the last time we saw 𝜎𝑖 , then it is very likely that 𝜎𝑖 is already evicted

from the cache and that the current access leads to a cache miss. Hence, we focus on minimizing the number

of cache misses in accesses corresponding to 𝐸2 only and assume all other accesses lead to cache misses. We

will later see that discarding 𝐸1 does not affect the optimal value too much, in the sense that the optimal

solution to 𝐸2 is always within a constant factor to the optimal solution overall. Hence, this leads to an

approximation of the optimal number of cache misses within a constant multiplicative factor.

Canonical Hypergraphs.We say that an ordered hypergraph𝐺 = (𝑉 , 𝐸) is canonical if every edge 𝑒 ∈ 𝐸 is

of the form ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ where 𝑣1 ∉ {𝑣2, . . . , 𝑣𝑚}. In other words, every edge starts and ends with the

same vertex and the start/end vertex does not appear anywhere else in the edge. Note that �̃�𝑑 is canonical

by definition.

Optimal Coloring. Consider a canonical hypergraph 𝐺 = (𝑉 , 𝐸) and a coloring function 𝑓 : 𝑉 →
{1, 2, . . . , 𝑘}. We define Cost(𝑓 ,𝐺) as the number of edges 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ ∈ 𝐸 such that 𝑓 (𝑣1) ∈
𝑓 ({𝑣2, . . . , 𝑣𝑚}), i.e. an edge contributes to the cost if it has an internal vertex with the same color as its

start/end vertex. Such an edge is called a missed edge. Given a canonical 𝐺 and a positive integer 𝑘 as input,

the Optimal Coloring problem asks for a coloring
ˆ𝑓 with minimal cost, i.e. minimal number of missed edges.

The following lemma establishes a correspondence between missed edges in �̃�𝑑 and cache misses in the

CDP instance 𝐼 .

Lemma 1. Let 𝑓 be a coloring of vertices in �̃�𝑑 = (𝑂, 𝐸2) or equivalently a placement map for 𝐼 =

(𝑛,𝑂, 𝑁, Σ, 1, 𝑘). An edge 𝑒𝑖 ∈ 𝐸2 is missed in the coloring 𝑓 iff a cache miss occurs at its corresponding
access 𝜎𝑖 with placement map 𝑓 .

3
Adjacent vertices need not necessarily have different colors.

11

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Proof. Recall that 𝑒𝑖 is of the form ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ and since �̃�𝑑 is canonical we have 𝜎𝑖 = 𝜎 𝑗 . If 𝑒𝑖 is a

missed edge, then there is some index 𝑗 + 1 ≤ 𝑙 ≤ 𝑖 − 1 such that 𝑓 (𝜎𝑙) = 𝑓 (𝜎𝑖). Hence, when an access to

𝜎𝑙 is made, the data item 𝜎𝑖 is evicted from the cache. As such, 𝜎𝑖 leads to a cache miss. Conversely, if no

such 𝑙 exists, then since 𝜎 𝑗 = 𝜎𝑖 , this item has been moved to cache at time 𝑗 and remained there until time

𝑖 . So, there is no cache miss at 𝜎𝑖 . □

Corollary 1. Misses𝑘 (𝑓 ∗, Σ) ≤ Misses𝑘 (ˆ𝑓 , Σ) ≤ Cost(ˆ𝑓 , �̃�𝑑) + |𝐸1 |.

Proof. Recall that 𝑓 ∗ is the optimal placement map that minimizes the number of cache misses and
ˆ𝑓 is

the optimal coloring that minimizes the number of missed edges in �̃�𝑑 . Consider
ˆ𝑓 as a placement map.

Based on the lemma above, it causes exactly Cost(ˆ𝑓 , �̃�𝑑) cache misses in accesses corresponding to 𝐸2 . It

can also cause at most |𝐸1 | cache misses in accesses corresponding to 𝐸1. □

This corollary allows us to bound the number of cache misses by solving the optimal coloring problem

over the sparsified hypergraph �̃�𝑑 . We will later provide an algorithm for optimal coloring in Section 3.3.

First, we provide a theorem showing that this approach leads to a constant approximation factor.

Theorem 1. We have

Misses𝑘 (𝑓 ∗, Σ) ≤ Misses𝑘 (ˆ𝑓 , Σ) ≤
𝑑

𝑑 − 𝑘 ·Misses𝑘 (𝑓 ∗, Σ).

Proof. The first inequality follows from the definition of 𝑓 ∗. Let𝑀∗ be the set of indices of accesses that

lead to a cache miss if we use the optimal placement map 𝑓 ∗ and �̂� be the set of indices of accesses that

lead to a cache miss when the optimal coloring
ˆ𝑓 is used as the placement map. So, |𝑀∗ | = Misses𝑘 (𝑓 ∗, Σ)

and |�̂� | = Misses𝑘 (ˆ𝑓 , Σ). Moreover, let 𝐿 be the set of indices in Σ that correspond to edges in 𝐸1 but did not
lead to a cache miss in 𝑓 ∗ . Note that we have

|𝑀∗ | ≥ Cost(ˆ𝑓 , �̃�𝑑) + |𝐸1 | − |𝐿 |. (1)

To see this, let us count the number of misses caused by 𝑓 ∗ in accesses corresponding to 𝐸1 and 𝐸2

separately. By definition of 𝐿, 𝑓 ∗ causes |𝐸1 | − |𝐿 | cache misses in accesses of 𝐸1. By definition of
ˆ𝑓 , we know

that Cost(𝑓 ∗, �̃�𝑑) ≥ Cost(ˆ𝑓 , �̃�𝑑), so by Lemma 1, 𝑓 ∗ causes at least Cost(ˆ𝑓 , �̃�𝑑) cache misses in accesses

corresponding to 𝐸2. By combining Equation (1) and Corollary 1, we get

|�̂� | ≤ |𝑀∗ | + |𝐿 |. (2)

So, it suffices to find a bound on |𝐿 |.
Let us form a bipartite graph B in which 𝑀∗ serves as the set of vertices on one part and 𝐿 as the

set of vertices on the other part. Let 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑀∗ and 𝑖 ′ be the index of the previous access to 𝜎𝑖 ,

i.e. 𝑖 ′ = max{𝑙 < 𝑖 |𝜎𝑙 = 𝜎𝑖 }. Note that 𝑖 ′ always exists, because if the first access to 𝜎𝑖 was at time 𝑖 , then

12

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

𝑀∗𝐿

𝑖

𝑗

𝜎𝑖′, 𝜎𝑖′+1, . . . , 𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖

Fig. 3. Construction of the bipartite graph B. There is an edge from 𝑖 in 𝐿 to 𝑗 in𝑀∗ iff in the access sequence Σ, 𝜎 𝑗 is
between 𝜎𝑖 and the previous access to the same element, i.e. 𝜎𝑖′ .

it would cause a cache miss with any placement map and hence 𝑖 could not possibly be in 𝐿. We put an

edge from the vertex 𝑖 in 𝐿 to the vertex 𝑗 in𝑀 iff 𝑖 ′ < 𝑗 < 𝑖 . See Figure 3. Note that the edges of B do not

exactly correspond to cache misses. The only reason behind this construction is that counting the number

of edges in two different ways enables us to bound |𝐿 | in terms of |𝑀∗ |.
We now bound the number of edges of B in two ways. First, consider a vertex 𝑖 ∈ 𝐿. The degree of 𝑖

is the number of cache misses occurred between times 𝑖 ′ + 1 and 𝑖 − 1. Note that 𝐿 only contains indices

corresponding to 𝐸1. Hence, at least 𝑑 distinct data items were accessed in this period. At the end of time 𝑖 ′,

at most 𝑘 of these items could potentially be in the cache. Thus, there are at least 𝑑 − 𝑘 cache misses in this

period, i.e. the degree of 𝑖 is at least 𝑑 − 𝑘, and the number of edges is at least |𝐿 | · (𝑑 − 𝑘).
Now consider a vertex 𝑗 ∈ 𝑀∗ . We prove that the degree of 𝑗 is at most 𝑘 . To get a contradiction, suppose

that 𝑗 has edges to 𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1 ∈ 𝐿. Given that the range of 𝑓 has 𝑘 different values, by the pigeonhole

principle there exist 𝑎, 𝑏 ∈ {𝑖1, . . . , 𝑖𝑘+1} such that 𝑓 ∗ (𝜎𝑎) = 𝑓 ∗ (𝜎𝑏) = 𝑓0. We know that 𝑎′ < 𝑗 < 𝑎 and

𝑏 ′ < 𝑗 < 𝑏.Without loss of generality, assume 𝑎 > 𝑏. Since 𝜎𝑎 and 𝜎𝑏 are both mapped to 𝑓0, 𝜎𝑎 was brought

to cache line 𝑓0 at time 𝑎′ but was then evicted on or before time 𝑏. Hence, we have a cache miss at time 𝑎.

This contradicts the definition of 𝐿. Therefore, the total number of edges is at most |𝑀∗ | · 𝑘.
Putting the two bounds together, we get |𝐿 | ≤ |𝑀∗ |· 𝑘

𝑑−𝑘 . Combining this with (2), we have |�̂� | ≤ |𝑀∗ |· 𝑑
𝑑−𝑘 .

