N
N

N

HAL

open science

Efficient Approximations for Cache-conscious Data
Placement
Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, Andreas Pavlogiannis

» To cite this version:

Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, Andreas Pavlogiannis. Efficient Approx-
imations for Cache-conscious Data Placement. 43rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2022), Jun 2022, San Diego, United States.

10.1145/3519939.3523436 . hal-03616652

HAL Id: hal-03616652
https://hal.science/hal-03616652v1

Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03616652v1
https://hal.archives-ouvertes.fr

Efficient Approximations for Cache-conscious Data Placement

ALl AHMADI", Sharif University of Technology, Iran

MAJID DALIRI, University of Tehran, Iran

AMIR KAFSHDAR GOHARSHADY, The Hong Kong University of Science and Technology, China
ANDREAS PAVLOGIANNIS, Aarhus University, Denmark

There is a huge and growing gap between the speed of accesses to data stored in main memory vs cache. Thus, cache
misses account for a significant portion of runtime overhead in virtually every program and minimizing them has
been an active research topic for decades. The primary and most classical formal model for this problem is that of
Cache-conscious Data Placement (CDP): given a commutative cache with constant capacity k and a sequence X of
accesses to data elements, the goal is to map each data element to a cache line such that the total number of cache
misses over ¥ is minimized. Note that we are considering an offline single-threaded setting in which X is known a
priori. CDP has been widely studied since the 1990s. In POPL 2002, Petrank and Rawitz proved a notoriously strong
hardness result: They showed that for every k > 3, CDP is not only NP-hard but also hard-to-approximate within
any non-trivial factor unless P = NP. As such, all subsequent works gave up on theoretical improvements and instead
focused on heuristic algorithms with no theoretical guarantees.

In this work, we present the first-ever positive theoretical result for CDP. The fundamental idea behind our approach
is that real-world instances of the problem have specific structural properties that can be exploited to obtain efficient
algorithms with strong approximation guarantees. Specifically, the access graphs corresponding to many real-world
access sequences are sparse and tree-like. This was already well-known in the community but has only been used
to design heuristics without guarantees. In contrast, we provide fixed-parameter tractable algorithms that provably
approximate the optimal number of cache misses within any factor 1 + €, assuming that the access graph of a specific
degree d, is sparse, i.e. sparser real-world instances lead to tighter approximations. Our theoretical results are accom-
panied by an experimental evaluation in which our approach outperforms past heuristics over small caches with a
handful of lines. However, the approach cannot currently handle large real-world caches and making it scalable in

practice is a direction for future work.

CCS Concepts: » Theory of computation — Parameterized complexity and exact algorithms; - Software and

its engineering — Memory management.

Additional Key Words and Phrases: cache management, parameterization, data placement, treewidth, cache misses,

approximation

“Authors are ordered alphabetically.
T Corresponding author

2022. Manuscript submitted to ACM

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

ACM Reference Format:

Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2022. Efficient Approximations for
Cache-conscious Data Placement. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI °22), June 13-17, 2022, San Diego, CA, USA. ACM, New York, NY, USA,
33 pages. https://doi.org/10.1145/3519939.3523436

1 INTRODUCTION

CAcCHE MissEs. Most modern memory systems consist of a large but relatively slow main memory and one
or more small but much faster cache levels. When a program wants to access a specific data item during its
execution, the accessed data must first be present in the cache. Otherwise, it will be copied from the main
memory to the cache, possibly causing the eviction of other data from the cache. This copying is called a
“cache miss”. Given the low speed of main memory, the back-and-forth copying between cache and main
memory caused by cache misses is a significant contributor to runtime overheads in virtually all programs.
Hence, minimizing cache misses has been a central problem in various communities, including programming
languages [13, 18, 26, 34, 37, 49, 50], compilers [13, 35, 42, 45] and operating systems [10, 41, 48] for many

decades.

CAcHE-coNscIoUus DATA PLACEMENT (CDP). In this work, we focus on Cache-conscious Data Placement
(CDP). CDP is arguably the most classical formulation for the problem of minimizing cache misses. It was
first introduced in ASPLOS 1998 by Calder et al [13] and then further formalized by Petrank and Rawitz in
POPL 2002 [37]. In this model, the memory system consists of two levels: a large main memory storing
a set O of n distinct objects 01, 0, . . ., 0,, and a small cache with k lines. Depending on the variant, each
cache line can hold 1 or t objects. A placement map is a function f : O — {1,2,..., k} that maps each object
to a cache line. When a placement map f is fixed and an access to an object o; is requested, the system
first checks to see whether o; is already present in its corresponding cache line f(o;). If so, the access is
successful. Otherwise, a cache miss happens and o; must first be copied from the main memory to line
f(0;) of the cache, potentially evicting another object that was already in this cache line. Only after this
copying can the access go through. Given a sequence X = (01, 03, ...,on) € ON of accesses, CDP asks for a

placement map f that minimizes cache misses over X.

HArDNEss oF CDP. When considering the CDP problem, it is usually assumed that k and ¢ are small
constants and the complexity is studied with respect to the number of objects, i.e. n, and the length of
the access sequence, i.e. N. In [37], Petrank and Rawitz showed that the CDP problem is NP-hard for any
cache with more than two lines. They also showed that not only is the problem NP-hard, but it is also
hard-to-approximate within any non-trivial factor O(N'~¢) unless P=NP. This became a notorious and
well-known hardness result, causing all further works to focus on heuristics with no worst-case bounds
on their approximation ratio. Some examples of this approach are [26, 27, 49, 50]. These heuristics try to

identify and exploit affinities between data items to minimize cache misses.
2

https://doi.org/10.1145/3519939.3523436

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

AccEiss GRAPHS AND THEIR SPARSITY. A recurring structure in the cache management literature is that
of an access graph [11, 34, 45]. Simply put, an access graph is an undirected graph which has one vertex
corresponding to each object 0; € O and an edge between two vertices if they appear consecutively in
the access sequence X. Informally, the access graph models the simplest type of affinity between data
items. Several previous works also consider extensions of access graphs to hypergraphs whose edges model
affinities between more than two data items [18, 34, 45]. It is well-known that access graphs of real-world
sequences are often sparse, opening the door to heuristics based on graph sparsity. Moreover, the optimal
algorithm for data packing, which is another formalism for minimizing cache misses, is also based on the

sparsity of access (hyper)graphs [18].

Our Focus. In this work, we consider the classical problem of Cache-conscious Data Placement (CDP) from
an algorithmic and complexity point-of-view. Note that our setting is single-threaded and offline and we
assume that the entire sequence X of accesses is given as part of the input. We focus on obtaining efficient
algorithms that provably approximate the optimal number of cache misses within a constant multiplicative
factor, assuming that the instance has sparse access (hyper)graphs. This assumption was already shown to
hold for real-world instances in several previous works, such as [18]. We use the treewidth of the access

(hyper)graphs as a measure of their sparsity.

TREEwWIDTH. Treewidth [9, 39, 40] is a well-known and oft-used graph sparsity parameter. Intuitively, the
treewidth of a graph is a measure of its tree-likeness. Only trees and forests have a treewidth of 1 and if a
graph’s treewidth is w, then the graph can be decomposed into parts of size w + 1 that are connected to each
other in a tree-like manner. See Section 2.2 for a more formal definition. The algorithmic importance of
treewidth is due to the fact that many NP-hard graph problems are solvable in polynomial time over graphs
of bounded treewidth [1, 5, 7, 8, 32]. Moreover, many families of graphs that appear in real-world contexts
are shown to have small treewidth. This includes series-parallel and outer-planar graphs [6]. Control flow
graphs of structured programs also have bounded treewidth [12, 14, 19, 33, 46], leading to faster program
analysis and model checking algorithms [2, 15-17, 20-24, 29-31, 36, 38, 43]. Finally, access (hyper)graphs
of many classical algorithms and programs are also shown to have small treewidth [18]. This is the family

that is most relevant to the current work.

Our CoNTRIBUTIONS. We present the first positive theoretical results for the classical and notoriously-hard
problem of Cache-conscious Data Placement (CDP). Our detailed results are as follows:

o Approximation Scheme: For every constant € > 0, we provide an efficient linear-time algorithm for
CDP that is guaranteed to obtain a (1 + €)-approximation of the optimal number of cache misses,
assuming that the access graph of a specific degree d. has bounded treewidth. In other words, our
scheme obtains tighter approximations for sparser instances.

e Hardness Result: We provide a stronger hardness result and show that CDP is NP-hard even when
restricted to instances in which access hypergraphs of a fixed degree d have bounded treewidth.

Intuitively, this suggests that both parameterization (sparsity) and approximation are needed in
3

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

solving CDP. It is impossible to approximate CDP without a sparsity assumption as shown by [37].
On the other hand, our hardness result shows that it is also impossible to solve the problem exactly
(without approximation) even when we assume that access hypergraphs of a fixed degree d are sparse.
o Experimental Results: We provide experimental results on the benchmarks of [18] and caches with
3-6 lines. On these small caches, our approach beats several well-known heuristics in the literature

in terms of the number of cache misses.

NoverTy. In summary, we provide the first positive theoretical result for CDP through a combination
of approximation and parameterization. We also show a stronger hardness result that suggests both
approximation and parameterization are probably necessary. Our algorithms are the first to provide provable
bounds on the approximation ratio. To the best of our knowledge, graph sparsity parameters such as
treewidth were not previously used in the context of CDP. We are also not aware of any other systems

problem that is solved by applying both parameterization and approximation.

INTUITION BEHIND THE PARAMETER. At first sight, treewidth of the access graph might come off as a
surprising parameter. However, it is quite natural to expect this parameter to be small and this expectation
was already confirmed by experiments in [18]. The intuitive reason behind this is that most real-world
algorithms manipulate linear or tree-based data structures, such as arrays, vectors, linked lists, heaps, binary
search trees and tries. Hence, the resulting access sequences consist of accesses to these tree-like structures
and other helper variables which often have a short lifetime. So, the access graph inherits much of the
sparsity and tree-likeness of the underlying data structures and the additional complexity introduced by
temporary variables does not make it significantly denser. Treewidth is the classical parameter for capturing

and formalizing such tree-like properties.

LimrTaTIONS. The primary limitation of our approach is that it is only applicable in the offline setting in which
the entire access sequence is known a priori. Note that all previous hardness results were also for the same
offline case. Our experimental results demonstrate that our approach leads to fewer misses than previous
heuristics in the literature. However, it can currently handle only small caches with a handful of lines. More
specifically, we provide algorithms with runtimes of either O(N - k**2) or O(n-k**! - (k+d - w?)), in which
k is the cache size, d is the order of the access hypergraph and w is the treewidth. Thus, while we overcome
the hardness-of-approximation and provide the first polynomial-time algorithms with approximation-ratio
guarantees, more improvement is needed to handle larger instances. Our results strongly indicate that
solving real-world instances of CDP, within a provably-bounded approximation factor, is likely within reach
and not as hard as previously thought. Moreover, they show that while the general case of the problem is
NP-hard and hard-to-approximate, this is not the case for the sparse instances that are often encountered in
practice. Another limitation is that our problem only models the single-threaded case and no parallelism is

allowed in accesses to the cache.

OFrLINE vs ONLINE. While it is more desirable to minimize cache misses in an online setting, where the

entire access sequence ¥ is not known in advance, the problem is often studied in offline mode and ¥ is
4

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

assumed to be part of the input. This applies not only to this work but also all previous theoretical results
on both data packing [18, 34] and CDP [37]. It is partly because the offline variants are already too hard,
i.e. NP-hard and hard-to-approximate. On the other hand, solving the offline version is also useful in the
following two cases (taken from [18]):

o Limit studies: To test the performance of a compiler for data placement, various inputs are generated
as benchmarks, and the baseline comparison of the performance is performed against the best-known
offline algorithm [37]. Hence, an almost-optimal algorithm with guaranteed approximation ratio for
the offline case is needed.

o Profiling: Programs usually have similar memory access behaviors over different inputs [37]. Hence,
an effective approach for online cache management is to consider several representative inputs, run
an almost-optimal offline algorithm for profiling, and then synthesize an answer to the online case
from the offline solutions [13, 37]. Specifically, the traditional approach of [13] for online CDP is
to assign a cost to each pair (0;,0;) of elements which roughly correlates with the number of extra
cache misses that will be caused by assigning both o0; and o; to the same cache line. This cost is
always approximated using various profiling techniques. For example, we can run a program over
thousands of random inputs and solve the offline variant of CDP for each run. Then, the cost we
assign to (0;,0;) should be inversely correlated with the number of test cases in which o; and o; were
put in the same cache line. The online algorithm will then simply work greedily and, upon the first
access to an element o;, assign it to a cache line that minimizes its cost. Alternatively, we can devise a
supervised machine learning algorithm for the online case in which the outputs of the optimal offline
algorithm are used as the training set.

As such, the offline case considered in this work, while not leading to practical algorithms that can be

directly used for cache management, is still useful both theoretically and for the applications above.

PAGING. Paging is a related well-studied problem, in which objects (or blocks) are not assigned to any
specific cache line. This is equivalent to having a cache with a single line that can hold up to k objects. The
goal is to find an optimal replacement policy that minimizes the total number of cache misses [11], i.e. to
find the optimal policy for choosing which object should be evacuated each time new data is brought into
the cache. Common replacement policies include FIFO, which evicts the object that has been in the cache
for the longest, and LRU, which evicts the least-recently used/accessed object [18, 34, 50]. In the offline case,
where the sequence ¥ of accesses is known in advance, the Optimal Replacement Policy (ORP) is to evict

the object whose next access is furthest in the future [11].

DaTA PACKING. Data packing is another formulation of the problem of minimizing cache misses. In this case,
the objects are not assigned to specific cache lines. Instead, they are “packed” into blocks of a fixed size and
the cache can hold a fixed number of blocks. The goal is to find a packing that minimizes the total number
of cache misses over a given access sequence X [45]. Similar to CDP, data packing is also NP-hard and

5

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

hard-to-approximate within any non-trivial factor unless P=NP [34]. However, many real-world instances

of data packing can be solved in polynomial time using parameterization [18].

ComparisoN WITH [18]. The work [18] provides an algorithm for the problem of data packing using a
parameterization by the treewidth of the access hypergraphs. The parameter we use in this work is similar,
but not exactly the same. Specifically, we consider the treewidth of a sparsified subgraph of the access
hypergraphs (Section 3.2). This sparsification is a key part of our theoretical contribution and necessary for
obtaining a constant-ratio approximation. Additionally, the two works also differ in the following ways:

e Modeling of the Cache: [18] considers the problem of Data Packing (DP), whereas we study Cache-
conscious Data Placement (CDP). As mentioned above, DP and CDP model the cache differently. In
CDP, each data item is mapped to a specific cache line, whereas in DP, the items do not have a fixed
position in the cache but are instead grouped (packed) together to form blocks.

o Hardness and Parameterized Complexity: While both CDP and DP are NP-hard and hard-to-approximate,
the DP problem of [18] becomes fixed-parameter tractable and admits a polynomial-time algorithm
when the treewidth is bounded. In contrast, our problem remains NP-hard even when limited to
graphs of constant treewidth (Section 4) and can only be approximated. Hence, we are considering
a strictly harder problem in terms of parameterized complexity and the techniques of [18] are not
applicable to our setting.

o Solution Concepts: Both our solution and that of [18] reduce cache management problems to variants
of graph coloring. In [18], the number of vertices of any given color is bounded, whereas in our case

the number of colors is at most the cache size k.

2 PRELIMINARIES

In this section, we provide a formal definition of the CDP problem (mostly following [37]) as well as the

necessary background from parameterized complexity.

2.1 Cache-conscious Data Placement

MEMORY SYSTEM. We consider a memory system consisting of a large main memory and a small cache with
k lines. We also fix a set O = {0y, 0, . . ., 0, } of objects (data items). We do not make any assumptions about

the locations of objects in the main memory or its size.
PLACEMENT MaP. A placement map is a function f : O — {1,2,..., k} that maps each object to a cache line.

DIRECT MAPPING VS t-WAY MAPPING. In direct mapping, each cache line can hold at most one data item at a
time. In t-way mapping, each cache line can hold up to t objects. Our main focus is on the direct mapping

case, but our approaches extend to t-way mapping as well.

AccEsses AND CACHE Missks. Given a fixed placement map f, when an access to an object o; is requested,
o; must first be present in cache line f(o0;). If this is not the case, then a cache miss occurs and o; is copied

from the main memory to cache line f(o;). If this cache line is already full, another data item will be evicted
6

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

from it. Note that if each cache line can hold more than one object, then we should also fix a replacement
policy for each line. In this work, we assume that the replacement policy is LRU, i.e. the least recently used
element is always evicted. This is because LRU is the most commonly-used policy in practice [50]. Our

algorithms are also extensible to FIFO and ORP with minimal changes'.

ACCESs SEQUENCE. An access sequence is simply a sequence ¥ = (g3, 05, . .., on) € OV of objects. Intuitively,
3 represents the order in which a program accesses the data items. We denote by Misses; (f, %) the number
of cache misses that occur in a t-way cache with k lines if the placement map is f and the accesses are
made according to 3. We assume the cache is empty at the beginning and drop k when it is clear from the

context. We also drop ¢t = 1 in direct mapping.

CacHE-coNsc10Us DATA PLACEMENT (CDP). Given a set O = {0y, ...,0,} of objects, an access sequence
% € OV, and cache parameters ¢ and k as input, the Cache-conscious Data Placement problem asks for
an optimal placement map f* that minimizes the number of cache misses. More formally, it asks for a

placement map f*, such that for any other placement map f, we have Misses (f*,3) < Misses (f,%).

APPROXIMATIONS. For an € > 0, we say that an algorithm is a (1 + ¢)-approximation of CDP if given the

same inputs, it always produces a placement map f such that Misses]i (f.Z) < (1+e)- Misses,tc (2.

INSTANCES. An instance of the CDP problem is a tuple I = (n, O, N, X, t, k) specifying all parts of the input.

2.2 Parameterized Complexity, Tree Decompositions and Treewidth

PARAMETERIZED COMPLEXITY. The central idea in parameterized complexity is to analyze the runtime of an
algorithm not only based on its input size n, but also based on another parameter p [28]. The parameter

itself can be explicit, i.e. part of the input, or implicit, e.g. a structural property.

FIXED-PARAMETER TRACTABILITY (FPT). A problem is called Fixed-parameter Tractable (FPT) wrt a parameter
p, if there exists an algorithm that solves the problem in time O(n° - g(p)), where n is the input size, c is a
constant that does not depend on either n or p and g is an arbitrary computable function [25, 28]. Intuitively,
when a problem is FPT, the instances in which the parameter p is small are easy to solve and can be handled
in polynomial time.

When dealing with a hard problem, such as CDP, the main challenge is to come up with a suitable
parameter p, such that (i) all or most real-world instances have a small p, and (ii) the problem becomes FPT
wrt p. Finding such a parameter would effectively lead to efficient solutions for the real-world instances of

the problem. We now define the parameter that will be used in this work, i.e. treewidth.

GraPHs AND HYPERGRAPHS. A directed graph is a pair G = (V, E) where V is a finite set of vertices and
E C V x V is a finite set of edges. Each edge e € E is an ordered pair of vertices. An undirected graph is
defined similarly, except that each edge e is a subset {#, v} C V. An ordered hypergraph is a pair G = (V, E)

IThe FIFO and ORP cases are removed since the space is limited and they do not provide new insights. We will publish them as a tech
report.

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

b,
{01, 03,04}
b, | {01,02} | | {03, 04,06} | b3
by | {04, 05,06} | | {04, 06,07} | bs

Fig. 1. A graph G = (V, E) (left) and a tree decomposition T of width 2 for G (right).

where E C V¥, i.e. each hyperedge e € E is an ordered tuple of vertices in V. Similarly, in an unordered
hypergraph, each edge e is simply a subset of vertices. The base (hyper)graph of a directed graph/ordered
hypergraph is obtained by ignoring the order of vertices in each edge.

TREE DECOMPOSITIONS [25]. Consider an undirected / unordered (hyper)graph G = (V, E). A tree decompo-

sition of G is a rooted tree T = (B, Et, r) where:

(1) B is the set of nodes in the tree and Er is the set of edges. We call each node in B a bag and r € B is the
root bag.

(2) Each bag b € B has an associated subset V;, C V of vertices. We reserve the word vertex for vertices of G.

(3) Each vertex appears in at least one bag, i.e. | pep Vo = V.

(4) Each (hyper)edge appears in at least one bag. Formally, for every e € E, there exists a bag b € B, such
that e C V;,. In other words, b contains all endpoints of e.