□

Corollary 2. For any 𝜖 > 0, by applying the approach above using the sparsified access hypergraph
�̃�𝑑𝜖 of order 𝑑𝜖 := ⌈𝑘 + 𝑘

𝜖
⌉, we obtain a (1 + 𝜖)−approximation of the optimal number of cache misses in a

direct-mapped cache, i.e. Misses𝑘 (ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑘 (𝑓 ∗, Σ).

Extension to 𝑡-way Mapping. Extending the approach above to 𝑡-way mapping is quite straightforward

and all steps go through naturally. Thus, we only present the differences. See Appendix A for a detailed

treatment of the 𝑡-way mapping case.

Optimal 𝑡-way Coloring. In a canonical hypergraph 𝐺 = (𝑉 , 𝐸), we define Cost𝑡 (𝑓 ,𝐺) of a coloring

function 𝑓 as the number of edges 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ that have at least 𝑡 distinct internal vertices with
13

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

the same color as 𝑣1. We call these edges missed edges. The optimal 𝑡−way coloring problem asks for a

coloring
ˆ𝑓 with minimal cost.

Lemma 1 and Corollary 1 apply to the 𝑡-way case with no changes and Theorem 1 sees only a minor

change:

Theorem 2. We have

Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(ˆ𝑓 , Σ) ≤ 𝑑

𝑑 − 𝑡 · 𝑘 ·Misses𝑡
𝑘
(𝑓 ∗, Σ).

Proof. Every step is the same as in the proof of Theorem 1, except that the total cache size is now 𝑡 · 𝑘.
Hence, the degree of each vertex in 𝐿 is at least 𝑑 − 𝑡 ·𝑘 and the degree of each vertex in𝑀∗ is at most 𝑡 ·𝑘 .□

Corollary 3. For any positive constant 𝜖 > 0, by applying the approach above using the sparsified access
hypergraph �̃�𝑑𝜖 of order 𝑑𝜖 := ⌈𝑡 · 𝑘 + 𝑡 ·𝑘

𝜖
⌉, we obtain a (1 + 𝜖)−approximation of the optimal number of cache

misses in a 𝑡-way cache, i.e. Misses𝑡
𝑘
(ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

Remark. The proofs of the 𝑡-way results above, which are provided in detail in Appendix A, are applicable

even when the data items can have varying non-unit integer sizes. Hence, our approach is not limited to

unit-sized objects.

Corollaries 2 and 3 show that we can get arbitrarily tight (1 + 𝜖)-approximations of the optimal number

of cache misses provided that we can solve the optimal (𝑡-way) coloring problem on the sparsified access

hypergraph of the right order and obtain the coloring/placement map
ˆ𝑓 . This is summarized in Algorithm 1.

In Section 3.3, we provide a linear-time FPT algorithm for solving the optimal coloring and 𝑡-way coloring

problems parameterized by treewidth. Hence, we can obtain a (1 + 𝜖)-approximation of the number of

cache misses whenever the sparsified access hypergraph �̃�𝑑𝜖 is sparse and has bounded treewidth. It is also

noteworthy that Theorems 1 and 2 and hence the (1 + 𝜖) factor are not tight. In practice, our approach may

find much tighter approximations.

3.3 A Decomposition-based Algorithm for Optimal Coloring

In this section, we consider the problem of (𝑡-way) optimal coloring, as defined in Section 3.2 and provide a

linear-time FPT algorithm wrt treewidth for solving it, i.e. our algorithm can solve the problem in linear

time if the input graph is sparse and has bounded treewidth.

Input. The input consists of two integers 𝑡 and 𝑘 , a canonical hypergraph 𝐺 = (𝑉 , 𝐸) with 𝑛 vertices and 𝑁

edges, each with at most 𝑑 endpoints, and a nice tree decomposition 𝑇 = (𝐵, 𝐸𝑇) of 𝐺 with 𝑂 (𝑛) bags and
constant width𝑤 .

Output. The output is an optimal coloring function
ˆ𝑓 : 𝑉 → {1, 2, . . . , 𝑘} with minimal total cost.

Note that we are mostly focused on direct mapping, i.e. 𝑡 = 1. However, our algorithm can handle any

value of 𝑡 . Moreover, we can assume that a tree decomposition of linear size is given as part of the input,

14

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

Algorithm 1 A (1 + 𝜖)-approximation for CDP

1: procedure CDP(𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘, 𝜖)

2: 𝑑 ← ⌈𝑡 · 𝑘 + 𝑡 ·𝑘
𝜖 ⌉

3: 𝐸2 ← ∅
4: for 𝑖 = 1 to 𝑁 do
5: 𝑒𝑖 ← ⟨𝜎𝑖 ⟩
6: for 𝑗 = 𝑖 − 1 downto 1 do
7: 𝑒𝑖 ← ⟨𝜎 𝑗 ⟩ + 𝑒𝑖
8: if 𝜎 𝑗 = 𝜎𝑖 then
9: 𝐸2 ← 𝐸2 ∪ {𝑒𝑖 }
10: break
11: if |set(𝑒𝑖) | > 𝑑 then
12: break
13: 𝑇 = (𝐵, 𝐸𝑇) ← NiceTreeDecomposition(𝑂, 𝐸2)
14: return OptimalColoring(𝑂, 𝐸2, 𝑡, 𝑘,𝑇)

𝑜3 𝑜4

𝑜5 𝑜6

𝑜7

{𝑜3, 𝑜4, 𝑜6} 𝑏3

{𝑜4, 𝑜5, 𝑜6}𝑏4 {𝑜4, 𝑜6, 𝑜7} 𝑏5

Fig. 4. The subtree 𝑇 ↓
𝑏3

(right) and the subgraph 𝐺↓
𝑏3

(left) of the bag 𝑏3 of Figure 1.

since, as mentioned in Section 2.2, there are linear-time FPT algorithms for computing an optimal tree

decomposition and making it nice.

Subtrees and Subgraphs. We say that a vertex 𝑣 appears in a bag 𝑏, if 𝑣 ∈ 𝑉𝑏 . Similarly, an edge 𝑒 appears

in 𝑏 if all of its endpoints appear in 𝑏, i.e. 𝑒 ⊆ 𝑉𝑏 . We denote the set of all edges appearing in 𝑏 by 𝐸𝑏 .

For a bag 𝑏 ∈ 𝐵, we define its corresponding subtree 𝑇
↓
𝑏

= (𝐵↓
𝑏
, 𝐸

𝑇
↓
𝑏

) as the part of 𝑇 that is rooted at 𝑏,

i.e. including 𝑏 and all of its descendants. The subgraph 𝐺
↓
𝑏
corresponding to 𝑏 consists of all vertices and

edges that appear in at least one bag in 𝑇
↓
𝑏
, i.e. 𝐺

↓
𝑏
=

(⋃
𝑏′∈𝐵↓

𝑏

𝑉𝑏′,
⋃

𝑏′∈𝐵↓
𝑏

𝐸𝑏′
)
.

Example 5. Consider the graph and decomposition of Figure 1. Figure 4 shows the subtree and subgraph
corresponding to the bag 𝑏3.

Partial Coloring. Let 𝑏 ∈ 𝐵 be a bag. A partial coloring on 𝑏 is simply a function 𝑓𝑏 : 𝑉𝑏 → {1, 2, . . . , 𝑘}
that assigns a color to each vertex in 𝑏. We denote the set of all 𝑘 |𝑉𝑏 | possible partial colorings on 𝑏 by C𝑏 .
Our algorithm is a bottom-up dynamic programming on the nice tree decomposition 𝑇 . There are two

basic observations: (i) since every bag 𝑏 is small and has size at most𝑤 + 1, we can do a brute-force check

15

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

of all partial colorings over 𝑏, and (ii) we can define subproblems on 𝐺
↓
𝑏
and its tree decomposition 𝑇

↓
𝑏
and

use the solutions in these subproblems to solve the initial instances.

Dynamic Programming Variables. Based on the two observations above, for every bag 𝑏 ∈ 𝐵 and partial

coloring 𝑓𝑏 ∈ C𝑏, the algorithm defines a dynamic programming variable dp[𝑏, 𝑓𝑏] and initializes it to +∞.
Our goal is to compute values for the dp[·, ·] in a bottom-up order such that the following invariant holds

after we compute dp[𝑏, 𝑓𝑏]:

dp[𝑏, 𝑓𝑏] = Minimal possible cost of a coloring of 𝐺
↓
𝑏
(†)

in which 𝑉𝑏 is colored according to 𝑓𝑏

In other words, we solve subproblems on 𝐺
↓
𝑏
corresponding to each possible partial coloring of 𝑏.

Computing dp Values. Our algorithm processes the bags of 𝑇 in a bottom-up order and performs the

following actions based on the type of the bag:

(1) Leaf Bags: Consider a leaf bag ℓ ∈ 𝐵. Given that 𝑇 is nice, we have 𝑉ℓ = ∅. Hence, Cℓ contains only a

single trivial coloring 𝑓ℓ . Since there are no edges in 𝐺
↓
ℓ
, the total cost would always be 0. Hence, the

algorithm sets dp[ℓ, 𝑓ℓ] = 0.