(5) Each vertex appears in a connected subtree of T. Equivalently, if a bag b; € B is on the unique path
between the bags b; and b, in T, then Vp,, 2 V;,, NV}, i.e. if v € V appears in the two bags b; and by,
then it must also appear on any bag b5 that is on the unique path between them.

Note that tree decompositions do not distinguish between ordered/directed and unordered/undirected edges,

i.e. a tree decomposition of an ordered/directed (hyper)graph is simply a tree decomposition of its base

graph.

ExaMmpLE 1. Figure 1 shows a graph G and one of its tree decompositions. Intuitively, in a tree decomposition

the graph is broken into several small pieces (bags) that are connected to each other in a tree-like manner.

TREEWIDTH [25, 39]. The width of a tree composition is defined as the size of its largest bag minus 1,
ie. w(T) := maxpep |Vp| — 1. The treewidth of a (hyper)graph G is the smallest width among all of its tree

decompositions.

Cut PROPERTY [5, 25]. Consider a (hyper)graph G and a tree decomposition T of G and suppose that

the vertices vy, v, € V appear in bags by, b, € B respectively. Then every path from ov; to v, in G has to
8

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

pass through every bag bs that is on the path from b; to b, in T. This is called the cut property of tree

decompositions.

ExaMPLE 2. The tree decomposition in Figure 1 has a width of 2 and is an optimal decomposition. So, the
treewidth of the graph G is also 2. Consider vertices 01 € Vp, and 07 € V. Since by and by are on the unique
path from by to bs in T, then any path that connects 07 to 01 in G has to intersect both of these bags. As an
example, consider the path (07, 04, 05, 04, 01). It intersects bz in both o4 and o¢. Similarly, it intersects by in both

01 and o0y4.

Dynamic PROGRAMMING. The cut property enables one to perform dynamic programming on low-treewidth
graphs in a similar manner to trees. Intuitively, in dynamic programming approaches, each bag in a tree
decomposition serves the same purpose as a vertex in a tree whose removal breaks the graph/tree down into
several completely independent connected components. This can potentially lead to much faster algorithms,
especially when the bags, and hence the treewidth, are small. See [5, 25] for some examples and a more

detailed treatment.

Nice TREE DECOMPOSITIONS [25]. We say that a tree decomposition T = (B, Er) is nice if (i) the root bag
and every leaf bag ¢ are empty, i.e. V, = V; = 0, (ii) every bag has at most two children, (iii) if a bag b has a
single child c, then b and c differ in exactly one vertex, i.e. |V A V| = 1, and (iv) if a bag b has two children
c¢; and ¢y, then Vj, =V, = V,,. Every tree decomposition can be easily converted to a nice decomposition
of the same width in linear time [25]. Nice decompositions help us in designing dynamic programming

procedures in Section 3.3.

ComPUTING OPTIMAL TREE DECOMPOSITIONS. Given a graph G, computing its treewidth w and an optimal
tree decomposition are FPT problems wrt w. Specifically, [4] provides a linear-time algorithm. Hence, we

always assume that an optimal tree decomposition is given as part of the input.

3 AN EFFICIENT PARAMETERIZED APPROXIMATION SCHEME FOR CDP

In this section, we first define the notions of access graphs and their extensions. Then, we prove a sparsifi-
cation lemma which reduces the approximation of CDP to a coloring problem over a “sparsified” subgraph
of the access graphs. Finally, we provide a tree-decomposition-based dynamic programming algorithm that
solves the coloring problem in linear time parameterized by the decomposition’s width. Throughout this

section, we assume that an input instance I = (n, O, N, 3, t, k) is fixed.

3.1 Access Graphs and Access Hypergraphs

AccEess GraPH. The access graph of a CDP instance I = (n,O, N, 2, t, k) is a directed graph G = (O, E) in
which every vertex is a data item and there is an edge between o; and o; if and only if o; appears directly

before 0; somewhere in the access sequence %. We do not add self-loops in G.

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Fig. 2. Access graph of the sequence X = (01, 02, 01, 04, 05, 03, 03, 01, 02).

ExamPLE 3. Consider the access sequence
% = (01,02, 01,04, 05, 03, 03,01, 02).

Figure 2 shows the access graph of this sequence.

Access HYPERGRAPHS. The access hypergraph of order d of the instance I is an ordered hypergraph

G4 = (O, E), in which there is an edge e; corresponding to each access o; in X = (071, 03, . .., o). The edge ¢;
is of the form (o}, 0j11,. .., 0;) in which j < i is the largest index where at least one of the following holds:
(1) {0}, 0js1,...,0i) contains two accesses to o;.
(2) {0}, 0j+1,...,0;) contains accesses to d distinct objects.
@B)j=1

Informally, to form the edge corresponding to o;, we start from o; and move backwards in the access
sequence until we either reach another access to o; or see d distinct data items or get to the beginning of

the sequence.

ExaMPpLE 4. Consider the same access sequence as in Example 3. Let d = 3. The access hypergraph of order 3

has the following edges:

er = (01) ez = (01,02) e3 = (01,02,01)
ey = (02,01, 04) es = 01, 04, 05) es = (04, 05, 03)
e7 = (03,03) eg = (05, 03,03,01) ey = (03,01, 02)

It is well-known that access (hyper)graphs are often very sparse. In [18], the sparsity was formalized and
it was shown that the access (hyper)graphs of many real-world algorithms and programs have bounded
treewidth?. Based on this observation, we will design FPT algorithms using the treewidth of a sparsified

subgraph of the access (hyper)graphs as our parameter.

3.2 Sparsification and Reduction to Graph Coloring

We now show how an approximation of the number of optimal cache misses in CDP can be obtained by
reduction to a graph coloring problem over certain subgraphs of access hypergraphs.

2The definition of access hypergraphs provided here is a bit different from [18] since we allow our hyperedges to include the same
vertex more than once. However, this difference does not affect the treewidth.

10

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

CoLorINGS. Consider a placement map f : O — {1,2,...,k}. By definition, f assigns a cache line to
every object 0; € O. However, given that O is also the set of vertices in our access hypergraphs, one can

equivalently think of f as a coloring of vertices in these graphs with k colors®.

DIRECT MAPPING. Let us first assume that we have a direct mapping instance, i.e. t = 1 and each cache line

can hold only one object.

SPARSIFICATION. Consider the access hypergraph G, of order d. Recall that G4 has an edge e; corresponding
to each access o; in X. We divide the edges of G, in two groups: E; is the set of edges e; that contain the
vertex o; only once and E; is the set of edges e; that contain o; twice. Let Gy = (O, E3) be the subgraph of
G, containing only the edges of the second kind. We call G4 the sparsified access hypergraph of order d.
Informally, G4 keeps the edge corresponding to an access o; iff the number of other distinct data items seen
since the last access to o; is less than d. The intuition is to focus on data items that are accessed regularly
and whose placement in the memory really matters in the number of cache misses. These are elements that
can likely cause capacity/conflict misses. In contrast, we would rather ignore elements that are accessed
only once or rarely and cause a compulsory first-time cache miss anyway. In other words, if many distinct
data items have been accessed since the last time we saw o, then it is very likely that o; is already evicted
from the cache and that the current access leads to a cache miss. Hence, we focus on minimizing the number
of cache misses in accesses corresponding to E, only and assume all other accesses lead to cache misses. We
will later see that discarding E; does not affect the optimal value too much, in the sense that the optimal
solution to E, is always within a constant factor to the optimal solution overall. Hence, this leads to an

approximation of the optimal number of cache misses within a constant multiplicative factor.

CanonicaL HYPERGRAPHS. We say that an ordered hypergraph G = (V, E) is canonical if every edge e € E is
of the form (v1, vz, . .., 0, v1) Where v; € {v, ...,0,}. In other words, every edge starts and ends with the
same vertex and the start/end vertex does not appear anywhere else in the edge. Note that G is canonical

by definition.

OprTIMAL COLORING. Consider a canonical hypergraph G = (V,E) and a coloring function f : V —
{1,2,...,k}. We define Cost(f,G) as the number of edges e = (v1,0s,...,0m,01) € E such that f(v;) €
f{oz,...,0m}), ie. an edge contributes to the cost if it has an internal vertex with the same color as its
start/end vertex. Such an edge is called a missed edge. Given a canonical G and a positive integer k as input,
the Optimal Coloring problem asks for a coloring f with minimal cost, i.e. minimal number of missed edges.

The following lemma establishes a correspondence between missed edges in G4 and cache misses in the
CDP instance I.

LEMMA 1. Let f be a coloring of vertices in Gg = (O,E,) or equivalently a placement map for I =
(n,O,N,3,1,k). An edge e; € E; is missed in the coloring f iff a cache miss occurs at its corresponding
access o; with placement map f.

3 Adjacent vertices need not necessarily have different colors.
11

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Proor. Recall that e; is of the form (o}, 0j41, . .., 0;) and since G, is canonical we have o; = o;. Ife;isa
missed edge, then there is some index j+ 1 <[< i — 1 such that f(o7) = f(0;). Hence, when an access to
o7 is made, the data item o; is evicted from the cache. As such, o; leads to a cache miss. Conversely, if no
such [exists, then since ¢; = o;, this item has been moved to cache at time j and remained there until time

i. So, there is no cache miss at o;. O

CoROLLARY 1. Missesi(f*,2) < Missesk(f, 3) < Cost(f, Gaq) + |E1l.

Proor. Recall that ™ is the optimal placement map that minimizes the number of cache misses and f is
the optimal coloring that minimizes the number of missed edges in G4. Consider f as a placement map.
Based on the lemma above, it causes exactly Cost(f ,G4) cache misses in accesses corresponding to E,. It

can also cause at most |E;| cache misses in accesses corresponding to E;.]

This corollary allows us to bound the number of cache misses by solving the optimal coloring problem
over the sparsified hypergraph G,;. We will later provide an algorithm for optimal coloring in Section 3.3.

First, we provide a theorem showing that this approach leads to a constant approximation factor.

THEOREM 1. We have

Missesi (f*,3) < Missesk(f, 3) < - Misses, (f*,%).

d
d-k

ProorF. The first inequality follows from the definition of f*. Let M* be the set of indices of accesses that
lead to a cache miss if we use the optimal placement map f* and M be the set of indices of accesses that
lead to a cache miss when the optimal coloring f is used as the placement map. So, |M*| = Missesi. (f*,)
and | M| = Misses;. (f, 3). Moreover, let L be the set of indices in X that correspond to edges in E; but did not

lead to a cache miss in . Note that we have
IM*| = Cost(f,Ca) + |Ex| - ILI. ()

To see this, let us count the number of misses caused by f* in accesses corresponding to E; and E,
separately. By definition of L, f* causes |E;| — |L| cache misses in accesses of E;. By definition of f, we know
that Cost(f™, Gq) > Cost(f, Gq), so by Lemma 1, f* causes at least Cost(f, Gg4) cache misses in accesses
corresponding to E;. By combining Equation (1) and Corollary 1, we get

M| < [M*| +L]. (2)

So, it suffices to find a bound on |L|.
Let us form a bipartite graph 8 in which M* serves as the set of vertices on one part and L as the
set of vertices on the other part. Let i € L,j € M* and i’ be the index of the previous access to o,

ie. i’ = max{l < ilo; = 0;}. Note that i’ always exists, because if the first access to o; was at time i, then
12

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

T

0i’s Oi'+15 -+ 50, Ojt15 - .+, O

Fig. 3. Construction of the bipartite graph 8. There is an edge from i in L to j in M™ iff in the access sequence 3, o is
between o; and the previous access to the same element, i.e. 0.

it would cause a cache miss with any placement map and hence i could not possibly be in L. We put an
edge from the vertex i in L to the vertex j in M iff i’ < j < i. See Figure 3. Note that the edges of 8 do not
exactly correspond to cache misses. The only reason behind this construction is that counting the number
of edges in two different ways enables us to bound |L| in terms of |M*|.

We now bound the number of edges of B in two ways. First, consider a vertex i € L. The degree of i
is the number of cache misses occurred between times i’ + 1 and i — 1. Note that L only contains indices
corresponding to E;. Hence, at least d distinct data items were accessed in this period. At the end of time 7',
at most k of these items could potentially be in the cache. Thus, there are at least d — k cache misses in this
period, i.e. the degree of i is at least d — k, and the number of edges is at least |L| - (d — k).

Now consider a vertex j € M*. We prove that the degree of j is at most k. To get a contradiction, suppose
that j has edges to iy, i, . . ., ik, ig+1 € L. Given that the range of f has k different values, by the pigeonhole
principle there exist a,b € {iy,...,ix+1} such that f*(o,) = f*(op) = fo. We know that a’ < j < a and
b’ < j < b. Without loss of generality, assume a > b. Since o, and o}, are both mapped to f;, o, was brought
to cache line f; at time a’ but was then evicted on or before time b. Hence, we have a cache miss at time a.
This contradicts the definition of L. Therefore, the total number of edges is at most |M*| - k.

Putting the two bounds together, we get |L| < |M*|- ﬁ. Combining this with (2), we have IM| < |M*|- T
d

COROLLARY 2. For any € > 0, by applying the approach above using the sparsified access hypergraph
Gy, of order d. := [k + §'|, we obtain a (1 + €)—approximation of the optimal number of cache misses in a

direct-mapped cache, i.e. Missesy (f, 3) < (1+e¢€) - Missesg (f*,2).

EXTENSION TO t-WAY MAPPING. Extending the approach above to t-way mapping is quite straightforward
and all steps go through naturally. Thus, we only present the differences. See Appendix A for a detailed

treatment of the t-way mapping case.

OPTIMAL t-WAY COLORING. In a canonical hypergraph G = (V, E), we define Cost' (f, G) of a coloring

function f as the number of edges e = (v1,v3, . ..,0,,, v1) that have at least t distinct internal vertices with
13

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

the same color as v;. We call these edges missed edges. The optimal t—way coloring problem asks for a
coloring f with minimal cost.
Lemma 1 and Corollary 1 apply to the t-way case with no changes and Theorem 1 sees only a minor

change:
THEOREM 2. We have
A d
Missesi(f*,Z) < Misses; (f,%) < R .Misses,tc(f*,Z).

Proor. Every step is the same as in the proof of Theorem 1, except that the total cache size is now ¢ - k.

Hence, the degree of each vertex in L is at least d — ¢ - k and the degree of each vertex in M* is at most ¢ - k. [J

COROLLARY 3. For any positive constant € > 0, by applying the approach above using the sparsified access
hypergraph G,_ of orderd, := [t - k + %1 we obtain a (1 + €)—approximation of the optimal number of cache
misses in a t-way cache, Le. Misses]tc(f,)< (1+e)- Misses]tc(f*,).

ReEMARK. The proofs of the t-way results above, which are provided in detail in Appendix A, are applicable
even when the data items can have varying non-unit integer sizes. Hence, our approach is not limited to
unit-sized objects.

Corollaries 2 and 3 show that we can get arbitrarily tight (1 + €)-approximations of the optimal number
of cache misses provided that we can solve the optimal (t-way) coloring problem on the sparsified access
hypergraph of the right order and obtain the coloring/placement map f. This is summarized in Algorithm 1.
In Section 3.3, we provide a linear-time FPT algorithm for solving the optimal coloring and t-way coloring
problems parameterized by treewidth. Hence, we can obtain a (1 + €)-approximation of the number of
cache misses whenever the sparsified access hypergraph G,_ is sparse and has bounded treewidth. It is also
noteworthy that Theorems 1 and 2 and hence the (1 + €) factor are not tight. In practice, our approach may

find much tighter approximations.

3.3 A Decomposition-based Algorithm for Optimal Coloring

In this section, we consider the problem of (t-way) optimal coloring, as defined in Section 3.2 and provide a
linear-time FPT algorithm wrt treewidth for solving it, i.e. our algorithm can solve the problem in linear

time if the input graph is sparse and has bounded treewidth.

InPUT. The input consists of two integers t and k, a canonical hypergraph G = (V, E) with n vertices and N
edges, each with at most d endpoints, and a nice tree decomposition T = (B, Er) of G with O(n) bags and

constant width w.

OuTput. The output is an optimal coloring function f :V — {1,2,...,k} with minimal total cost.
Note that we are mostly focused on direct mapping, i.e. t = 1. However, our algorithm can handle any

value of t. Moreover, we can assume that a tree decomposition of linear size is given as part of the input,
14

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

Algorithm 1 A (1 + €)-approximation for CDP

1: procedure CDP(n,O,N, 3, t,k, €)
2 de[tok+ L]

3 Ey 0

4: fori=1to N do

5: e; — {(o})
6

7

8

9

for j =i — 1 downto 1 do
ej « {(oj) +ei
if 0j = oj then
: Ey «— Ep U {e;}
10: break
11: if [set(e;)| > d then
12: break
13: T = (B, ET) « NiceTreeDecomposition(O, E)
14: return OptimalColoring(O, E, t,k, T)

{03,04,06} | b3

b, | {04, 05,06} | | {04,06,07} | bs

Fig. 4. The subtree Tbl3 (right) and the subgraph Gli (left) of the bag b3 of Figure 1.

since, as mentioned in Section 2.2, there are linear-time FPT algorithms for computing an optimal tree

decomposition and making it nice.

SUBTREES AND SUBGRAPHS. We say that a vertex v appears in a bag b, if v € V},. Similarly, an edge e appears

in b if all of its endpoints appear in b, i.e. e € V},. We denote the set of all edges appearing in b by Ej,.

For a bag b € B, we define its corresponding subtree Tbl = (Bli), E.1) as the part of T that is rooted at b,
b

i.e. including b and all of its descendants. The subgraph Gi corresponding to b consists of all vertices and

edges that appear in at least one bag in T! ie. G[f = (Ub/eBl Vi, Uy et Eb/) .
b b

ExampLE 5. Consider the graph and decomposition of Figure 1. Figure 4 shows the subtree and subgraph
corresponding to the bag bs.

PARTIAL COLORING. Let b € B be a bag. A partial coloring on b is simply a function f, : V, — {1,2,...,k}
that assigns a color to each vertex in b. We denote the set of all k!"»! possible partial colorings on b by Cp.
Our algorithm is a bottom-up dynamic programming on the nice tree decomposition T. There are two

basic observations: (i) since every bag b is small and has size at most w + 1, we can do a brute-force check
15

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

of all partial colorings over b, and (ii) we can define subproblems on Gi and its tree decomposition Tbl and

use the solutions in these subproblems to solve the initial instances.

DynaMmic PROGRAMMING VARIABLES. Based on the two observations above, for every bag b € B and partial
coloring f;, € Cp, the algorithm defines a dynamic programming variable dp[b, f,] and initializes it to +co.
Our goal is to compute values for the dp|-, -] in a bottom-up order such that the following invariant holds

after we compute dp[¥, f;]:

dp[b, fo] = Minimal possible cost of a coloring of Gé ()

in which Vj, is colored according to f3

In other words, we solve subproblems on G,f corresponding to each possible partial coloring of b.

CoMPUTING dp VALUES. Our algorithm processes the bags of T in a bottom-up order and performs the

following actions based on the type of the bag:

(1) LEaF Bags: Consider a leaf bag ¢ € B. Given that T is nice, we have V, = 0. Hence, C; contains only a
single trivial coloring f;. Since there are no edges in G, the total cost would always be 0. Hence, the
algorithm sets dp[¢, f;] = 0.

(2) Bags wiTH A SINGLE CHILD: Suppose that b € B is a bag with a single child ¢ € B. Given that T is nice,
we have |V}, A V| = 1. The algorithm considers two cases:

(i) Vi = V. U {u}, i.e. the bag b has one vertex v which does not appear in its child c: In this case, each
partial coloring f, € Cp induces a unique partial coloring f. := fp|, on c. Hence, the minimal total
cost in Gi is dp[c, fc] which is already computed in previous steps. The algorithm should compute
dp[b, f3], i.e. the minimal cost in Glf . The edges in Glf can be divided in two sets: (a) edges that appear
only in Glf but not in Gcl; and (b) edges that appear Gcl. Note that every edge e = (v1,02, ..., U, 1)
in part (a) must have all of its endpoints in V. Hence, the partial coloring f, fixes the colors of all v;.
So, the algorithm can simply iterate over the v;’s and check whether the edge e is missed. Moreover,
the optimal cost (number of missed edges) in part (b) is given by dp[c, f.]. Thus, the algorithm sets
dp[b, fp] = dp[c, fz] + number of missed edges in (a).

b o——e o °
[

C *—o—o o

Fig. 5. b has one vertex more than c. A coloring of b also colors c. New edges in Gé, i.e. part (a), are shown in red.