(2) Bags with a Single Child: Suppose that 𝑏 ∈ 𝐵 is a bag with a single child 𝑐 ∈ 𝐵. Given that 𝑇 is nice,

we have |𝑉𝑏 Δ 𝑉𝑐 | = 1. The algorithm considers two cases:

(i) 𝑉𝑏 = 𝑉𝑐 ∪ {𝑣}, i.e. the bag 𝑏 has one vertex 𝑣 which does not appear in its child 𝑐 : In this case, each

partial coloring 𝑓𝑏 ∈ C𝑏 induces a unique partial coloring 𝑓𝑐 := 𝑓𝑏 |𝑉𝑐 on 𝑐 . Hence, the minimal total

cost in 𝐺
↓
𝑐 is dp[𝑐, 𝑓𝑐] which is already computed in previous steps. The algorithm should compute

dp[𝑏, 𝑓𝑏], i.e. the minimal cost in𝐺
↓
𝑏
. The edges in𝐺

↓
𝑏
can be divided in two sets: (a) edges that appear

only in 𝐺
↓
𝑏
but not in 𝐺

↓
𝑐 ; and (b) edges that appear 𝐺

↓
𝑐 . Note that every edge 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩

in part (a) must have all of its endpoints in𝑉𝑏 . Hence, the partial coloring 𝑓𝑏 fixes the colors of all 𝑣𝑖 .

So, the algorithm can simply iterate over the 𝑣𝑖 ’s and check whether the edge 𝑒 is missed. Moreover,

the optimal cost (number of missed edges) in part (b) is given by dp[𝑐, 𝑓𝑐] . Thus, the algorithm sets

dp[𝑏, 𝑓𝑏] = dp[𝑐, 𝑓𝑐] + number of missed edges in (a).

b

c

Fig. 5. 𝑏 has one vertex more than 𝑐 . A coloring of 𝑏 also colors 𝑐 . New edges in 𝐺↓
𝑏
, i.e. part (a), are shown in red.

(ii) 𝑉𝑐 = 𝑉𝑏 ∪ {𝑣}, i.e. the child 𝑐 has one vertex 𝑣 which does not appear in its parent 𝑏: In this case,

we have 𝐺
↓
𝑏
= 𝐺

↓
𝑐 . However, a partial coloring function 𝑓𝑏 ∈ C𝑏 does not provide a color for the

16

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

vertex 𝑣 . Let 𝑓𝑏 [𝑣 → 𝑖] be an extension of 𝑓𝑏 that maps 𝑣 to 𝑖 . The algorithm sets

dp[𝑏, 𝑓𝑏] =
𝑘

min

𝑖=1
dp[𝑐, 𝑓𝑏 [𝑣 → 𝑖]] .

This is correct because 𝐺
↓
𝑏
= 𝐺

↓
𝑐 and the only partial colorings in C𝑐 that have no conflict with 𝑓𝑏

are precisely those of the form 𝑓𝑏 [𝑣 → 𝑖] .

b

c

Fig. 6. 𝑐 has one vertex 𝑣 more than its parent 𝑏. The coloring of 𝑓𝑏 sets colors for all vertices of 𝑐 except 𝑣 . This vertex
can have any color.

(3) Bags with Two Children: Consider a bag 𝑏 with two children 𝑐1 and 𝑐2. Since 𝑇 is nice, we have

𝑉𝑏 = 𝑉𝑐1 = 𝑉𝑐2 and 𝐺
↓
𝑏
= 𝐺

↓
𝑐1 ∪𝐺

↓
𝑐2 . So, when computing dp[𝑏, 𝑓𝑏], we can use the same partial coloring

function 𝑓𝑏 for both 𝑐1 and 𝑐2 and then the number of missed edges in 𝐺
↓
𝑏
is equal to the number of

missed edges in𝐺
↓
𝑐1 plus the number of missed edges in𝐺

↓
𝑐2 minus the number of missed edges that were

counted in both. If an edge 𝑒 is in both𝐺
↓
𝑐1 and𝐺

↓
𝑐2 , then all of its endpoints must appear in both graphs.

Using the last property of tree decompositions (see Section 2.2), we conclude that all of its endpoints

have appeared in 𝑏 and hence 𝑒 ∈ 𝐸𝑏 = 𝐸𝑐1 = 𝐸𝑐2 . Thus, the algorithm sets:

dp[𝑏, 𝑓𝑏] = dp[𝑐1, 𝑓𝑏] + dp[𝑐2, 𝑓𝑏]
− number of missed edges in 𝐸𝑏

As before, the algorithm can check whether an edge 𝑒 ∈ 𝐸𝑏 is missed because the partial coloring 𝑓𝑏

provides the color information for all endpoints of 𝑒 .

b

c1 c2

Fig. 7. 𝑏 has two children 𝑐1 and 𝑐2. A coloring of 𝑏 will also color all vertices in 𝑉𝑐1 and 𝑉𝑐2 . Some edges are shared

between 𝐺↓𝑐1 and 𝐺
↓
𝑐2 . All such edges appear in 𝑏.

Computing the Final Answer. Since 𝑇 is nice, we have 𝑉𝑟 = ∅. So, there is only one possible partial

coloring ⊥∈ C𝑟 for the root bag 𝑟 . Moreover, we have 𝐺
↓
𝑟 = 𝐺. So, the algorithm outputs dp[𝑟,⊥] as the

minimal number of missed edges. Algorithm 2 shows all steps of our method for obtaining the cost of the

optimal coloring.

17

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Algorithm 2 Parameterized algorithm for optimal coloring

1: procedure OptimalColoring(𝑉 , 𝐸, 𝑡, 𝑘,𝑇 = (𝐵, 𝐸𝑇))
2: for 𝑏 ∈ 𝐵 in bottom-up order do
3: for 𝑓𝑏 : 𝑉𝑏 → {1, 2, . . . , 𝑘} do
4: if 𝑏.children = ∅ then
5: dp[𝑏, 𝑓𝑏] ← 0

6: else if |𝑏.children| = 1 then
7: 𝑐 ← 𝑏.children[1]
8: if 𝑉𝑐 ⊆ 𝑉𝑏 then
9: 𝑣 ← 𝑉𝑏 \𝑉𝑐
10: 𝑓𝑐 ← 𝑓𝑏 |𝑉𝑐
11: dp[𝑏, 𝑓𝑏] ← dp[𝑐, 𝑓𝑐]
12: for 𝑒 ∈ 𝐸𝑏 do
13: if 𝑣 ∈ 𝑒 ∧ is_missed(𝑒, 𝑓𝑏) then
14: dp[𝑏, 𝑓𝑏] ← dp[𝑏, 𝑓𝑏] + 1
15: else if 𝑉𝑏 ⊆ 𝑉𝑐 then
16: 𝑣 ← 𝑉𝑐 \𝑉𝑏
17: dp[𝑏, 𝑓𝑏] ← +∞
18: for 𝑖 = 1 to 𝑘 do
19: 𝑓𝑐 ← 𝑓𝑏 [𝑣 → 𝑖]
20: dp[𝑏, 𝑓𝑏] ← min(dp[𝑏, 𝑓𝑏], dp[𝑐, 𝑓𝑐])
21: else if |𝑏.children| = 2 then
22: 𝑐1, 𝑐2 ← 𝑏.children
23: dp[𝑏, 𝑓𝑏] ← dp[𝑐1, 𝑓𝑏] + dp[𝑐2, 𝑓𝑏]
24: for 𝑒 ∈ 𝐸𝑏 do
25: if is_missed(𝑒, 𝑓𝑏) then
26: dp[𝑏, 𝑓𝑏] ← dp[𝑏, 𝑓𝑏] − 1
27: 𝑟 ← 𝑇 .root
28: return dp[𝑟,⊥]

Finding the Optimal Coloring. The algorithm above obtains the minimal number of missed edges /

minimal cost. As is common in dynamic programming, one can obtain the optimal coloring itself by simply

keeping track of the partial colorings that led to the optimal dp[·, ·] value at every step of the algorithm.

Theorem 3. Given positive integer constants 𝑡 and 𝑘 , a canonical hypergraph𝐺 with 𝑛 vertices whose edges
have at most 𝑑 endpoints, and a nice tree decomposition of𝐺 with𝑂 (𝑛) bags and width𝑤 , the algorithm above
solves the 𝑡-way optimal coloring problem in total runtime 𝑂 (𝑛 · 𝑘𝑤+1 · (𝑘 + 𝑑 ·𝑤𝑑)) .

Proof. The correctness of the algorithm was argued in its presentation above. We focus on the runtime

bound. There are𝑂 (𝑛) bags and the algorithm defines at most 𝑘𝑤+1 different dp[·, ·] variables at each bag 𝑏,

since there are at most 𝑘𝑤+1 partial colorings in C𝑏 . Case (1) spends 𝑂 (1) time per variable and Case (2.ii)

takes the minimum of 𝑘 values in 𝑂 (𝑘). In cases (2.i) and (3), all edges in the current bag should be checked

to see if they are missed. There are at most (𝑤 + 1)𝑑 such edges and checking each of them takes 𝑂 (𝑑)4. □
4
Without loss of generality, we can assume every edge in �̃�𝑑 has exactly 𝑑 + 1 endpoints. Each edge has exactly 𝑑 distinct vertices and

removing repetitive internal vertices from the edge has no effect in our algorithm.

18

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

Remark. The bound above is a theoretical worst-case bound and not tight. Our algorithm is indeed much

faster in practice. Moreover, we can improve the runtime to 𝑂 (𝑁 · 𝑘𝑤+2) using a slightly different notion

of nice tree decompositions. See Appendix B for details of theoretical improvements and Section 5 for

experimental results.

Corollary 4. When 𝑘,𝑤 and 𝑑 are bounded, our algorithm solves the optimal coloring problem in linear
time 𝑂 (𝑛).

We are now ready to present our main theorem:

Theorem 4. For any 𝜖 > 0, there exists an order 𝑑𝜖 , such that by applying our tree decompostion-based
algorithm to the sparsified access hypergraph �̃�𝑑𝜖 , we obtain a linear-time (1+𝜖)−approximation of the optimal
number of cache misses, as well as a placement map ˆ𝑓 such that

Misses𝑡
𝑘
(ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

For direct mapping, we have 𝑑𝜖 = ⌈𝑘 + 𝑘
𝜖
⌉ and for 𝑡-way mapping, 𝑑𝜖 = ⌈𝑡 · 𝑘 + 𝑡 ·𝑘

𝜖
⌉ .

Proof. Direct result of Corollaries 2, 3 and 4. □

4 HARDNESS OF CDP IN BOUNDED TREEWIDTH

As proven in [37], it is impossible to approximate CDP within any non-trivial factor unless P=NP. In

this section, we show that for every positive integer constant 𝑑 , finding an exact solution to the CDP

problem remains NP-hard even if the access hypergraph 𝐺𝑑 of order 𝑑 has constant treewidth. These two

complementary hardness results show that both parameterization and approximation are necessary for our

efficient solution in Section 3 and the problem remains NP-hard if only one of them is applied.

Theorem 5 (Hardness of CDP with Direct Mapping). For every positive integer constant 𝑑 , the CDP
problem with direct mapping is NP-hard even when limited to instances where the treewidth of 𝐺𝑑 is bounded
by a constant.

Example 6. Before providing a formal proof, let us illustrate the main ideas by an example. Our goal is
to find a reduction from general CDP, which is NP-hard, to the special case of CDP in which the treewidth is
bounded. Consider the access sequence of Example 3:

Σ = ⟨𝑜1, 𝑜2, 𝑜1, 𝑜4, 𝑜5, 𝑜3, 𝑜3, 𝑜1, 𝑜2⟩.

Suppose that we have a cache of size 𝑘 = 2 and set 𝑑 = 2 in the theorem above. In other words, we want
to reduce our CDP instance 𝐼 = (𝑛,𝑂, 𝑁 ′, Σ, 1, 𝑘) = (5, {𝑜1, . . . , 𝑜5}, 9, Σ, 1, 2) to another CDP instance 𝐼 ′ =
(𝑛′,𝑂 ′, 𝑁 ′, Σ′, 1, 𝑘 ′) such that the access graph of 𝐼 ′ has small treewidth. We first introduce two new data

19

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝜏1𝜏2𝑜1 𝑜2 𝑜3 𝑜4 𝑜5

𝜏1 𝜏2

Fig. 8. Base access graph of the sequence Σ̂.

{𝜏1, 𝜏2, 𝑜1} {𝜏1, 𝜏2, 𝑜2} {𝜏1, 𝜏2, 𝑜3} {𝜏1, 𝜏2, 𝑜4} {𝜏1, 𝜏2, 𝑜5}

{𝜏1, 𝜏2}

Fig. 9. A tree decomposition of width 2 for the graph of Figure 8.

elements (objects) 𝜏1 and 𝜏2 and set 𝑂 ′ = {𝑜1, . . . , 𝑜5, 𝜏1, 𝜏2}. Intuitively, we want to take Σ and add ⟨𝜏1, 𝜏2⟩
between any two consecutive accesses, so that the treewidth of the access sequence becomes small. This leads to

Σ̂ = ⟨𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜2, 𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜4, 𝜏1, 𝜏2, 𝑜5
𝜏1, 𝜏2, 𝑜3, 𝜏1, 𝜏2, 𝑜3, 𝜏1, 𝜏2, 𝑜1, 𝜏1, 𝜏2, 𝑜2, 𝜏1, 𝜏2⟩

Note that every access to any original data item 𝑜𝑖 is now preceded and succeeded by the new elements 𝜏2 and
𝜏1. Ignoring edge directions and repetitions, this leads to an access graph that is almost bipartite, except for the
edge between the new elements. See Figure 8. We can easily find a tree decomposition of constant width 2 for
this access graph, as shown in Figure 9. We put a bag containing only the new elements as the root and add a
child of the form {𝜏1, 𝜏2, 𝑜𝑖 } for each 𝑜𝑖 . It is easy to verify that this is a valid tree decomposition.
To have a reduction, we must be able to obtain the optimal number of cache misses in 𝐼 from the optimal

number of cache misses in 𝐼 ′, but an optimal data placement for Σ̂ might have no resemblance to its counterpart
for Σ. So, we first increase our cache size by setting 𝑘 ′ = 4, and then add a gadget that ensures each 𝜏𝑖 gets its
own dedicated cache line. This ensures that exactly 2 = 𝑘 cache lines remain for the 𝑜𝑖 ’s and hence we can
simulate the original instance. To achieve this property, we simply append many repetitions of ⟨𝜏1, 𝜏2⟩ to the
end of Σ̂, and define:

Σ′ = Σ̂ · ⟨𝜏1, 𝜏2⟩ |Σ̂+1 | .

In other words, Σ′ is obtained by appending |Σ̂ + 1| copies of ⟨𝜏1, 𝜏2⟩ to the end of Σ̂. Note that in 𝐼 ′, the new
items 𝜏1 and 𝜏2 should be assigned to different cache lines. Otherwise, we will get 2 · (Σ̂ + 1) cache misses in the

20

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

second part of Σ′ since every access to the new items will be a miss. In contrast, if they are assigned to the same
cache line, we can get at most |Σ′ | cache misses in the first part and none in the second.
Now consider an optimal data placement for 𝐼 ′ and suppose that it assigns 𝜏1 and some original object 𝑜𝑖

to the same cache line. This means every access to 𝑜𝑖 or 𝜏1 in Σ̂ is a miss. We can modify our data placement
and assign 𝑜𝑖 to any other cache line that is not assigned to 𝜏1 or 𝜏2, and this will not increase the number of
cache misses. In the worst case, every cache miss on 𝑜𝑖 is preserved and every cache miss on 𝜏1 is replaced by a
miss on another element that shares a cache line with 𝑜𝑖 . Hence, there is an optimal data placement 𝑓 ′ for 𝐼 ′

in which 𝜏1 and 𝜏2 have their own dedicated cache lines. This means that the other elements must be put into
𝑘 ′ − 2 = 𝑘 lines and hence 𝐼 is simulated by 𝐼 ′. So, we can just count the number of cache misses on 𝑜𝑖 ’s in 𝐼 ′

and this gives us the optimal number of misses in 𝐼 .

Proof of Theorem 5. We provide a polynomial-time reduction from the general case of CDP to low-

treewidth CDP. Since the former is NP-hard [37], then so is the latter. Let 𝐼 = (𝑛,𝑂, 𝑁, Σ, 1, 𝑘) be a CDP
instance with direct mapping. We create a new CDP instance 𝐼 ′ = (𝑛′,𝑂 ′, 𝑁 ′, Σ′, 1, 𝑘 ′) where:
• 𝑛′ = 𝑛 + 𝑑 and 𝑂 ′ = 𝑂 ∪ {𝜏1, 𝜏2, . . . , 𝜏𝑑 }, i.e. we add 𝑑 new objects.

• 𝑁 ′ = 𝑑2 · 𝑁 + 𝑑2 + 2 · 𝑑 · 𝑁 + 2 · 𝑑 + 𝑁 and the access sequence Σ′ is of the following form:

𝑋 𝜎1 𝑋 𝜎2 𝑋 . . . 𝑋 𝜎𝑁 𝑋 𝑋𝑑 ·𝑁+𝑑+𝑁+1

where 𝑋 = ⟨𝜏1, 𝜏2, . . . , 𝜏𝑑⟩. Intuitively, we add 𝑋 at the beginning and end of Σ, as well as in between

every two accesses. Finally, we add 𝑑 · 𝑁 + 𝑑 + 𝑁 + 1 more copies of 𝑋 to the end.

• 𝑘 ′ = 𝑘 + 𝑑, i.e. we add 𝑑 new cache lines.

Let 𝑓 ′ be an optimal placement function for 𝐼 ′. Note that for every 𝑖 ≠ 𝑗, we have 𝑓 ′(𝜏𝑖) ≠ 𝑓 ′(𝜏 𝑗). This is
because assigning 𝜏𝑖 and 𝜏 𝑗 to the same cache line will cause at least 𝑑 · 𝑁 + 𝑑 + 𝑁 + 1 cache misses in the

final part of Σ′, i.e. in 𝑋𝑑 ·𝑁+𝑑+𝑁+1, whereas any placement that assigns different cache lines to each of the

𝜏𝑙 ’s leads to no cache misses in this part. The length of the rest of the sequence is 𝑑 · 𝑁 + 𝑑 + 𝑁 which is a

natural upper-bound on the number of possible cache misses. Next, we argue that there is an optimal 𝑓 ′

that does not assign any 𝜏𝑖 and 𝑜 𝑗 to the same cache line. Suppose that 𝑓 (𝜏𝑖) = 𝑓 (𝑜 𝑗). Then every access

to 𝑜 𝑗 at any time 𝑎 is a cache miss, since 𝑓 (𝑜 𝑗) contains 𝜏𝑖 . Similarly, the access to 𝜏𝑖 at time 𝑎 + 𝑖 is also a

cache miss. We now change 𝑓 (𝑜 𝑗) arbitrarily to some other value 𝑞 that is not shared with any 𝜏𝑙 . It is easy

to verify that this cannot increase the number of cache misses. In the worst case, the misses on 𝑜 𝑗 remain

and the misses on 𝜏𝑖 are replaced by misses on the first other access that is mapped to 𝑞. By repeating this

process, we will obtain an optimal 𝑓 ′ that uses 𝑑 of the cache lines for {𝜏1, . . . , 𝜏𝑑 } and the other 𝑘 lines for

𝑂. Hence, 𝑓 ∗ = 𝑓 ′|𝑂 is an optimal solution for 𝐼 . This completes the reduction. Figure 10 is a decomposition

of this graph with width 𝑑 . □

21

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

𝑋 ∪ {𝑜1} 𝑋 ∪ {𝑜2} . . . 𝑋 ∪ {𝑜𝑛}

𝑋

Fig. 10. A decomposition of 𝐺 ′
𝑑
with constant width 𝑑 .