(if) V. = V3 U {o}, i.e. the child ¢ has one vertex v which does not appear in its parent b: In this case,

we have Glf = Gi. However, a partial coloring function f;, € C, does not provide a color for the
16

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

vertex v. Let f,[v — i] be an extension of f; that maps v to i. The algorithm sets
k
dplb, fy] = min dplc, fylo — il].
This is correct because Glf = Gcl and the only partial colorings in C, that have no conflict with f;

are precisely those of the form f,[v — i].

Fig. 6. ¢ has one vertex v more than its parent b. The coloring of f}, sets colors for all vertices of ¢ except v. This vertex

can have any color.

(3) Bags wiTH Two CHILDREN: Consider a bag b with two children ¢; and c;. Since T is nice, we have
Vo =V, =V, and Glf = Gcl1 U Gclz. So, when computing dp[¥, f;], we can use the same partial coloring
function f, for both ¢; and c; and then the number of missed edges in Gi is equal to the number of
missed edges in Gil plus the number of missed edges in Gcl2 minus the number of missed edges that were
counted in both. If an edge e is in both Gcll and Gclz, then all of its endpoints must appear in both graphs.
Using the last property of tree decompositions (see Section 2.2), we conclude that all of its endpoints

have appeared in b and hence e € E, = E;, = E,. Thus, the algorithm sets:

dp[b, fz] = dplew, fo] +dplc, fi]

— number of missed edges in Ej,

As before, the algorithm can check whether an edge e € E, is missed because the partial coloring f;

provides the color information for all endpoints of e.

b| e—e"ee

e

o —eo e c1 G e—e—e—e

Fig. 7. b has two children c¢; and cz. A coloring of b will also color all vertices in V;;; and V;,. Some edges are shared

between Gcl1 and Gclz. All such edges appear in b.

CoMPUTING THE FINAL ANSWER. Since T is nice, we have V, = 0. So, there is only one possible partial
coloring L€ C, for the root bag r. Moreover, we have G,l = G. So, the algorithm outputs dp[r, L] as the
minimal number of missed edges. Algorithm 2 shows all steps of our method for obtaining the cost of the

optimal coloring.
17

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Algorithm 2 Parameterized algorithm for optimal coloring

1: procedure OptimalColoring(V,E, t,k,T = (B, ET))
2 for b € B in bottom-up order do

3 for f, : Vv, » {1,2,...,k} do

4: if b.children = () then

5: dp[b, f] <0

6 else if |b.children| = 1 then

7 ¢ < b.children|[1]

8 if V. €V}, then

9

: v Vp\ Ve
10: Je = fov,
11: dp[b. fp] < dple, fe
12: for e € E, do
13: if v € e A is_missed(e, f3) then
14: dp[b, fp] « dp[b, fp] +1
15: else if V;, C V. then
16: vV \ Vi
17: dp[b, fp] « +o0
18: fori=1tok do
19: fe — fplv — i]
20: dplb, fy] « min(dp[b, fy],dple, fo1)
21: else if |b.children| = 2 then
22: c1, ¢y « b.children
23: dp[b, fi,] < dp[ec1, fip] + dp[ez, fi]
24: for e € E, do
25: if is_missed(e, f;) then
26: dp[b, fp] « dp[b, fp] — 1
27: r « T.root
28: return dp[r, 1]

FINDING THE OPTIMAL COLORING. The algorithm above obtains the minimal number of missed edges /
minimal cost. As is common in dynamic programming, one can obtain the optimal coloring itself by simply

keeping track of the partial colorings that led to the optimal dp[-, -] value at every step of the algorithm.

THEOREM 3. Given positive integer constants t and k, a canonical hypergraph G with n vertices whose edges
have at most d endpoints, and a nice tree decomposition of G with O(n) bags and width w, the algorithm above

solves the t-way optimal coloring problem in total runtime O(n - k™*! - (k +d - w?)).

Proor. The correctness of the algorithm was argued in its presentation above. We focus on the runtime
bound. There are O(n) bags and the algorithm defines at most k**! different dp[-, -] variables at each bag b,
since there are at most k**! partial colorings in Cp. Case (1) spends O(1) time per variable and Case (2.ii)
takes the minimum of k values in O(k). In cases (2.i) and (3), all edges in the current bag should be checked
to see if they are missed. There are at most (w + 1)¢ such edges and checking each of them takes O(d)*. [

4Without loss of generality, we can assume every edge in G4 has exactly d + 1 endpoints. Each edge has exactly d distinct vertices and
removing repetitive internal vertices from the edge has no effect in our algorithm.

18

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

RemaARK. The bound above is a theoretical worst-case bound and not tight. Our algorithm is indeed much
faster in practice. Moreover, we can improve the runtime to O(N - k**2) using a slightly different notion
of nice tree decompositions. See Appendix B for details of theoretical improvements and Section 5 for

experimental results.

COROLLARY 4. When k, w and d are bounded, our algorithm solves the optimal coloring problem in linear
time O(n).

We are now ready to present our main theorem:

THEOREM 4. For any € > 0, there exists an order d., such that by applying our tree decompostion-based
algorithm to the sparsified access hypergraph éde, we obtain a linear-time (14 €)—approximation of the optimal

number of cache misses, as well as a placement mapf such that
Misses]tc(f, %) < (1+¢€) - Misses, (f*,3).
For direct mapping, we have de = [k + §'| and for t-way mapping, d. = [t - k + % .

Proor. Direct result of Corollaries 2, 3 and 4. O

4 HARDNESS OF CDP IN BOUNDED TREEWIDTH

As proven in [37], it is impossible to approximate CDP within any non-trivial factor unless P=NP. In
this section, we show that for every positive integer constant d, finding an exact solution to the CDP
problem remains NP-hard even if the access hypergraph G4 of order d has constant treewidth. These two
complementary hardness results show that both parameterization and approximation are necessary for our

efficient solution in Section 3 and the problem remains NP-hard if only one of them is applied.

THEOREM 5 (HARDNESS oF CDP wiTH DIRECT MAPPING). For every positive integer constant d, the CDP
problem with direct mapping is NP-hard even when limited to instances where the treewidth of G4 is bounded

by a constant.

ExXAMPLE 6. Before providing a formal proof, let us illustrate the main ideas by an example. Our goal is
to find a reduction from general CDP, which is NP-hard, to the special case of CDP in which the treewidth is

bounded. Consider the access sequence of Example 3:
3% = (01, 02,01, 04, 05, 03, 03, 01, 02).

Suppose that we have a cache of size k = 2 and set d = 2 in the theorem above. In other words, we want
to reduce our CDP instance I = (n,O,N’,3,1,k) = (5,{01,...,05},9,2,1,2) to another CDP instance I’ =

(n’,0’,N’,3',1,k’) such that the access graph of I’ has small treewidth. We first introduce two new data
grap
19

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Fig. 8. Base access graph of the sequence 3.

{r1, 2}

| {z1, 72,01} || {r1, 72, 00} | | {71, 72,05} | | {71, 72, 04} || {71, 72, 05} |

Fig. 9. A tree decomposition of width 2 for the graph of Figure 8.

elements (objects) r; and 7, and set O’ = {0y, ..., 05, 71, T2 }. Intuitively, we want to take 3 and add (t1, 75)

between any two consecutive accesses, so that the treewidth of the access sequence becomes small. This leads to

A

Y = (1,12 01,11, T2, 02, T1, T2, 01, T1, T2, 04, T1, T2, 05

T1, T2, 03, T1, T2, 03, T1, T2, 01, T1, T2, 02, T1, T2)

Note that every access to any original data item o; is now preceded and succeeded by the new elements v, and
71. Ignoring edge directions and repetitions, this leads to an access graph that is almost bipartite, except for the
edge between the new elements. See Figure 8. We can easily find a tree decomposition of constant width 2 for
this access graph, as shown in Figure 9. We put a bag containing only the new elements as the root and add a
child of the form {1, 2, 0;} for each o;. It is easy to verify that this is a valid tree decomposition.

To have a reduction, we must be able to obtain the optimal number of cache misses in I from the optimal
number of cache misses in I, but an optimal data placement for 3. might have no resemblance to its counterpart
for . So, we first increase our cache size by setting k’ = 4, and then add a gadget that ensures each t; gets its
own dedicated cache line. This ensures that exactly 2 = k cache lines remain for the o;’s and hence we can
simulate the original instance. To achieve this property, we simply append many repetitions of (t1, 72) to the
end of 3, and define:

=3 (Tl,rz)lﬁﬂl.
In other words, ' is obtained by appending |3 + 1| copies of {t1, 1) to the end of 3. Note that in I, the new

items 71 and , should be assigned to different cache lines. Otherwise, we will get 2 - (3 + 1) cache misses in the
20

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

second part of 3 since every access to the new items will be a miss. In contrast, if they are assigned to the same
cache line, we can get at most |X’| cache misses in the first part and none in the second.

Now consider an optimal data placement for I’ and suppose that it assigns 7, and some original object o;
to the same cache line. This means every access to o; or 1y in 3 is a miss. We can modify our data placement
and assign o; to any other cache line that is not assigned to T, or 72, and this will not increase the number of
cache misses. In the worst case, every cache miss on o; is preserved and every cache miss on 7y is replaced by a
miss on another element that shares a cache line with o;. Hence, there is an optimal data placement f’ for I’
in which t; and t, have their own dedicated cache lines. This means that the other elements must be put into
k’ — 2 = k lines and hence I is simulated by I'. So, we can just count the number of cache misses on 0;’s in I’

and this gives us the optimal number of misses in I.

Proor oF THEOREM 5. We provide a polynomial-time reduction from the general case of CDP to low-
treewidth CDP. Since the former is NP-hard [37], then so is the latter. Let I = (n,O, N, %, 1, k) be a CDP
instance with direct mapping. We create a new CDP instance I’ = (n’,0’, N’,¥’, 1, k) where:

en' =n+dand O’ =0 U {11, 15,...,74}, i.e. we add d new objects.
e N'=d> N+d>+2-d-N+2-d+ N and the access sequence ¥’ is of the following form:

Xo X0y X ... X oy X X4 N+d+N+1

where X = (14, 73, . . ., 74). Intuitively, we add X at the beginning and end of %, as well as in between
every two accesses. Finally, we add d - N + d + N + 1 more copies of X to the end.
o k' =k +d,ie. we add d new cache lines.