Theorem 6 (Hardness of CDP with 𝑡-way Mapping). For all positive integer constants 𝑑 and 𝑡 , the CDP
problem with 𝑡-way mapping is NP-hard even when limited to instances where the treewidth of 𝐺𝑑 is bounded
by a constant.

Proof. Section 4.3 of [37] provides a construction that, by introducing new data items and polynomially

increasing the instance size, simulates a direct-mapping cache by a 𝑡−way mapping cache. The construction

in [37] uses a constant number of extra data elements and does not blow up the treewidth of 𝐺𝑑 . We can

then apply Theorem 5. □

5 EXPERIMENTAL RESULTS

In this section we report on an implementation and experimental evaluation of our algorithm for CDP.

Implementation. We implemented our approach, i.e. the algorithm of Section 3.3 for direct-mapped caches

with the optimizations of Appendix B, in C++ and used the LibTW library [47] for computing optimal tree

decompositions.

Machine. All results were obtained on an Ubuntu 20.04 machine using a single thread of an Intel Xeon

E3-1220 v2 Processor (3.1 GHz, 8M Cache) with 32 GB of RAM.

Benchmarks. We used the benchmarks of [18] for obtaining experimental results. These benchmarks

contain access sequences Σ that are generated from a wide variety of classical algorithms including in

linear algebra, sorting, divide-and-conquer, dynamic programming and string matching. In [18], they were

introduced as benchmarks for the problem of data packing, which is another formalism of minimizing cache

misses. Given that both data packing and CDP have the same input format, i.e. an access sequence of a

program, we can simply repurpose the benchmarks of [18] for our use-case. Each benchmark corresponds

to a classical algorithm, e.g. Gram-Schmidt or Heap Sort, and can generate access sequences of various

(arbitrarily long) lengths. See [18] and its artifact for a complete list of benchmarks and other details.

Test Cases. Recall that a direct-mapping instance is a tuple 𝐼 = (𝑛,𝑂, 𝑁, Σ, 1, 𝑘). Our algorithm also needs

an extra parameter 𝑑 , i.e. the degree of the access hypergraph. We call the tuple (𝑛,𝑂, 𝑁, Σ, 𝑘, 𝑑) a test case.
In our experiments, we set a time limit of 5 minutes per test case for our algorithm and, for each benchmark,

each cache size 3 ≤ 𝑘 ≤ 6, and each hypergraph degree 𝑘 < 𝑑 < 15, generated all the test cases that our

22

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

algorithm could handle in this time limit. This led to a total of 12,085 test cases, corresponding to 1,633

distinct instances. Our longest access sequence in our instances has 12,917 accesses. Note that the cache

sizes considered here are much smaller than those in the real world. Our algorithm is hence not suitable

for practical cache management but can instead be used for limit studies and profiling as mentioned in

Section 1. Similarly, note that we assume the entire sequence Σ of accesses is given as part of the input and

are solving the single-threaded offline case of the problem.

Sparsity of Instances. The fact that access graphs and access hypergraphs are sparse is quite well-known.

In [18], it was shown that the access hypergraphs of most classical algorithms have bounded treewidth.

However, in contrast to previous methods, our algorithm does not depend on the access hypergraph 𝐺𝑑

itself, but only on a sparsified subgraph �̃�𝑑 . See Section 3.2. This means that we work with a much sparser

graph. In our experiments, the average ratio of the number of edges in �̃�𝑑 to the number of edges in 𝐺𝑑

was 47.22%. So, our sparsification has significant impact, leading to graphs that have less than half as many

edges as the widely-used access hypergraphs. Moreover, they have a treewidth of at most 14. Figure 11

provides a histogram of the treewidths of �̃�𝑑 in our test cases.

Fig. 11. Treewidths of our test cases. The 𝑥 axis is the treewidth of the sparsified access hypergraph �̃�𝑑 and the 𝑦
access is the number of cases.

Baselines. We compare our algorithm against several well-known heuristics in the literature.

• CKJA: This is the algorithm presented in [13], when cache-conscious data placement was first defined.

It is a classic and has since been extensively studied.

• BB: This algorithm was presented in [3] and provides a graph-theoretic approach that aims to totally

prevent the so-called “conflict misses” if possible.

• SCE: This approach aims to minimize cache misses using a coloring-based heuristic. It was presented

in [44].

Experimental Results. Table 1 provides a summary of the number of instances where our approach

outperformed the baseline heuristics. Overall, our algorithm beats CKJA in 85% of instances, BB in 84%
23

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Table 1. Comparison of our algorithm with the baselines. The total number of benchmarks instances is 1633. Each cell
contains the number of instances in which our algorithm outperformed the base line (left) and the number of instances
in which the baseline had fewer misses (right).

CKJA BB SCE

Our Algorithm
PPPPPPPP1395

238
PPPPPPPP1373

260
PPPPPPPP1441

192

and SCE in 88%. Figure 12 provides a detailed comparison between our algorithm and the baselines above.

In this figure, each red dot corresponds to one instance. The dot’s 𝑥 coordinate is the number of cache

misses obtained by our algorithm and its 𝑦 coordinate is the number of cache misses of the other method.

The 𝑥 = 𝑦 line is shown in blue. Hence, a red dot above the line corresponds to an instance in which our

algorithm performed better than the other approach, and a red dot below the blue line signifies that the

other approach performed better.

Lower-bounds. Amajor theoretical advantage of our approach is that, for the first time, it provides constant

multiplicative approximation ratio guarantees. Specifically, we can use the guaranteed ratio in Theorem 1

to obtain a lower-bound ℓ on the optimal number of cache misses, i.e. we are guaranteed to have at least ℓ

cache misses no matter which placement function is used. These lower-bounds are shown in Figure 13. As

before, there is a green dot corresponding to each instance. The green dot’s 𝑥 coordinate is the number

of cache misses obtained by our algorithm, whereas its 𝑦 coordinate is the guaranteed lower-bound ℓ . As

expected, all green dots are below the 𝑥 = 𝑦 line.

Discussion. Our experimental results show that our novel approach manages a better utilization of the

cache compared to previous heuristics, leading to improved cache performance in the vast majority of

the benchmarks. Moreover, the performance gap increases as we go to more demanding benchmarks,

indicated by the widening distribution of data points on the right-end side of the charts in Figure 12. Our

approach is the first to provide theoretical guarantees of approximation within a constant ratio. Although

our running time is generally larger than the heuristics, it is many orders of magnitude faster than a purely

exhaustive search, which is the only other known approach so far that offers any non-trivial guarantees of

optimality. Performing exhaustive search on our benchmark instances will take more than 10
500

years per

instance. This matches the intuition provided by the notorious hardness-of-approximation result in [37]. Our

parameterized approach overcomes this hardness of approximation and solves instances that have thousands

or even tens of thousands of accesses. This being said, given that our runtime depends exponentially on

the cache size, we can only handle small caches and our approach does not scale to real-world cache sizes.

Finally, our lower bounds can be used in limit studies of heuristics, in order to characterize their performance

not against another approach, but compared to the best theoretically-possible performance.

24

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

0

200

400

600

800

1000

1200

Nu
m
be

r o
f C

ac
he

 M
iss

es
 u
sin

g
BB

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

0

200

400

600

800

1000

1200

Nu
m
be

r o
f C

ac
he

 M
iss

es
 u
sin

g
SC

E

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

0

200

400

600

800

1000

Nu
m
be

r o
f C

ac
he

 M
iss

es
 u
sin

g
CK

JA

Fig. 12. Performance of our algorithm vs BB (top), SCE (middle), and CKJA (bottom).

6 CONCLUSION

We studied Cache-conscious Data Placement (CDP), which is a standard and classical problem in memory

management. As previous works have provided either formal and strong theoretical hardness results,

or heuristics with no guarantees of optimality, this work is the first to present formal positive results.
25

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

0

200

400

600

800

1000

Th
eo
re
tic
al
 L
ow

er
 B
ou
nd

 o
f T

he
or
em

 1

Fig. 13. Number of cache misses obtained by our algorithm vs the theoretical lower bounds of Theorem 1.

Particularly, we have shown that real-world instances of CDP admit efficient approximations within a

constant ratio (1 + 𝜖) based on sparsification and parameterization by treewidth. Notably, our results differ

from standard algorithmic approaches in which treewidth suffices to make the problem tractable. As our

hardness results show, the problem remains NP-hard even with bounded treewidth, and only approximations

are possible.This reveals a stronger hardness for the problem compared to previous results.