Let f’ be an optimal placement function for I’. Note that for every i # j, we have f’(z;) # f'(z;). This is
because assigning 7; and 7; to the same cache line will cause at least d - N + d + N + 1 cache misses in the
final part of 3/, i.e. in X4 N+@*N+1 whereas any placement that assigns different cache lines to each of the
7;’s leads to no cache misses in this part. The length of the rest of the sequence isd - N + d + N whichis a
natural upper-bound on the number of possible cache misses. Next, we argue that there is an optimal f’
that does not assign any 7; and o; to the same cache line. Suppose that f(7;) = f(0;). Then every access
to o; at any time a is a cache miss, since f(0;) contains 7;. Similarly, the access to 7; at time a + i is also a
cache miss. We now change f(o;) arbitrarily to some other value g that is not shared with any 7. It is easy
to verify that this cannot increase the number of cache misses. In the worst case, the misses on 0; remain
and the misses on 7; are replaced by misses on the first other access that is mapped to g. By repeating this
process, we will obtain an optimal f” that uses d of the cache lines for {7y,. .., 74} and the other k lines for
O. Hence, f* = flb is an optimal solution for I. This completes the reduction. Figure 10 is a decomposition
of this graph with width d.]

21

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

[XUfo}]| [XU{o}]

Fig. 10. A decomposition of G/, with constant width d.

THEOREM 6 (HARDNESs oF CDP WITH ¢t-wWAY MAPPING). For all positive integer constants d and t, the CDP
problem with t-way mapping is NP-hard even when limited to instances where the treewidth of G4 is bounded

by a constant.

PRroOF. Section 4.3 of [37] provides a construction that, by introducing new data items and polynomially
increasing the instance size, simulates a direct-mapping cache by a t—way mapping cache. The construction
in [37] uses a constant number of extra data elements and does not blow up the treewidth of G;. We can

then apply Theorem 5. O

5 EXPERIMENTAL RESULTS
In this section we report on an implementation and experimental evaluation of our algorithm for CDP.

IMPLEMENTATION. We implemented our approach, i.e. the algorithm of Section 3.3 for direct-mapped caches
with the optimizations of Appendix B, in C++ and used the LibTW library [47] for computing optimal tree

decompositions.

MacHINE. All results were obtained on an Ubuntu 20.04 machine using a single thread of an Intel Xeon
E3-1220 v2 Processor (3.1 GHz, 8M Cache) with 32 GB of RAM.

BENCHMARKS. We used the benchmarks of [18] for obtaining experimental results. These benchmarks
contain access sequences X that are generated from a wide variety of classical algorithms including in
linear algebra, sorting, divide-and-conquer, dynamic programming and string matching. In [18], they were
introduced as benchmarks for the problem of data packing, which is another formalism of minimizing cache
misses. Given that both data packing and CDP have the same input format, i.e. an access sequence of a
program, we can simply repurpose the benchmarks of [18] for our use-case. Each benchmark corresponds
to a classical algorithm, e.g. Gram-Schmidt or Heap Sort, and can generate access sequences of various

(arbitrarily long) lengths. See [18] and its artifact for a complete list of benchmarks and other details.

TesT Casks. Recall that a direct-mapping instance is a tuple I = (n, O, N, %, 1, k). Our algorithm also needs
an extra parameter d, i.e. the degree of the access hypergraph. We call the tuple (n, O, N, 2, k, d) a test case.
In our experiments, we set a time limit of 5 minutes per test case for our algorithm and, for each benchmark,

each cache size 3 < k < 6, and each hypergraph degree k < d < 15, generated all the test cases that our
22

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

algorithm could handle in this time limit. This led to a total of 12,085 test cases, corresponding to 1,633
distinct instances. Our longest access sequence in our instances has 12,917 accesses. Note that the cache
sizes considered here are much smaller than those in the real world. Our algorithm is hence not suitable
for practical cache management but can instead be used for limit studies and profiling as mentioned in
Section 1. Similarly, note that we assume the entire sequence X of accesses is given as part of the input and

are solving the single-threaded offline case of the problem.

SPARSITY OF INSTANCES. The fact that access graphs and access hypergraphs are sparse is quite well-known.
In [18], it was shown that the access hypergraphs of most classical algorithms have bounded treewidth.
However, in contrast to previous methods, our algorithm does not depend on the access hypergraph G
itself, but only on a sparsified subgraph Gg4. See Section 3.2. This means that we work with a much sparser
graph. In our experiments, the average ratio of the number of edges in G, to the number of edges in G4
was 47.22%. So, our sparsification has significant impact, leading to graphs that have less than half as many
edges as the widely-used access hypergraphs. Moreover, they have a treewidth of at most 14. Figure 11

provides a histogram of the treewidths of G4 in our test cases.

2500 2384

2000

1640

1500 1339 1337 1372
106
349
L

62,
12 13 14

8

g

Fig. 11. Treewidths of our test cases. The x axis is the treewidth of the sparsified access hypergraph G4 and the y
access is the number of cases.

BASELINES. We compare our algorithm against several well-known heuristics in the literature.
e CKJA: This is the algorithm presented in [13], when cache-conscious data placement was first defined.
It is a classic and has since been extensively studied.
e BB: This algorithm was presented in [3] and provides a graph-theoretic approach that aims to totally
prevent the so-called “conflict misses” if possible.
e SCE: This approach aims to minimize cache misses using a coloring-based heuristic. It was presented
n [44].

ExPERIMENTAL RESULTS. Table 1 provides a summary of the number of instances where our approach

outperformed the baseline heuristics. Overall, our algorithm beats CKJA in 85% of instances, BB in 84%
23

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Table 1. Comparison of our algorithm with the baselines. The total number of benchmarks instances is 1633. Each cell
contains the number of instances in which our algorithm outperformed the base line (left) and the number of instances
in which the baseline had fewer misses (right).

CKJA BB SCE
238 260 192
1395 1373 1441

Our Algorithm

and SCE in 88%. Figure 12 provides a detailed comparison between our algorithm and the baselines above.
In this figure, each red dot corresponds to one instance. The dot’s x coordinate is the number of cache
misses obtained by our algorithm and its y coordinate is the number of cache misses of the other method.
The x = y line is shown in blue. Hence, a red dot above the line corresponds to an instance in which our
algorithm performed better than the other approach, and a red dot below the blue line signifies that the

other approach performed better.

LowER-BOUNDS. A major theoretical advantage of our approach is that, for the first time, it provides constant
multiplicative approximation ratio guarantees. Specifically, we can use the guaranteed ratio in Theorem 1
to obtain a lower-bound ¢ on the optimal number of cache misses, i.e. we are guaranteed to have at least ¢
cache misses no matter which placement function is used. These lower-bounds are shown in Figure 13. As
before, there is a green dot corresponding to each instance. The green dot’s x coordinate is the number
of cache misses obtained by our algorithm, whereas its y coordinate is the guaranteed lower-bound ¢. As

expected, all green dots are below the x = y line.

DiscussioN. Our experimental results show that our novel approach manages a better utilization of the
cache compared to previous heuristics, leading to improved cache performance in the vast majority of
the benchmarks. Moreover, the performance gap increases as we go to more demanding benchmarks,
indicated by the widening distribution of data points on the right-end side of the charts in Figure 12. Our
approach is the first to provide theoretical guarantees of approximation within a constant ratio. Although
our running time is generally larger than the heuristics, it is many orders of magnitude faster than a purely
exhaustive search, which is the only other known approach so far that offers any non-trivial guarantees of

optimality. Performing exhaustive search on our benchmark instances will take more than 10°%

years per
instance. This matches the intuition provided by the notorious hardness-of-approximation result in [37]. Our
parameterized approach overcomes this hardness of approximation and solves instances that have thousands
or even tens of thousands of accesses. This being said, given that our runtime depends exponentially on
the cache size, we can only handle small caches and our approach does not scale to real-world cache sizes.
Finally, our lower bounds can be used in limit studies of heuristics, in order to characterize their performance
not against another approach, but compared to the best theoretically-possible performance.

24

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

1200 1

1000 4

800

600 1

400+

Number of Cache Misses using BB

200 1

[200 400 600 800 1000
Number of Cache Misses using Our Approach

1200

1000 4

800 -

600 -

4004

Number of Cache Misses using SCE

200 4

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

1000 4

800

600 -

4004

200 1

Number of Cache Misses using CKJA

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

Fig. 12. Performance of our algorithm vs BB (top), SCE (middle), and CKJA (bottom).

6 CONCLUSION

We studied Cache-conscious Data Placement (CDP), which is a standard and classical problem in memory
management. As previous works have provided either formal and strong theoretical hardness results,

or heuristics with no guarantees of optimality, this work is the first to present formal positive results.
25

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

1000 A

800 -

600 1

4004

Theoretical Lower Bound of Theorem 1

0 200 400 600 800 1000
Number of Cache Misses using Our Approach

Fig. 13. Number of cache misses obtained by our algorithm vs the theoretical lower bounds of Theorem 1.

Particularly, we have shown that real-world instances of CDP admit efficient approximations within a
constant ratio (1 + €) based on sparsification and parameterization by treewidth. Notably, our results differ
from standard algorithmic approaches in which treewidth suffices to make the problem tractable. As our
hardness results show, the problem remains NP-hard even with bounded treewidth, and only approximations
are possible.This reveals a stronger hardness for the problem compared to previous results.

Interesting directions of future work include studying the existence of other parameters that allow for an
efficient algorithm to solve CDP exactly, designing heuristics on top of our treewidth-based algorithm to
improve its performance, and on the more practical side, incorporating our algorithm in data-placement of

mainstream compilers.

ACKNOWLEDGMENTS

We are extremely grateful to the anonymous reviewers for their suggestions, which significantly improved
the quality of this work. The research was partially supported by the HKUST-Kaisa Joint Research Institute
Project Grant HKJRI3A-055 and HKUST Startup Grant R9272.