Interesting directions of future work include studying the existence of other parameters that allow for an

efficient algorithm to solve CDP exactly, designing heuristics on top of our treewidth-based algorithm to

improve its performance, and on the more practical side, incorporating our algorithm in data-placement of

mainstream compilers.

ACKNOWLEDGMENTS

We are extremely grateful to the anonymous reviewers for their suggestions, which significantly improved

the quality of this work. The research was partially supported by the HKUST-Kaisa Joint Research Institute

Project Grant HKJRI3A-055 and HKUST Startup Grant R9272.

26

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

REFERENCES

[1] Mohsen Alambardar, Amir Goharshady, Mohammad Reza Hooshmandasl, and Ali Shakiba. 2021. Optimal Mining: Maximizing

Bitcoin Miners’ Revenues. (2021). https://hal.archives-ouvertes.fr/hal-03232783

[2] Ali Asadi, Krishnendu Chatterjee, Amir Goharshady, Kiarash Mohammadi, and Andreas Pavlogiannis. 2020. Faster algorithms

for quantitative analysis of MCs and MDPs with small treewidth. In ATVA. 253–270.

[3] Mirza Beg and Peter Van Beek. 2010. A graph theoretic approach to cache-conscious placement of data for direct mapped caches.

In ISMM. 113–120.

[4] Hans Bodlaender. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on computing

25, 6 (1996), 1305–1317.

[5] Hans Bodlaender. 1997. Treewidth: Algorithmic techniques and results. In MFCS. 19–36.

[6] Hans Bodlaender. 1998. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci. 209, 1-2 (1998), 1–45.

[7] Hans L Bodlaender. 1988. Dynamic programming on graphs with bounded treewidth. In ICALP. 105–118.

[8] Hans L Bodlaender. 1994. A tourist guide through treewidth. Acta cybernetica 11, 1-2 (1994), 1.

[9] Hans L Bodlaender. 2005. Discovering treewidth. In SOFSEM. 1–16.

[10] Hendrik Borghorst and Olaf Spinczyk. 2019. CyPhOS - A Component-Based Cache-Aware Multi-core Operating System. In ARCS.

171–182.

[11] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. 1995. Competitive Paging with Locality of Reference. J.

Comput. Syst. Sci. 50, 2 (1995), 244–258.

[12] Bernd Burgstaller, Johann Blieberger, and Bernhard Scholz. 2004. On the tree width of Ada programs. In ADA. 78–90.

[13] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-Conscious Data Placement. In ASPLOS. 139–149.

[14] Krishnendu Chatterjee, Amir Goharshady, and Ehsan Goharshady. 2019. The treewidth of smart contracts. In SAC. 400–408.

[15] Krishnendu Chatterjee, Amir Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2019. Faster

algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. TOPLAS 41, 4 (2019), 1–46.

[16] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Algorithms for algebraic path

properties in concurrent systems of constant treewidth components. In POPL. 733–747.

[17] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2020. Optimal and perfectly parallel

algorithms for on-demand data-flow analysis. In ESOP. 112–140.

[18] Krishnendu Chatterjee, Amir Goharshady, Nastaran Okati, and Andreas Pavlogiannis. 2019. Efficient parameterized algorithms

for data packing. In POPL. 53:1–53:28.

[19] Krishnendu Chatterjee, Amir Goharshady, and Andreas Pavlogiannis. 2017. JTDec: A tool for tree decompositions in soot. In

ATVA. 59–66.

[20] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Goharshady, and Andreas Pavlogiannis. 2018. Algorithms for algebraic path

properties in concurrent systems of constant treewidth components. TOPLAS 40, 3 (2018), 1–43.

[21] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2015. Faster algorithms for quantitative verification in

constant treewidth graphs. In CAV. 140–157.

[22] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Optimal reachability and a space-time tradeoff for

distance queries in constant-treewidth graphs. In ESA, Vol. 57.

[23] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2021. Quantitative Verification on Product Graphs of

Small Treewidth. In FSTTCS.

[24] Krishnendu Chatterjee and Jakub Łącki. 2013. Faster algorithms for Markov decision processes with low treewidth. In CAV.

543–558.

[25] Marek Cygan, Fedor Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket

Saurabh. 2015. Parameterized algorithms. Springer.

27

https://hal.archives-ouvertes.fr/hal-03232783

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

[26] Chen Ding and Ken Kennedy. 1999. Improving Cache Performance in Dynamic Applications through Data and Computation

Reorganization at Run Time. In PLDI. 229–241.

[27] Wei Ding and Mahmut Kandemir. 2014. CApRI: CAche-conscious data reordering for irregular codes. In SIGMETRICS. 477–489.

[28] Rodney Downey and Michael Fellows. 2012. Parameterized complexity. Springer.

[29] John Fearnley and Sven Schewe. 2012. Time and parallelizability results for parity games with bounded treewidth. In ICALP.

189–200.

[30] Andrea Ferrara, Guoqiang Pan, and Moshe Y Vardi. 2005. Treewidth in verification: Local vs. global. In LPAR. 489–503.

[31] Amir Goharshady. 2020. Parameterized and algebro-geometric advances in static program analysis. Ph.D. Dissertation. Institute of

Science and Technology Austria.

[32] Amir Goharshady and Fatemeh Mohammadi. 2020. An efficient algorithm for computing network reliability in small treewidth.

Reliability Engineering & System Safety 193 (2020), 106665.

[33] Jens Gustedt, Ole A Mæhle, and Jan Arne Telle. 2002. The treewidth of Java programs. In ALENEX. 86–97.

[34] Rahman Lavaee. 2016. The hardness of data packing. In POPL. 232–242.

[35] Abraham Mendlson, Shlomit Pinter, and Ruth Shtokhamer. 1994. Compile Time Instruction Cache Optimizations. In CC. 404–418.

[36] Jan Obdržálek. 2003. Fast mu-calculus model checking when tree-width is bounded. In CAV. 80–92.

[37] Erez Petrank and Dror Rawitz. 2002. The hardness of cache conscious data placement. In POPL. 101–112.

[38] Leon R Planken, Mathijs M de Weerdt, and Roman PJ van der Krogt. 2012. Computing all-pairs shortest paths by leveraging low

treewidth. JAIR 43 (2012), 353–388.

[39] Neil Robertson and Paul Seymour. 1984. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36, 1 (1984), 49–64.

[40] Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. Journal of algorithms 7, 3 (1986),

309–322.

[41] Theodore Romer, Dennis Lee, Brian Bershad, and Bradley Chen. 1994. Dynamic Page Mapping Policies for Cache Conflict

Resolution on Standard Hardware. In OSDI. 255–266.

[42] Shai Rubin, David Bernstein, and Michael Rodeh. 1999. Virtual Cache Line: A New Technique to Improve Cache Exploitation for

Recursive Data Structures. In CC, Vol. 1575. 259–273.

[43] Sriram Sankaranarayanan. 2020. Reachability Analysis Using Message Passing over Tree Decompositions. In CAV. 604–628.

[44] Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing cache misses using hardware and software page placement. In

ICS. 155–164.

[45] Khalid Thabit. 1982. Cache management by the compiler. Rice University.

[46] Mikkel Thorup. 1998. All Structured Programs have Small Tree-Width and Good Register Allocation. Inf. Comput. 142, 2 (1998),

159–181.

[47] Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. 2006. Computing treewidth with LibTW. Technical Report.

[48] Raj Vaswani and John Zahorjan. 1991. The Implications of Cache Affinity on Processor Scheduling for Multiprogrammed, Shared

Memory Multiprocessors. In SOSP. ACM, 26–40.

[49] Chengliang Zhang, Chen Ding, Mitsunori Ogihara, Yutao Zhong, and Youfeng Wu. 2006. A hierarchical model of data locality. In

POPL. 16–29.

[50] Yutao Zhong, MaksimOrlovich, Xipeng Shen, and Chen Ding. 2004. Array regrouping and structure splitting using whole-program

reference affinity. In PLDI.

28

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

A DETAILS OF THE SPARSIFICATION FOR 𝑡-WAY MAPPING

In this section, we provide a detailed treatment of our method over 𝑡-way mapping instances. Throughout

this section, we fix a CDP instance 𝐼 = (𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘) with 𝑡 ≥ 2. We define colorings, sparsification and

canonical hypergraphs in the exact same manner as in the case of direct mapping (Section 3.2). Specifically,

we focus on the sparsified access hypergraph �̃�𝑑 of order 𝑑, which is canonical by definition.

Missed Edges. Consider a canonical hypergraph 𝐺 = (𝑉 , 𝐸) and a coloring function 𝑓 : 𝑉 → {1, 2, . . . , 𝑘}.
We say an edge 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ ∈ 𝐸 is missed, if 𝑒 has at least 𝑡 distinct internal vertices 𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑡
such that 𝑓 (𝑣1) = 𝑓 (𝑣𝑖1) = 𝑓 (𝑣𝑖2) = . . . = 𝑓 (𝑣𝑖𝑡). Intuitively, such an edge corresponds to a situation where

𝑣1 and at least 𝑡 of the internal vertices are mapped to the same cache line.

Optimal 𝑡-way Coloring.We define Cost𝑡 (𝑓 ,𝐺) of a coloring function 𝑓 as the number of missed edges.

The optimal 𝑡−way coloring problem asks for a coloring
ˆ𝑓 with minimal cost.

The following lemma establishes a correspondence between cache misses in indices of 𝐸2 and missed

edges in �̃�𝑑 . Recall that 𝐸2 is the set of edges 𝑒𝑖 that contain the data item 𝜎𝑖 twice.

Lemma 2. Let 𝑓 be a coloring of vertices in �̃�𝑑 = (𝑂, 𝐸2) or equivalently a placement map for 𝐼 =

(𝑛,𝑂, 𝑁, Σ, 𝑡, 𝑘). An edge 𝑒𝑖 ∈ 𝐸2 is missed in the coloring 𝑓 iff a cache miss occurs at its corresponding
access 𝜎𝑖 with placement map 𝑓 .

Proof. Recall that 𝑒𝑖 is of the form ⟨𝜎 𝑗 , 𝜎 𝑗+1, . . . , 𝜎𝑖⟩ and since �̃�𝑑 is canonical we have 𝜎𝑖 = 𝜎 𝑗 . If 𝑒𝑖 is a

missed edge, then the data item 𝜎𝑖 was brought to cache line 𝑓 (𝜎𝑖) at time 𝑗 , but by time 𝑖 , it was already

evicted. Given that our replacement policy is LRU, this means at least 𝑡 other elements have entered this

cache line, otherwise 𝜎𝑖 would not have been evicted. By definition, those 𝑡 elements have the same color

as 𝜎𝑖 and hence 𝑒𝑖 is a missed edge. Conversely, if 𝑒𝑖 is a missed edge, then there are at least 𝑡 distinct data

items accessed between times 𝑗 and 𝑖 that shared the same color 𝑓 (𝜎𝑖). Hence, 𝜎 𝑗 = 𝜎𝑖 is evicted before

time 𝑖 and the access at time 𝑖 is a cache miss.

Corollary 5. Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(ˆ𝑓 , Σ) ≤ Cost𝑡 (ˆ𝑓 , �̃�𝑑) + |𝐸1 |.

Proof. Recall that 𝑓 ∗ is the optimal placement map that minimizes the number of cache misses and
ˆ𝑓 is

the optimal coloring that minimizes the number of missed edges in �̃�𝑑 . Consider
ˆ𝑓 as a placement map.

Based on the lemma above, it causes exactly Cost(ˆ𝑓 , �̃�𝑑) cache misses in accesses corresponding to 𝐸2. It

can also cause at most |𝐸1 | cache misses in accesses corresponding to 𝐸1 .

Based on the corollary above, we can find a bound on the optimal number of cache misses based on the

cost of
ˆ𝑓 .

Theorem 7. We have

Misses𝑡
𝑘
(𝑓 ∗, Σ) ≤ Misses𝑡

𝑘
(ˆ𝑓 , Σ) ≤ 𝑑

𝑑 − 𝑡 · 𝑘 ·Misses𝑡
𝑘
(𝑓 ∗, Σ).

29

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Proof. The proof is an extension of that of Theorem 1 with the caveat that the total cache size is now

𝑡 · 𝑘, since each of the 𝑘 cache lines can hold up to 𝑡 elements. The first inequality is trivially obtained by

the definition of 𝑓 ∗.

We define𝑀∗ to be the set of indices of access that cause a cache miss when using the optimal placement

𝑓 ∗. Similarly, let �̂� be the indices of misses using
ˆ𝑓 . By definition, we have |𝑀∗ | = Misses𝑘 (𝑓 ∗, Σ) and

|�̂� | = Misses𝑘 (ˆ𝑓 , Σ). As in Theorem 1, let 𝐿 be the set of indices in Σ that correspond to edges in 𝐸1 but do

not lead to a cache miss in 𝑓 ∗ . With the same argument as in Theorem 1, we have

|𝑀∗ | ≥ Cost(ˆ𝑓 , �̃�𝑑) + |𝐸1 | − |𝐿 |. (3)

We put (3) and Corollary 5 together to obtain

|�̂� | ≤ |𝑀∗ | + |𝐿 |. (4)

Hence, in order to bound |�̂� | in terms of |𝑀∗ |, we need to find an upper-bound on |𝐿 |.
Let us form the same bipartite graph B as in Theorem 1 in which𝑀∗ serves as the vertices on side and

𝐿 as the other side. Suppose 𝑖 ∈ 𝐿, 𝑗 ∈ 𝑀∗ and let 𝑖 ′ be the index of the previous access to 𝜎𝑖 . We connect

vertex 𝑖 in 𝐿 to vertex 𝑗 in𝑀 if and only if 𝑖 ′ < 𝑗 < 𝑖 . This is the same as in Figure 3.

We now double-count the edges of B. Let 𝑖 ∈ 𝐿. The degree of 𝑖 is the number of cache misses occurred

between times 𝑖 ′ + 1 and 𝑖 − 1. Given that 𝐿 only contains indices in 𝐸1, at least 𝑑 distinct data items were

accessed in this period. By the end of time 𝑖 ′, at most 𝑡 · 𝑘 of these items can possibly be in the cache since

the overall cache capacity is 𝑡 · 𝑘. Therefore, at least 𝑑 − 𝑡 · 𝑘 cache misses occur in this period and the

degree of 𝑖 is at least 𝑑 − 𝑡 · 𝑘. As such, the number of edges is at least |𝐿 | · (𝑑 − 𝑡 · 𝑘).
For the other side, let 𝑗 ∈ 𝑀∗ . The degree of 𝑗 is at most 𝑡 · 𝑘 . We prove this by contradiction. Assume 𝑗

has edges to 𝑖1, 𝑖2, . . . , 𝑖𝑡 ·𝑘 , 𝑖𝑡 ·𝑘+1 ∈ 𝐿. By the pigeonhole principle there exist 𝑎1, 𝑎2, . . . , 𝑎𝑡+1 ∈ {𝑖1, . . . , 𝑖𝑘+1}
such that 𝑓 ∗ (𝜎𝑎1) = 𝑓 ∗ (𝜎𝑎2) = . . . = 𝑓 ∗ (𝜎𝑎𝑡+1) = 𝑓0. We know that for every index 𝑞, we have 𝑎′𝑞 < 𝑗 < 𝑎𝑞 .

Without loss of generality, assume 𝑎′
1
< 𝑎′

2
< . . . < 𝑎′𝑡+1 . Since 𝜎𝑎1 , . . . , 𝜎𝑎𝑡+1 are all mapped to 𝑓0, by tracing

the elements that enter this cache line, we can see that 𝜎𝑎1 enters the cache at time 𝑎′
1
but is then evicted

before time 𝑎1 as each cache line can hold at most 𝑡 items at a time. Hence, we have a cache miss at time 𝑎1.

This contradicts the definition of 𝐿. Therefore, the total number of edges is at most |𝑀∗ | · 𝑡 · 𝑘.
Putting the two bounds together, we get |𝐿 | ≤ |𝑀∗ | · 𝑡 ·𝑘

𝑑−𝑡 ·𝑘 . Combining this with (4), we have |�̂� | ≤
|𝑀∗ | · 𝑑

𝑑−𝑡 ·𝑘 . □

Corollary 6. For any positive constant 𝜖 > 0, by applying the approach above using the sparsified access
hypergraph �̃�𝑑𝜖 of order 𝑑𝜖 := ⌈𝑡 · 𝑘 + 𝑡 ·𝑘

𝜖
⌉, we obtain a (1 + 𝜖)−approximation of the optimal number of cache

misses in a 𝑡-way cache, i.e. Misses𝑡
𝑘
(ˆ𝑓 , Σ) ≤ (1 + 𝜖) ·Misses𝑡

𝑘
(𝑓 ∗, Σ).

Extension to Objects with Varying Sizes. Consider an extension of the CDP problem in which every data

item 𝑜𝑖 has an integer size 1 ≤ 𝑠𝑖 ≤ 𝑡 .We require the size to be at most 𝑡 since the items should fit in a cache

30

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

line. To handle this case, we can redefine the concept of missed edges. We say an edge 𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩
is missed if and only if by running the access sequence Σ𝑒 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑣1⟩ with the same coloring, we

get a cache miss at the final position of the sequence. With this definition, it is easy to verify that Lemma 2

and Corollary 5 hold by a simple definition-chasing. Every step of Theorem 7 also holds with the exact same

arguments as before. This is because any 𝑡 distinct data items have a total size of at least 𝑡 . Our algorithm of

Section 3.3 can also be straightforwardly extended to handle varying object sizes. Note that this algorithm

simply relies on local checks within each bag to decide if specific edges are missed or not. See the use-cases

of is_missed in Algorithm 2. Hence, we can plug in any definition of missed edges that is solely based on

the partial coloring of the vertices appearing in the edge. This has no effect on the runtime, either.

B AN ALGORITHM FOR OPTIMAL COLORING USING EDGE-NICE TREE
DECOMPOSITIONS

In this section, we present an alternative algorithm for the problem of (𝑡-way) optimal coloring. Just as

in Section 3.3, we rely on nice tree decompositions to perform a bottom-up dynamic programming. The

difference is that we use a finer notion of niceness, which leads to a better overall runtime.

Edge-nice TreeDecompositions [18, 25].An edge-nice tree decomposition of an undirected graph/unordered

hypergraph 𝐺 = (𝑉 , 𝐸) is a tuple 𝑇 = (𝐵, 𝐸𝑇 , 𝑟 ,𝐺 ↓) such that:

• (𝐵, 𝐸𝑇 , 𝑟) is a tree decomposition of 𝐺.