26

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

REFERENCES
[1] Mohsen Alambardar, Amir Goharshady, Mohammad Reza Hooshmandasl, and Ali Shakiba. 2021. Optimal Mining: Maximizing
Bitcoin Miners’ Revenues. (2021). https://hal.archives-ouvertes.fr/hal-03232783
[2] Ali Asadi, Krishnendu Chatterjee, Amir Goharshady, Kiarash Mohammadi, and Andreas Pavlogiannis. 2020. Faster algorithms
for quantitative analysis of MCs and MDPs with small treewidth. In ATVA. 253-270.
[3] Mirza Beg and Peter Van Beek. 2010. A graph theoretic approach to cache-conscious placement of data for direct mapped caches.
In ISMM. 113-120.
[4] Hans Bodlaender. 1996. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on computing
25, 6 (1996), 1305-1317.
[5] Hans Bodlaender. 1997. Treewidth: Algorithmic techniques and results. In MFCS. 19-36.
[6] Hans Bodlaender. 1998. A Partial k-Arboretum of Graphs with Bounded Treewidth. Theor. Comput. Sci. 209, 1-2 (1998), 1-45.
[7] Hans L Bodlaender. 1988. Dynamic programming on graphs with bounded treewidth. In ICALP. 105-118.
[8] Hans L Bodlaender. 1994. A tourist guide through treewidth. Acta cybernetica 11, 1-2 (1994), 1.
[9] Hans L Bodlaender. 2005. Discovering treewidth. In SOFSEM. 1-16.
[10] Hendrik Borghorst and Olaf Spinczyk. 2019. CyPhOS - A Component-Based Cache-Aware Multi-core Operating System. In ARCS.
171-182.
[11] Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. 1995. Competitive Paging with Locality of Reference. 7.
Comput. Syst. Sci. 50, 2 (1995), 244-258.
[12] Bernd Burgstaller, Johann Blieberger, and Bernhard Scholz. 2004. On the tree width of Ada programs. In ADA. 78-90.
[13] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. 1998. Cache-Conscious Data Placement. In ASPLOS. 139-149.
[14] Krishnendu Chatterjee, Amir Goharshady, and Ehsan Goharshady. 2019. The treewidth of smart contracts. In SAC. 400-408.
[15] Krishnendu Chatterjee, Amir Goharshady, Prateesh Goyal, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2019. Faster
algorithms for dynamic algebraic queries in basic RSMs with constant treewidth. TOPLAS 41, 4 (2019), 1-46.
[16] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Algorithms for algebraic path
properties in concurrent systems of constant treewidth components. In POPL. 733-747.
[17] Krishnendu Chatterjee, Amir Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2020. Optimal and perfectly parallel
algorithms for on-demand data-flow analysis. In ESOP. 112-140.
[18] Krishnendu Chatterjee, Amir Goharshady, Nastaran Okati, and Andreas Pavlogiannis. 2019. Efficient parameterized algorithms
for data packing. In POPL. 53:1-53:28.
[19] Krishnendu Chatterjee, Amir Goharshady, and Andreas Pavlogiannis. 2017. JTDec: A tool for tree decompositions in soot. In
ATVA. 59-66.
[20] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Amir Goharshady, and Andreas Pavlogiannis. 2018. Algorithms for algebraic path
properties in concurrent systems of constant treewidth components. TOPLAS 40, 3 (2018), 1-43.
[21] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2015. Faster algorithms for quantitative verification in
constant treewidth graphs. In CAV. 140-157.
[22] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Optimal reachability and a space-time tradeoff for
distance queries in constant-treewidth graphs. In ESA, Vol. 57.
[23] Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2021. Quantitative Verification on Product Graphs of
Small Treewidth. In FSTTCS.
[24] Krishnendu Chatterjee and Jakub Lacki. 2013. Faster algorithms for Markov decision processes with low treewidth. In CAV.
543-558.
[25] Marek Cygan, Fedor Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michat Pilipczuk, and Saket

Saurabh. 2015. Parameterized algorithms. Springer.

27

https://hal.archives-ouvertes.fr/hal-03232783

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

[26]

[27]
(28]
[29]

Chen Ding and Ken Kennedy. 1999. Improving Cache Performance in Dynamic Applications through Data and Computation
Reorganization at Run Time. In PLDI. 229-241.

Wei Ding and Mahmut Kandemir. 2014. CApRI: CAche-conscious data reordering for irregular codes. In SIGMETRICS. 477-489.
Rodney Downey and Michael Fellows. 2012. Parameterized complexity. Springer.

John Fearnley and Sven Schewe. 2012. Time and parallelizability results for parity games with bounded treewidth. In ICALP.
189-200.

Andrea Ferrara, Guogiang Pan, and Moshe Y Vardi. 2005. Treewidth in verification: Local vs. global. In LPAR. 489-503.

Amir Goharshady. 2020. Parameterized and algebro-geometric advances in static program analysis. Ph.D. Dissertation. Institute of
Science and Technology Austria.

Amir Goharshady and Fatemeh Mohammadi. 2020. An efficient algorithm for computing network reliability in small treewidth.
Reliability Engineering & System Safety 193 (2020), 106665.

33] Jens Gustedt, Ole A Mehle, and Jan Arne Telle. 2002. The treewidth of Java programs. In ALENEX. 86-97.

34

Rahman Lavaee. 2016. The hardness of data packing. In POPL. 232-242.
Abraham Mendlson, Shlomit Pinter, and Ruth Shtokhamer. 1994. Compile Time Instruction Cache Optimizations. In CC. 404-418.

36] Jan Obdrzalek. 2003. Fast mu-calculus model checking when tree-width is bounded. In CAV. 80-92.

37

(33]
(34]
(35]
(36]
(37]
(38]

(39]
(40]

[41]

Erez Petrank and Dror Rawitz. 2002. The hardness of cache conscious data placement. In POPL. 101-112.

Leon R Planken, Mathijs M de Weerdt, and Roman PJ van der Krogt. 2012. Computing all-pairs shortest paths by leveraging low
treewidth. JAIR 43 (2012), 353-388.

Neil Robertson and Paul Seymour. 1984. Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36, 1 (1984), 49-64.

Neil Robertson and Paul D. Seymour. 1986. Graph minors. II. Algorithmic aspects of tree-width. Journal of algorithms 7, 3 (1986),
309-322.

Theodore Romer, Dennis Lee, Brian Bershad, and Bradley Chen. 1994. Dynamic Page Mapping Policies for Cache Conflict
Resolution on Standard Hardware. In OSDL 255-266.

Shai Rubin, David Bernstein, and Michael Rodeh. 1999. Virtual Cache Line: A New Technique to Improve Cache Exploitation for
Recursive Data Structures. In CC, Vol. 1575. 259-273.

Sriram Sankaranarayanan. 2020. Reachability Analysis Using Message Passing over Tree Decompositions. In CAV. 604-628.
Timothy Sherwood, Brad Calder, and Joel Emer. 1999. Reducing cache misses using hardware and software page placement. In
ICS. 155-164.

Khalid Thabit. 1982. Cache management by the compiler. Rice University.

Mikkel Thorup. 1998. All Structured Programs have Small Tree-Width and Good Register Allocation. Inf. Comput. 142, 2 (1998),
159-181.

Thomas van Dijk, Jan-Pieter van den Heuvel, and Wouter Slob. 2006. Computing treewidth with LibTW. Technical Report.

Raj Vaswani and John Zahorjan. 1991. The Implications of Cache Affinity on Processor Scheduling for Multiprogrammed, Shared
Memory Multiprocessors. In SOSP. ACM, 26-40.

Chengliang Zhang, Chen Ding, Mitsunori Ogihara, Yutao Zhong, and Youfeng Wu. 2006. A hierarchical model of data locality. In
POPL. 16-29.

Yutao Zhong, Maksim Orlovich, Xipeng Shen, and Chen Ding. 2004. Array regrouping and structure splitting using whole-program
reference affinity. In PLDL

28

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

A DETAILS OF THE SPARSIFICATION FOR t-WAY MAPPING

In this section, we provide a detailed treatment of our method over t-way mapping instances. Throughout
this section, we fix a CDP instance I = (n,O, N, X, t, k) with t > 2. We define colorings, sparsification and
canonical hypergraphs in the exact same manner as in the case of direct mapping (Section 3.2). Specifically,

we focus on the sparsified access hypergraph G4 of order d, which is canonical by definition.

Missep EpGEs. Consider a canonical hypergraph G = (V, E) and a coloring function f : V. — {1,2,...,k}.
We say an edge e = (01,02, . ..,0,,01) € E is missed, if e has at least t distinct internal vertices v;,, v, . .., 0;,

such that f(v;) = f(v;,) = f(v;,) = ... = f(v;,). Intuitively, such an edge corresponds to a situation where

v and at least t of the internal vertices are mapped to the same cache line.

OPTIMAL t-wAY COLORING. We define Cost’ (f, G) of a coloring function f as the number of missed edges.
The optimal t—way coloring problem asks for a coloring f with minimal cost.
The following lemma establishes a correspondence between cache misses in indices of E; and missed

edges in G4. Recall that E; is the set of edges e; that contain the data item o; twice.

LEMMA 2. Let f be a coloring of vertices in Gg = (O,E,) or equivalently a placement map for I =
(n,O,N, 3, t,k). An edge e; € E, is missed in the coloring f iff a cache miss occurs at its corresponding

access o; with placement map f.

Proor. Recall that e; is of the form (o}, 0j41,. .., 0;) and since Gd is canonical we have o; = ¢;. If ¢; is a
missed edge, then the data item o; was brought to cache line f(o;) at time j, but by time i, it was already
evicted. Given that our replacement policy is LRU, this means at least ¢ other elements have entered this
cache line, otherwise o; would not have been evicted. By definition, those ¢ elements have the same color
as 0; and hence ¢; is a missed edge. Conversely, if e; is a missed edge, then there are at least ¢ distinct data
items accessed between times j and i that shared the same color f(o;). Hence, o; = o; is evicted before

time i and the access at time i is a cache miss.

COROLLARY 5. Misses (f*,%) < Misses]i(f, 3) < Cost' (f,Gq) + |E1l.

Proor. Recall that ™ is the optimal placement map that minimizes the number of cache misses and f is
the optimal coloring that minimizes the number of missed edges in G4. Consider f as a placement map.
Based on the lemma above, it causes exactly Cost(f ,Gq) cache misses in accesses corresponding to Ey. It

can also cause at most |E;| cache misses in accesses corresponding to E;.

Based on the corollary above, we can find a bound on the optimal number of cache misses based on the
cost of f .

THEOREM 7. We have

A d
Misses; (f*, %) < Misses; (f,3) < 1% - Misses, (f*,).

29

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Proor. The proof is an extension of that of Theorem 1 with the caveat that the total cache size is now
t - k, since each of the k cache lines can hold up to t elements. The first inequality is trivially obtained by
the definition of f*.

We define M* to be the set of indices of access that cause a cache miss when using the optimal placement
f*. Similarly, let M be the indices of misses using f . By definition, we have |M*| = Misses,(f*,) and
|M| = Misses (f, 3). As in Theorem 1, let L be the set of indices in X that correspond to edges in E; but do

not lead to a cache miss in f*. With the same argument as in Theorem 1, we have
M| 2 Cost(f,Ga) + |Er| = ILI. 3)
We put (3) and Corollary 5 together to obtain
IM| < [M*] +|L]. 4)

Hence, in order to bound |M] in terms of |M*|, we need to find an upper-bound on |L|.