• 𝐺 ↓ is a function that maps each bag 𝑏 ∈ 𝐵 to a subgraph 𝐺 ↓(𝑏) of 𝐺 .
• The root bag and every leaf bag ℓ are empty, i.e. 𝑉𝑟 = 𝑉ℓ = ∅.
• The subgraph associated to each leaf bag ℓ is empty, i.e. 𝐺 ↓(ℓ) = (∅, ∅).
• Each non-leaf bag 𝑏 is in one of the following forms:

– Introduce Vertex Bag (IV): The bag 𝑏 has exactly one child 𝑏 ′. Moreover, 𝑉𝑏 = 𝑉𝑏′ ∪ {𝑢} for some

vertex 𝑢 ∉ 𝑉𝑏′ and 𝐺𝑏 = 𝐺𝑏′ ∪ {𝑢}. In other words, the bag 𝑏 has one new vertex 𝑢 that was not in

its child bag 𝑏 ′. We say that 𝑏 introduces 𝑢. The subgraph 𝐺 ↓(𝑏) is obtained from 𝐺 ↓(𝑏 ′) by adding

the vertex 𝑢. Note that if 𝑢 is not already in 𝐺 ↓(𝑏 ′), then it will be added in 𝐺 ↓(𝑏) as an isolated

vertex.

– Forget Vertex Bag (FV): The bag 𝑏 has exactly one child 𝑏 ′ and 𝑉𝑏 = 𝑉𝑏′ \ {𝑢} for some 𝑢 ∈ 𝑉𝑏′ .
Moreover, 𝐺 ↓(𝑏) = 𝐺 ↓(𝑏 ′). We say that 𝑏 forgets 𝑢.

– Introduce (hyper)Edge Bag (IE): The bag 𝑏 has exactly one child 𝑏 ′ and 𝑉𝑏 = 𝑉𝑏′ . However, 𝐺
↓(𝑏) =

𝐺 ↓(𝑏 ′) ∪ {𝑒} for some edge 𝑒 ∈ 𝐸 whose all endpoints are in𝑉𝑏, i.e. 𝑒 ⊆ 𝑉𝑏 . We say that 𝑏 introduces

𝑒 .

– Join Bag (J): The bag 𝑏 has two children 𝑏1 and 𝑏2. Additionally, 𝑉𝑏 = 𝑉𝑏1 = 𝑉𝑏2 and 𝐺 ↓(𝑏) =
𝐺 ↓(𝑏1) ∪𝐺 ↓(𝑏2).

• Each (hyper)edge is introduced exactly once.

31

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Intuitively, an edge-nice tree decomposition is finer than a nice tree decomposition. In the latter, we also

have IV, FV and J bags and the vertices are added or removed one-by-one, but each newly introduced vertex

can automatically add many new edges to the subgraph𝐺
↓
𝑏
of the current bag 𝑏. In contrast, in an edge-nice

tree decomposition, the edges are also added one-by-one. Moreover, since each edge is introduced only

once, we can be sure that in a join bag 𝑏 with children 𝑏1 and 𝑏2, the left subgraph 𝐺 ↓(𝑏1) and the right

subgraph𝐺 ↓(𝑏2) are edge-disjoint. Any tree decomposition can be turned into an edge-nice decomposition

of the same width in linear time [25]. In practice, we do not store the subgraphs 𝐺 ↓(𝑏) in memory. We just

keep track of the vertices/edges that are introduced or forgotten at every bag.

We now present our dynamic programming algorithm for optimal coloring using an edge-nice tree

decomposition. The algorithm is similar to that of Section 3.3 and computes the following variables in a

bottom-up manner:

Dynamic Programming Variables. For every bag 𝑏 ∈ 𝐵 and partial coloring 𝑓𝑏 ∈ C𝑏, the algorithm defines

a dynamic programming variable dp[𝑏, 𝑓𝑏] and initializes it to +∞. Our goal is to compute values for the

dp[·, ·] in a bottom-up order such that the following invariant holds after we compute dp[𝑏, 𝑓𝑏]:

dp[𝑏, 𝑓𝑏] = Minimal possible cost of a coloring of 𝐺 ↓(𝑏)

in which 𝑉𝑏 is colored according to 𝑓𝑏

Computing dp Values. The algorithm processes the bags in a bottom-up order and performs the following

computations at each bag according to its type:

(1) Leaf Bags. In a leaf bag ℓ ∈ 𝐵, we have 𝑉ℓ = ∅ and 𝐺 ↓ℓ = (∅, ∅) . Hence, there is only one possible

trivial coloring 𝑓ℓ . The algorithm sets dp[ℓ, 𝑓ℓ] = 0 since there are no edges to be missed.

(2) IV Bags. Suppose 𝑏 is an IV bag introducing the vertex 𝑢. Let 𝑏 ′ be the only child of 𝑏. Any partial

coloring 𝑓𝑏 : 𝑉𝑏 → {1, . . . , 𝑘} also colors 𝑉𝑏′ . Moreover, 𝐺 ↓(𝑏) has the exact same set of edges as

𝐺 ↓(𝑏 ′). Thus, the algorithm sets dp[𝑏, 𝑓𝑏] = dp[𝑏 ′, 𝑓𝑏 |𝑉𝑏′] .

(3) FV Bags. If 𝑏 is an FV bag forgetting 𝑢 and its only child is 𝑏 ′, then we have𝐺 ↓(𝑏) = 𝐺 ↓(𝑏 ′). However,
a partial coloring 𝑓𝑏 ∈ C𝑏 does not assign a color to 𝑢. So, the algorithm should check all possibilities

for the color of 𝑢. Hence, it sets dp[𝑏, 𝑓𝑏] = min
𝑘
𝑖=1 dp[𝑏 ′, 𝑓𝑏 [𝑢 → 𝑖]] .

(4) IE Bags. Suppose that 𝑏 introduces the (hyper)edge 𝑒 . Let 𝑏 ′ be the child of 𝑏. Then, the only difference

between 𝐺 ↓(𝑏) and 𝐺 ↓(𝑏 ′) is that the former contains the extra edge 𝑒 . Moreover, 𝑉𝑏 = 𝑉𝑏′ . For every

partial coloring 𝑓𝑏 ∈ C𝑏, the algorithm checks whether 𝑒 is a missed edge in 𝑓𝑏 . This is possible

because, by definition of IE, all endpoints of 𝑒 are in𝑉𝑏 . If 𝑒 is missed, it sets dp[𝑏, 𝑓𝑏] = dp[𝑏 ′, 𝑓𝑏] + 1.
Otherwise, we have dp[𝑏, 𝑓𝑏] = dp[𝑏 ′, 𝑓𝑏] .

(5) J Bags. Let 𝑏 be a join bag with children 𝑏1 and 𝑏2. Since each (hyper)edge is introduced exactly once,

we know that𝐺 ↓(𝑏1) and𝐺 ↓(𝑏2) are (hyper)edge-disjoint. Moreover, since𝑉𝑏 = 𝑉𝑏1 = 𝑉𝑏2 , every partial

coloring 𝑓𝑏 ∈ C𝑏 is inherited by𝑏1 and𝑏2. As such, the algorithm sets dp[𝑏, 𝑓𝑏] = dp[𝑏1, 𝑓𝑏]+dp[𝑏2, 𝑓𝑏] .
32

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

The algorithm computes the final answer and the optimal coloring exactly as in Section 3.3. The argument

for its correctness is also similar.

Computing the Final Answer. Since 𝑇 is edge-nice, we have 𝑉𝑟 = ∅. So, there is only one possible partial

coloring 𝑓𝑟 ∈ C𝑟 for the root bag 𝑟 . Moreover, we have𝐺 ↓(𝑟) = 𝐺. So, the algorithm outputs dp[𝑟, 𝑓𝑟] as the
minimal number of missed edges.

Finding the Optimal Coloring. Our algorithm obtains the minimal number of missed edges. As in many

other dynamic programming methods, we can obtain the optimal coloring itself by keeping track of the

partial colorings that led to the optimal dp[·, ·] value at every step.

Based on this algorithm, we obtain the following variant of Theorem 3:

Theorem 8. Given positive integer constants 𝑡 and 𝑘 , a canonical hypergraph 𝐺, with 𝑛 vertices and 𝑁

edges, each with at most 𝑑 endpoints, and an edge-nice tree decomposition of 𝐺 with 𝑂 (𝑛 + 𝑁) bags and width
𝑤 , the algorithm above solves the (𝑡-way) optimal coloring problem in total runtime 𝑂 ((𝑛 + 𝑁) · 𝑘𝑤+2).

Proof. The edge-nice tree decomposition has 𝑂 (𝑛 + 𝑁) bags. At each bag, we define at most 𝑘𝑤+1 dp

variables, one for each partial coloring. Computing each of these variables takes 𝑂 (1) time in cases 1, 2, 4

and 5 above, and 𝑂 (𝑘) time in case 3.

33

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cache-conscious Data Placement
	2.2 Parameterized Complexity, Tree Decompositions and Treewidth

	3 An Efficient Parameterized Approximation Scheme for CDP
	3.1 Access Graphs and Access Hypergraphs
	3.2 Sparsification and Reduction to Graph Coloring
	3.3 A Decomposition-based Algorithm for Optimal Coloring

	4 Hardness of CDP in Bounded Treewidth
	5 Experimental Results
	6 Conclusion
	References
	A Details of the Sparsification for t-way Mapping
	B An Algorithm for Optimal Coloring using Edge-nice Tree Decompositions