Let us form the same bipartite graph B as in Theorem 1 in which M* serves as the vertices on side and
L as the other side. Suppose i € L, j € M* and let i’ be the index of the previous access to 0;. We connect
vertex i in L to vertex j in M if and only if i’ < j < i. This is the same as in Figure 3.

We now double-count the edges of B. Let i € L. The degree of i is the number of cache misses occurred
between times i’ + 1 and i — 1. Given that L only contains indices in Ej, at least d distinct data items were
accessed in this period. By the end of time i’, at most ¢ - k of these items can possibly be in the cache since
the overall cache capacity is t - k. Therefore, at least d — ¢ - k cache misses occur in this period and the
degree of i is at least d — t - k. As such, the number of edges is at least |L| - (d — ¢ - k).

For the other side, let j € M*. The degree of j is at most t - k. We prove this by contradiction. Assume j
has edges to i1, iy, . . ., it .k, it.k+1 € L. By the pigeonhole principle there exist ai, az, . . ., are1 € {i1, - -+, igs1}
such that f*(o,,) = f*(04,) = ... = f*(04,,,) = fo- We know that for every index g, we have a:I <j<ay.

Without loss of generality, assume a] < a;, < ... < a;

141+ Since g, . . ., 04,,, are all mapped to fy, by tracing

the elements that enter this cache line, we can see that o, enters the cache at time a; but is then evicted
before time a; as each cache line can hold at most ¢ items at a time. Hence, we have a cache miss at time a;.
This contradicts the definition of L. Therefore, the total number of edges is at most |[M*| - t - k.

Putting the two bounds together, we get |L| < |M*| - di’f 7. Combining this with (4), we have M| <

|M*| : d_dt.k- U

COROLLARY 6. For any positive constant € > 0, by applying the approach above using the sparsified access
hypergraph G,_ of order d := [t - k + %], we obtain a (1 + €)—approximation of the optimal number of cache
misses in a t-way cache, i.e. Missesi(f, %) < (1+¢) - Misses (f*,3).

EXTENSION TO OBJECTS WITH VARYING S1ZES. Consider an extension of the CDP problem in which every data

item o; has an integer size 1 <'s; < t. We require the size to be at most ¢ since the items should fit in a cache
30

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

line. To handle this case, we can redefine the concept of missed edges. We say an edge e = (v1,0s, . .., 0, 01)
is missed if and only if by running the access sequence X, = (v1,02, . . ., Um, v1) With the same coloring, we
get a cache miss at the final position of the sequence. With this definition, it is easy to verify that Lemma 2
and Corollary 5 hold by a simple definition-chasing. Every step of Theorem 7 also holds with the exact same
arguments as before. This is because any ¢ distinct data items have a total size of at least ¢. Our algorithm of
Section 3.3 can also be straightforwardly extended to handle varying object sizes. Note that this algorithm
simply relies on local checks within each bag to decide if specific edges are missed or not. See the use-cases
of is_missed in Algorithm 2. Hence, we can plug in any definition of missed edges that is solely based on

the partial coloring of the vertices appearing in the edge. This has no effect on the runtime, either.

B AN ALGORITHM FOR OPTIMAL COLORING USING EDGE-NICE TREE
DECOMPOSITIONS

In this section, we present an alternative algorithm for the problem of (t-way) optimal coloring. Just as
in Section 3.3, we rely on nice tree decompositions to perform a bottom-up dynamic programming. The

difference is that we use a finer notion of niceness, which leads to a better overall runtime.

EDGE-NICE TREE DECOMPOSITIONS [18, 25]. An edge-nice tree decomposition of an undirected graph/unordered
hypergraph G = (V,E) is a tuple T = (B, Er, r, G') such that:

e (B,Er,r) is a tree decomposition of G.

e Gl is a function that maps each bag b € B to a subgraph G!(b) of G.

e The root bag and every leaf bag ¢ are empty, i.e. V. = V; = 0.

e The subgraph associated to each leaf bag ¢ is empty, i.e. GL(£) = (0, 0).
e Each non-leaf bag b is in one of the following forms:

— Introduce Vertex Bag (IV): The bag b has exactly one child b’. Moreover, V}, = Vjy U {u} for some
vertex u ¢ Vi and G, = G U {u}. In other words, the bag b has one new vertex u that was not in
its child bag b’. We say that b introduces u. The subgraph G'(b) is obtained from G'(b’) by adding
the vertex u. Note that if u is not already in G1(b), then it will be added in G!(b) as an isolated
vertex.

— Forget Vertex Bag (FV): The bag b has exactly one child b’ and V;, = Vjy \ {u} for some u € Vj .
Moreover, Gt(b) = G!(b’). We say that b forgets u.

— Introduce (hyper)Edge Bag (IE): The bag b has exactly one child b” and V}, = V},. However, G}(b) =
GL(b") U {e} for some edge e € E whose all endpoints are in Vj, i.e. e C V;,. We say that b introduces
e.

— Join Bag (j): The bag b has two children b, and b,. Additionally, V}, = V},, = V}, and GY(b) =
G'(b1) U GL(by).

o Each (hyper)edge is introduced exactly once.
31

To appear in PLDI, June 2022, San Diego Ali Ahmadi, Majid Daliri, Amir Kafshdar Goharshady, and Andreas Pavlogiannis

Intuitively, an edge-nice tree decomposition is finer than a nice tree decomposition. In the latter, we also
have IV, FV and] bags and the vertices are added or removed one-by-one, but each newly introduced vertex
can automatically add many new edges to the subgraph Gi of the current bag b. In contrast, in an edge-nice
tree decomposition, the edges are also added one-by-one. Moreover, since each edge is introduced only
once, we can be sure that in a join bag b with children b; and b, the left subgraph G!(b;) and the right
subgraph G1(b,) are edge-disjoint. Any tree decomposition can be turned into an edge-nice decomposition
of the same width in linear time [25]. In practice, we do not store the subgraphs G!(b) in memory. We just
keep track of the vertices/edges that are introduced or forgotten at every bag.

We now present our dynamic programming algorithm for optimal coloring using an edge-nice tree
decomposition. The algorithm is similar to that of Section 3.3 and computes the following variables in a

bottom-up manner:

DynamIic PROGRAMMING VARIABLES. For every bag b € B and partial coloring f;, € Cp, the algorithm defines
a dynamic programming variable dp[b, f,] and initializes it to +oco. Our goal is to compute values for the

dp[-, -] in a bottom-up order such that the following invariant holds after we compute dp[b, f3]:

dp[b, fp] = Minimal possible cost of a coloring of Gl(b)

in which Vj, is colored according to f;

ComPUTING dp VALUES. The algorithm processes the bags in a bottom-up order and performs the following

computations at each bag according to its type:

(1) LEAF Bags. In a leaf bag ¢ € B, we have V; = () and G} = (0,0). Hence, there is only one possible

trivial coloring f;. The algorithm sets dp[?, f;] = 0 since there are no edges to be missed.

(2) IV Bags. Suppose b is an IV bag introducing the vertex u. Let b’ be the only child of b. Any partial
coloring f, : V, — {1,...,k} also colors Vjy. Moreover, Gi(b) has the exact same set of edges as
GY(b’). Thus, the algorithm sets dp[b, f;] = dp[b’, fov, 1-

(3) FV Bags. If b is an FV bag forgetting u and its only child is b’, then we have G'(b) = G1(b’). However,
a partial coloring f, € C, does not assign a color to u. So, the algorithm should check all possibilities
for the color of u. Hence, it sets dp[b, f3] = min{.‘:1 dp[?’, fp[u — i]].

(4) IE BaGs. Suppose that b introduces the (hyper)edge e. Let b’ be the child of b. Then, the only difference
between G1(b) and G1(b’) is that the former contains the extra edge e. Moreover, V;, = Vj,. For every
partial coloring f;, € Cp, the algorithm checks whether e is a missed edge in f;,. This is possible
because, by definition of IE, all endpoints of e are in Vj,. If e is missed, it sets dp[b, f,] = dp[b’, f5] + 1.
Otherwise, we have dp[b, f;,] = dp[?’, f3].

(5) J BaGs. Let b be a join bag with children b; and b;. Since each (hyper)edge is introduced exactly once,
we know that GY(b,) and G (b,) are (hyper)edge-disjoint. Moreover, since Vi, = Vj, = Vj,, every partial

coloring f;, € Cp is inherited by by and b,. As such, the algorithm sets dp[b, f;,] = dp[b1, f]+dp[b2, f5].
32

Efficient Approximations for CDP To appear in PLDI, June 2022, San Diego

The algorithm computes the final answer and the optimal coloring exactly as in Section 3.3. The argument

for its correctness is also similar.

CoMPUTING THE FINAL ANSWER. Since T is edge-nice, we have V, = 0. So, there is only one possible partial
coloring f. € C, for the root bag r. Moreover, we have G!(r) = G. So, the algorithm outputs dp[r, f;] as the

minimal number of missed edges.

FINDING THE OPTIMAL COLORING. Our algorithm obtains the minimal number of missed edges. As in many
other dynamic programming methods, we can obtain the optimal coloring itself by keeping track of the
partial colorings that led to the optimal dp[, -] value at every step.

Based on this algorithm, we obtain the following variant of Theorem 3:

THEOREM 8. Given positive integer constants t and k, a canonical hypergraph G, with n vertices and N
edges, each with at most d endpoints, and an edge-nice tree decomposition of G with O(n + N) bags and width

w, the algorithm above solves the (t-way) optimal coloring problem in total runtime O((n + N) - k¥*2).

Proor. The edge-nice tree decomposition has O(n + N) bags. At each bag, we define at most k**! dp
variables, one for each partial coloring. Computing each of these variables takes O(1) time in cases 1, 2, 4

and 5 above, and O(k) time in case 3.

33

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Cache-conscious Data Placement
	2.2 Parameterized Complexity, Tree Decompositions and Treewidth

	3 An Efficient Parameterized Approximation Scheme for CDP
	3.1 Access Graphs and Access Hypergraphs
	3.2 Sparsification and Reduction to Graph Coloring
	3.3 A Decomposition-based Algorithm for Optimal Coloring

	4 Hardness of CDP in Bounded Treewidth
	5 Experimental Results
	6 Conclusion
	References
	A Details of the Sparsification for t-way Mapping
	B An Algorithm for Optimal Coloring using Edge-nice Tree Decompositions

